Skip to main content
Log in

A bounded degree SOS hierarchy for polynomial optimization

  • Original Paper
  • Published:
EURO Journal on Computational Optimization

Abstract

We consider a new hierarchy of semidefinite relaxations for the general polynomial optimization problem \((P):\,f^{*}=\min \{f(x):x\in K\}\) on a compact basic semi-algebraic set \(K\subset \mathbb {R}^n\). This hierarchy combines some advantages of the standard LP-relaxations associated with Krivine’s positivity certificate and some advantages of the standard SOS-hierarchy. In particular it has the following attractive features: (a) in contrast to the standard SOS-hierarchy, for each relaxation in the hierarchy, the size of the matrix associated with the semidefinite constraint is the same and fixed in advance by the user; (b) in contrast to the LP-hierarchy, finite convergence occurs at the first step of the hierarchy for an important class of convex problems; and (c) some important techniques related to the use of point evaluations for declaring a polynomial to be zero and to the use of rank-one matrices make an efficient implementation possible. Preliminary results on a sample of non convex problems are encouraging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. An SOS-convex polynomial is a convex polynomial whose Hessian factors as \(L(x)L(x)^T\) for some rectangular matrix polynomial L. For instance, separable convex polynomials are SOS-convex.

  2. A polynomial \(f\in \mathbb {R}[x]\) is SOS-convex if its Hessian \(\nabla ^2 f\) is an SOS matrix, i.e., \(\nabla ^2f(x)=L(x)\,L(x)^T\) for some matrix polynomial \(L\in \mathbb {R}[x]^{n\times p}\) and some \(p\in \mathbb {N}\).

References

  • Ahmadi AA, Majumdar A (2014) DSOS and SDSOS Optimization: LP and SOCP-Based Alternatives to SOS Optimization. In: Proceedings of the 48th annual conference on information sciences and systems, Princeton, NJ, USA, pp 1–5

  • Benabbas S, Magen A (2010) Extending SDP integrality gaps to Sherali–Adams with applications to quadratic programming and MaxCutGain, In: Shepherd FB (ed) Integer programming and combinatorial optimization. Lecture Notes in Computer Science, Springer, New York, pp 299–312

  • Curto RE, Fialkow LA (2000) The truncated complex K-moment problem. Trans Amer Math Soc 352:2825–2855

    Article  Google Scholar 

  • Curto RE, Fialkow LA (2005) Truncated K-moment problem in several variables. J Op Theory 54:189–226

    Google Scholar 

  • Chlamtac E, Tulsiani M (2012) Convex relaxations and integrality gaps. In: Anjos M, Lasserre JB (eds) Handbook of semidefinite, conic and polynomial optimization. Springer, New York, pp 139–170

    Chapter  Google Scholar 

  • de Klerk E, Laurent M (2011) On the Lasserre hierarchy of semidefinite programming relaxations of convex polynomial optimization problems. SIAM J Optim 21:824–832

  • Floudas CA, Pardalos PM (1990) A collection of test problems for constrained global optimization algorithms. Lecture Notes in Computer Science, vol 455, Springer, Berlin

  • Henrion D, Lasserre JB (2005) Detecting global optimality and extracting solutions in Gloptipoly. In: Henrion D, Garulli A(eds) Positive polynomials in control, Lecture Notes in Control and Information Science, vol 312, pp 293–310

  • Henrion D, Lasserre JB, Lofberg J (2009) GloptiPoly 3: moments, optimization and semidefinite programming. Optim Methods Softw 24:761–779

    Article  Google Scholar 

  • Helton JW, Nie J (2010) Semidefinite representations of convex sets. Math Program 122:21–64

    Article  Google Scholar 

  • Krivine JL (1964) Anneaux préordonnés. J Anal Math 12:307–326

    Article  Google Scholar 

  • Lasserre JB (2001) Global optimization with polynomials and the problem of moments. SIAM J Optim 11:796–817

    Article  Google Scholar 

  • Lasserre JB (2002) Semidefinite programming vs. LP relaxations for polynomial programming. Math Op Res 27:347–360

    Article  Google Scholar 

  • Lasserre JB (2009) Convexity in semi-algebraic geometry and polynomial optimization. SIAM J Optim 19:1995–2014

    Article  Google Scholar 

  • Lasserre JB (2009) Moments, positive polynomials and their applications. Imperial College Press, London

    Book  Google Scholar 

  • Lasserre JB (2013) A Lagrangian relaxation view of linear and semidefinite hierarchies. SIAM J Optim 23:1742–1756

    Article  Google Scholar 

  • Laurent M (2003) A comparison of the Sherali–Adams, Lovász-Schrijver and Lasserre relaxations for 0–1 programming. Math Op Res 28:470–496

