Skip to main content

Univariate Polynomial Optimization with Sum-of-Squares Interpolants

  • Conference paper
  • First Online:
Modeling and Optimization: Theory and Applications (MOPTA 2016)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 213))

Included in the following conference series:

Abstract

One of the most common tools in polynomial optimization is the approximation of the cone of nonnegative polynomials with the cone of sum-of-squares polynomials. This leads to polynomial-time solvable approximations for many NP-hard optimization problems using semidefinite programming (SDP). While theoretically satisfactory, the translation of optimization problems involving sum-of-squares polynomials to SDPs is not always practical. First, in the common SDP formulation, the dual variables are semidefinite matrices whose condition numbers grow exponentially with the degree of the polynomials involved, which is detrimental for a floating-point implementation. Second, the SDP representation of sum-of-squares polynomials roughly squares the number of optimization variables, increasing the time and memory complexity of the solution algorithms by several orders of magnitude. In this paper we focus on the first, numerical, issue. We show that a reformulation of the sum-of-squares SDP using polynomial interpolants yields a substantial improvement over the standard formulation, and problems involving sum-of-squares interpolants of hundreds of degrees can be handled without difficulty by commonly used semidefinite programming solvers. Preliminary numerical results using semi-infinite optimization problems align with the theoretical predictions. In all problems considered, available memory is the only factor limiting the degrees of polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmadi, A.A., Parrilo, P.A.: Non-monotonic Lyapunov functions for stability of discrete time nonlinear and switched systems. In: 47th IEEE Conference on Decision and Control (CDC), pp. 614–621. IEEE, Piscataway (2008)

    Google Scholar 

  2. Alizadeh, F.: Semidefinite and second-order cone programming and their application to shape-constrained regression and density estimation. In: Proceedings of the INFORMS Annual Meeting. INFORMS, Pittsburg, PA (2006)

    Book  Google Scholar 

  3. Alizadeh, F., Papp, D.: Estimating arrival rate of nonhomogeneous Poisson processes with semidefinite programming. Ann. Oper. Res. 208(1), 291–308 (2013). doi:10.1007/s10479-011-1020-2

    Article  MathSciNet  MATH  Google Scholar 

  4. Bachoc, C., Vallentin, F.: New upper bounds for kissing numbers from semidefinite programming. J. Am. Math. Soc. 21(3), 909–924 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ballinger, B., Blekherman, G., Cohn, H., Giansiracusa, N., Kelly, E., Schürmann, A.: Experimental study of energy-minimizing point configurations on spheres. Exp. Math. 18(3), 257–283 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ben-Tal, A., Nemirovski, A.: Lectures on Modern Convex Optimization. SIAM, Philadelphia, PA (2001)

    Book  MATH  Google Scholar 

  7. Berrut, J.P., Trefethen, L.N.: Barycentric Lagrange interpolation. SIAM Rev. 46(3), 501–517 (2004). doi:10.1137/S0036144502417715

    Article  MathSciNet  MATH  Google Scholar 

  8. Blekherman, G.: Nonnegative polynomials and sums of squares. J. Am. Math. Assoc. 25(3), 617–635 (2012). doi:10.1090/S0894-0347-2012-00733-4

    Article  MathSciNet  MATH  Google Scholar 

  9. Blekherman, G., Parrilo, P.A., Thomas, R.R.: Semidefinite optimization and convex algebraic geometry. SIAM, Philadelphia (2013)

    MATH  Google Scholar 

  10. Bojanic, R., DeVore, R.: On polynomials of best one sided approximation. L’Enseignement Mathématique 12(3), 139–164 (1966)

    MathSciNet  MATH  Google Scholar 

  11. Borchers, B.: CSDP, a C library for semidefinite programming. Optim. Methods Softw. 11–2(1–4), 613–623 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chaloner, K.: Optimal Bayesian experimental design for linear models. Ann. Stat. 12(1), 283–300 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  13. Clenshaw, C.W.: A note on the summation of Chebyshev series. Math. Comput. 9, 118–120 (1955). doi:10.1090/S0025-5718-1955-0071856-0

    Article  MathSciNet  MATH  Google Scholar 

  14. de Klerk, E.: Computer-assisted proofs and semidefinite programming. Optima 100, 11–12 (2016)

    Google Scholar 

  15. Dette, H.: Optimal designs for a class of polynomials of odd or even degree. Ann. Stat. 20(1), 238–259 (1992). doi:10.1214/aos/1176348520

    Article  MathSciNet  MATH  Google Scholar 

  16. Driscoll, T.A., Hale, N., Trefethen, L.N.: Chebfun Guide. Pafnuty Publications, Oxford, UK (2014)

    Google Scholar 

  17. Dunkl, C.F., Xu, Y.: Orthogonal Polynomials of Several Variables. In: Encyclopedia of Mathematics and Its Applications, vol. 81. Cambridge University Press, Cambridge, UK (2001)

    Google Scholar 

  18. Fedorov, V.V.: Theory of Optimal Experiments. Academic, New York, NY (1972)

    Google Scholar 

  19. Genin, Y., Hachez, Y., Nesterov, Y., Van Dooren, P.: Convex optimization over positive polynomials and filter design. In: Proceedings of the 2000 UKACC International Conference on Control (2000)

    Google Scholar 

  20. Ghaddar, B., Marecek, J., Mevissen, M.: Optimal power flow as a polynomial optimization problem. IEEE Trans. Power Syst. 31(1), 539–546 (2016)

    Article  Google Scholar 

  21. Gil, A., Segura, J., Temme, N.M.: Numerical methods for special functions. SIAM, Philadelphia, PA (2007)

    Book  MATH  Google Scholar 

  22. Handelman, D.: Representing polynomials by positive linear functions on compact convex polyhedra. Pac. J. Math. 132(1), 35–62 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge University Press, Cambridge (1934)

    MATH  Google Scholar 

  24. Henrion, D., Lasserre, J.B., Löfberg, J.: GloptiPoly 3: moments, optimization and semidefinite programming. Optim. Methods Softw. 24(4–5), 761–779 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Heß, R., Henrion, D., Lasserre, J.B., Pham, T.S.: Semidefinite approximations of the polynomial abscissa. SIAM J. Control Optim. 54(3), 1633–1656 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Higham, N.J.: Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia (2002)

    Book  MATH  Google Scholar 

  27. Higham, N.J.: The numerical stability of barycentric Lagrange interpolation. IMA J. Numer. Anal. 24(4), 547–556 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Horst, R., Pardalos, P.M.: Handbook of Global Optimization, vol. 2. Springer, New York (2013)

    MATH  Google Scholar 

  29. Lasserre, J.B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11(3), 796–817 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lasserre, J.B., Toh, K.C., Yang, S.: A bounded degree SOS hierarchy for polynomial optimization. EURO J. Comput. Optim. 5(1), 87–117 (2017). doi:10.1007/s13675-015-0050-y

    Article  MathSciNet  MATH  Google Scholar 

  31. Lofberg, J., Parrilo, P.A.: From coefficients to samples: a new approach to SOS optimization. In: 43rd IEEE Conference on Decision and Control, vol. 3, pp. 3154–3159. IEEE, Piscataway (2004)

    Google Scholar 

  32. Lukács, F.: Verschärfung der ersten Mittelwertsatzes der Integralrechnung für rationale Polynome. Math. Z. 2, 229–305 (1918). doi:10.1007/BF01199412

    Article  MATH  Google Scholar 

  33. Mehrotra, S., Papp, D.: A cutting surface algorithm for semi-infinite convex programming with an application to moment robust optimization. SIAM J. Optim. 24(4), 1670–1697 (2014). doi:10.1137/130925013

    Article  MathSciNet  MATH  Google Scholar 

  34. Menini, L., Tornambè, A.: Exact sum of squares decomposition of univariate polynomials. In: 54th IEEE Conference on Decision and Control (CDC), pp. 1072–1077 (2015). doi:10.1109/CDC.2015.7402354

    Google Scholar 

  35. Nesterov, Y.: Squared functional systems and optimization problems. In: Frenk, H., Roos, K., Terlaky, T., Zhang, S. (eds.) High Performance Optimization. Applied Optimization, vol. 33, pp. 405–440. Kluwer Academic Publishers, Dordrecht, The Netherlands (2000)