    Article  Google Scholar 

  • Marshall M (2009) Representation of non-negative polynomials, degree bounds and applications to optimization. Can J Math 61:205–221

    Article  Google Scholar 

  • Nie J (2014) Optimality conditions and finite convergence of Lasserre’s hierarchy. Math Program 146:97–121

    Article  Google Scholar 

  • Putinar M (1993) Positive polynomials on compact semi-algebraic sets. Ind Univ Math J 42:969–984

    Article  Google Scholar 

  • Sherali HD, Adams WP (1990) A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems. SIAM J Discr Math 3:411–430

    Article  Google Scholar 

  • Sherali HD, Adams WP (1999) A reformulation-linearization technique for solving discrete and continuous nonconvex problems. Kluwer, Dordrecht, MA

    Book  Google Scholar 

  • Stengle G (1974) A nullstellensatz and a positivstellensatz in semialgebraic geometry. Math Ann 207:87–97

    Article  Google Scholar 

  • Toh KC, Todd MJ, Tutuncu RH (1999) SDPT3—a Matlab software package for semidefinite programming. Optim Methods Softw 11:545–581

    Article  Google Scholar 

  • Toh KC, Todd MJ, Tutuncu RH (2003) Solving semidefinite-quadratic-linear programs using SDPT3. Math Program 95:189–217

    Article  Google Scholar 

  • Waki S, Kim S, Kojima M, Maramatsu M (2006) Sums of squares and semidefinite programming relaxations for polynomial optimization problems with structured sparsity. SIAM J Optim 17:218–242

    Article  Google Scholar 

Download references

Acknowledgments

The work of the first author is partially supported by a PGMO grant from Fondation Mathématique Jacques Hadamard, and an ERC-ADG grant from the European Research Council (ERC): grant agreement 666981 TAMING.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean B. Lasserre.

Appendix

Appendix

Before proving Lemma 1 we need introduce some notation. Given \(k\in \mathbb {N}\) fixed, let \(\tau = \max \{\mathrm{deg}(f), 2k, d\max _{j}\{\mathrm{deg}(g_j)\}\}\). For a sequence \(\mathbf {y}=(y_\alpha )\in \mathbb {N}^n_\tau \), let \(L_\mathbf {y}:\mathbb {R}[x]_\tau \rightarrow \mathbb {R}\) be the Riesz functional:

$$\begin{aligned} f\,\left( :=\sum _{\alpha \in \mathbb {N}^n_\tau }f_\alpha \,x^\alpha \,\right) \quad \mapsto \quad L_\mathbf {y}(f):= \sum _{\alpha \in \mathbb {N}^n_\tau }f_\alpha \,y_\alpha ,\qquad f\in \mathbb {R}[x]_\tau , \end{aligned}$$

and let \(\mathbf {M}_k(\mathbf {y})\) be the moment matrix of order k, associated with \(\mathbf {y}\). If \(q\in \mathbb {R}[x]_k\) with coefficient vector \(\mathbf {q}=(q_\alpha )\), then \(\langle \mathbf {q},\mathbf {M}_k(\mathbf {y})\,\mathbf {q}\rangle =L_\mathbf {y}(q^2)\) and if \(\mathbf {y}\) is the (truncated) moment sequence of a measure \(\mu \),

$$\begin{aligned} \langle \mathbf {q},\mathbf {M}_k(\mathbf {y})\,\mathbf {q}\rangle =L_\mathbf {y}(q^2)=\int q(x)^2\,\mathrm{d}\mu (x). \end{aligned}$$

1.1 Proof of Lemma 1

(a) We first prove that the dual of (7) which is the semidefinite program:

$$\begin{aligned} \rho _d^k := \displaystyle \inf _{\mathbf {y}\in \mathbb {R}^L}\,\{\,L_\mathbf {y}(f)\,:\, \displaystyle \mathbf {M}_k(\mathbf {y})\,\succeq \,0;\, L_\mathbf {y}(1)=1;\quad L_\mathbf {y}(h_{\alpha \beta })\, \ge 0,\quad (\alpha ,\beta )\in \mathbb {N}^{2m}_d\,\}\nonumber \\ \end{aligned}$$
(13)

satisfies Slater’s condition. Recall that K has nonempty interior; so let \(\mathbf {y}\) be the sequence of moments of the Lebesgue measure \(\mu \) on \(\mathbf {K}\), scaled to be a probability measure, so that \(L_\mathbf {y}(1)=1\). Necessarily \(\mathbf {M}_k(\mathbf {y})\succ 0\). Otherwise there would exists \(0\ne q\in \mathbb {R}[x]_k\) such that

$$\begin{aligned} \langle \mathbf {q},\mathbf {M}_k(\mathbf {y})\,\mathbf {q}\rangle = \int _K q(x)^2\,\mathrm{d}\mu (x)=0. \end{aligned}$$

But then q vanishes almost everywhere on K, which implies \(q=0\), a contradiction.