    Chapter  Google Scholar 

  36. Papp, D.: Optimization models for shape-constrained function estimation problems involving nonnegative polynomials and their restrictions. Ph.D. thesis, Rutgers University (2011)

    Google Scholar 

  37. Papp, D.: Optimal designs for rational function regression. J. Am. Stat. Assoc. 107(497), 400–411 (2012). doi:10.1080/01621459.2012.656035

    Article  MathSciNet  MATH  Google Scholar 

  38. Papp, D., Alizadeh, F.: Shape constrained estimation using nonnegative splines. J. Comput. Graph. Stat. 23(1), 211–231 (2014)

    Article  MathSciNet  Google Scholar 

  39. Parrilo, P.A.: Semidefinite programming relaxations for semialgebraic problems. Math. Program. 96(2), 293–320 (2003). doi:10.1007/s10107-003-0387-5

    Article  MathSciNet  MATH  Google Scholar 

  40. Pukelsheim, F.: Optimal Design of Experiments. Wiley, New York (1993)

    MATH  Google Scholar 

  41. Putinar, M.: Positive polynomials on compact semi-algebraic sets. Indiana Univ. Math. J. 42, 969–984 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  42. Rudolf, G., Noyan, N., Papp, D., Alizadeh, F.: Bilinear optimality constraints for the cone of positive polynomials. Math. Program. 129(1), 5–31 (2011). doi:10.1007/s10107-011-0458-y

    Article  MathSciNet  MATH  Google Scholar 

  43. Schmüdgen, K.: The K-moment problem for compact semi-algebraic sets. Math. Ann. 289, 203–206 (1991). doi:10.1007/BF01446568

    Article  MathSciNet  MATH  Google Scholar 

  44. Sturm, J.F.: Using SeDuMi 1.02, a Matlab toolbox for optimization over symmetric cones. Optim. Methods Softw. 11–12(1–4), 625–653 (1999). doi:10.1080/10556789908805766. See also http://sedumi.ie.lehigh.edu/

  45. Timan, A.F.: Theory of Approximation of Functions of a Real Variable. Pergamon Press, Oxford, UK (1963)

    MATH  Google Scholar 

  46. Toh, K.C., Todd, M.J., Tütüncü, R.H.: SDPT3—a Matlab software package for semidefinite programming, version 1.3. Optim. Methods Softw. 11–12(1–4), 545–581 (1999). doi:10.1080/10556789908805762

    Google Scholar 

  47. Trefethen, L.N.: Approximation Theory and Approximation Practice. SIAM, Philadelphia, PA (2013)

    MATH  Google Scholar 

  48. Tyrtyshnikov, E.E.: How bad are Hankel matrices? Numer. Math. 67(2), 261–269 (1994). doi:10.1007/s002110050027

    Article  MathSciNet  MATH  Google Scholar 

  49. Unkelbach, J., Papp, D.: The emergence of nonuniform spatiotemporal fractionation schemes within the standard BED model. Med. Phys. 42(5), 2234–2241 (2015)

    Article  Google Scholar 

  50. Vallentin, F.: Optimization in discrete geometry. Optima 100, 1–10 (2016)

    Google Scholar 

Download references

Acknowledgements

The author is grateful to Sercan Yıldız for many constructive comments on the presentation of the material.

This material was based upon work partially supported by the National Science Foundation under Grant DMS-1127914 to the Statistical and Applied Mathematical Sciences Institute. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dávid Papp .

Editor information

Editors and Affiliations

Appendix

Appendix

Below are the tabulated numerical results from Sect. 4 that are too large to conveniently fit in the text.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Papp, D. (2017). Univariate Polynomial Optimization with Sum-of-Squares Interpolants. In: Takáč, M., Terlaky, T. (eds) Modeling and Optimization: Theory and Applications. MOPTA 2016. Springer Proceedings in Mathematics & Statistics, vol 213. Springer, Cham. https://doi.org/10.1007/978-3-319-66616-7_9

Download citation

Publish with us

Policies and ethics