Next, observe that for each \((\alpha ,\beta )\in \mathbb {N}^{2m}_d\), the polynomial \(h_{\alpha \beta }\in \mathbb {R}[x]_\tau \) is nonnegative on K and since there exists \(x_0\in K\) such that \(0<g_j(x_0)<1\) for all \(j=1,\ldots ,m\), there is an open set \(O\subset K\) such that \(h_{\alpha \beta }(x)>0\) on O for all \((\alpha ,\beta )\in \mathbb {N}^{2m}\). Therefore

$$\begin{aligned} L_\mathbf {y}(h_{\alpha \beta })=\int _Kh_{\alpha \beta }\,\mathrm{d}\mu \,\ge \,\int _Oh_{\alpha \beta }\,\mathrm{d}\mu \,>0,\quad \forall \, (\alpha ,\beta )\in \mathbb {N}^{2m}. \end{aligned}$$

Therefore \(\mathbf {y}\) is a strictly feasible solution of (13), that is, Slater’s condition holds true for (13). Hence \(\rho ^k_d=q^k_d\) for all d. It remains to prove that \(q^k_d>-\infty \). But this follows from Theorem 1(b) as soon as d is sufficiently large, say \(d\ge d_0\) for some integer \(d_0\). Indeed then \(-\infty <\theta _d\le q^k_d\le f^*\) for all \(d\ge d_0\) (where \(\theta _d\) is defined in (4)). Finally for each fixed d, (7) and (8) have same optimal value \(q^k_d\) and an optimal solution \((q^k_d,\lambda ^*,Q^*)\) of (7) is also an optimal solution of (8).

(b) Let \(\theta ^*\) be an optimal solution of (9) and let \(\mathbf {y}^*\) be as in (10).

\(\bullet \) If \(\mathrm{rank}\,\mathbf {M}_s(\mathbf {y}^*)=1\) then \(\mathbf {M}_s(\mathbf {y}^*)=v_s(x^*)\,v_s(x^*)^T\) for some \(x^*\in \mathbb {R}^n\); this is due to the Hankel-like structure of the moment matrix combined with the rank-one property. So by definition of the moment matrix \(\mathbf {M}_s(\mathbf {y}^*)\), \(\mathbf {y}^*=(y^*_\alpha )\), \(\alpha \in \mathbb {N}^n_{2s}\), is the vector of moments (up to order 2s) of the Dirac measure \(\delta _{x^*}\) at the point \(x^*\). That is, \(y^*_\alpha =(x^*)^\alpha \) for every \(\alpha \in \mathbb {N}^n_{2s}\). But from (10),

$$\begin{aligned} (x^*)^\alpha =y^*_\alpha =\sum _{p=1}^L\theta ^*_p\,(x^{(p)})^\alpha ,\quad \forall \alpha \in \mathbb {N}^n_{2s}. \end{aligned}$$

In particular, for moments of order 1 we obtain \(x^*=\sum _{p=1}^L\theta ^*_p\,x^{(p)}\). In other words, up to moments of order 2s, one cannot distinguish the Dirac measure \(\delta _{x^*}\) at \(x^*\) from the signed measure \(\mu =\sum _p\theta ^*_p\delta _{x^{(p)}}\) (recall that the \(\theta ^*_p\)’s are not necessarily nonnegative). That is, \((x^*)^\alpha =\int x^\alpha d\delta _{x^*}=\int x^\alpha \mathrm{d}\mu \) for all \(\alpha \in \mathbb {N}^n_{2s}\). This in turn implies that for every \(q\in \mathbb {R}[x]_{2s}\):

$$\begin{aligned} q(x^*)=\langle q,\delta _{x^*}\rangle =\langle q,\mu \rangle = \left\langle q,\sum _{p=1}^L\theta ^*_p\,\delta _{x^{(p)}}\right\rangle = \sum _{p=1}^L\theta ^*_p\,q(x^{(p)}). \end{aligned}$$

Next, as \(\theta ^*\) is feasible for (9) and \(2s\ge \max [\mathrm{deg}(f);\,\mathrm{deg}(g_j)]\),

$$\begin{aligned} 0\le \displaystyle \sum _{p=1}^L \theta ^*_p\,\langle h_{\alpha \beta },\delta _{x^{(p)}}\rangle =\left\langle h_{\alpha \beta },\displaystyle \sum _{p=1}^L \theta ^*_p\,\delta _{x^{(p)}}\right\rangle =h_{\alpha \beta }(x^*), \quad \forall (\alpha ,\beta ):\,\mathrm{deg}(h_{\alpha \beta })\,\le 2s. \end{aligned}$$

In particular, choosing \((\alpha ,\beta )\in \mathbb {N}^{2m}_{2s}\) such that \(h_{\alpha \beta }=g_j\) (i.e. \(\beta =0\), \(\alpha _i=\delta _{i=j}\)), one obtains \(g_j(x^*)\ge 0\), \(j=1,\ldots ,m\), which shows that \(x^*\in K\). In addition,

$$\begin{aligned} f^*\,\ge \,\tilde{q}^k_d= \displaystyle \sum _{p=1}^L \theta ^*_p\,\langle f,\delta _{x^{(p)}}\rangle = \left\langle f,\displaystyle \sum _{p=1}^L \theta ^*_p\,\delta _{x^{(p)}}\right\rangle =f(x^*), \end{aligned}$$

which proves that \(x^*\in K\) is an optimal solution of problem (P).

\(\bullet \) If \(\mathbf {M}_s(\mathbf {y}^*)\succeq 0\), \(\mathbf {M}_{s-r}(g_j\,\mathbf {y}^*)\succeq 0\), \(j=1,\ldots ,m\), and \(\mathrm{rank}\,\mathbf {M}_s(\mathbf {y}^*)=\mathrm{rank}\,\mathbf {M}_{s-r}(\mathbf {y}^*)\) then by Curto and Fialkow (2000, 2005, Theorem 1.1), \(\mathbf {y}^*\) is the vector of moments up to order 2s, of some atomic-probability measure \(\mu \) supported on \(v:=\mathrm{rank}\,\mathbf {M}_s(\mathbf {y}^*)\) points \(z(i)\in K\), \(i=1,\ldots ,v\). That is, there exist positive weights \((w_i)\subset \mathbb {R}_+\) such that

$$\begin{aligned} \mu =\sum _{i=1}^v w_i\,\delta _{z(i)};\quad \sum _{i=1}^vw_i=1;\quad w_i\,>\,0,\,i=1,\ldots ,v. \end{aligned}$$

Therefore,

$$\begin{aligned} f^*\,\ge \,\tilde{q}^k_d=\sum _{p=1}^L\theta ^*_p\,\langle f,\delta _{x(p)}\rangle =\sum _{\alpha \in \mathbb {N}^n} f_\alpha \,y^*_\alpha =\int _K f\,\mathrm{d}\mu \,\ge \,f^*, \end{aligned}$$

which shows that \(\tilde{q}^k_d=f^*\). In addition

$$\begin{aligned}0=f^*- \int _K f\,\mathrm{d}\mu =\int _K (f^*-f)\,\mathrm{d}\mu = \sum _{i=1}^v \underbrace{w_i}_{>0}\,(\underbrace{f^*-f(z(i))}_{\le 0}, \end{aligned}$$

which implies \(f(z(i))=f^*\) for every \(i=1,\ldots ,v\). Finally, the v global minimizers can be extracted from the moment matrix \(\mathbf {M}_s(\mathbf {y}^*)\) by the simple linear algebra procedure described in Henrion and Lasserre (2005). \(\square \)

1.2 Test functions for BSOS and GloptiPoly in Table 1

Example P4_2 (4 variables, degree 2):

$$\begin{aligned} f= & {} x_{1}^2-x_{2}^2+x_{3}^2-x_{4}^2+x_1-x_2; \\ g_1= & {} 2x_{1}^2+3x_{2}^2+2x_{1}x_{2}+2x_{3}^2+3x_{4}^2+2x_{3}x_{4}; \\ g_2= & {} 3x_{1}^2+2x_{2}^2-4x_{1}x_{2}+3x_{3}^2+2x_{4}^2-4x_{3}x_{4};\\ g_3= & {} x_{1}^2+6x_{2}^2-4x_{1}x_{2}+x_{3}^2+6x_{4}^2-4x_{3}x_{4}; \\ g_4= & {} x_{1}^2+4x_{2}^2-3x_{1}x_{2}+x_{3}^2+4x_{4}^2-3x_{3}x_{4};\\ g_5= & {} 2x_{1}^2+5x_{2}^2+3x_{1}x_{2}+2x_{3}^2+5x_{4}^2+3x_{3}x_{4}; \quad x\ge 0. \end{aligned}$$

Example P4_4 (4 variables, degree 4):

$$\begin{aligned} f= & {} x_{1}^4-x_{2}^4+x_{3}^4-x_{4}^4; \\ g_1= & {} 2x_{1}^4+3x_{2}^2+2x_{1}x_{2}+2x_{3}^4+3x_{4}^2+2x_{3}x_{4}; \\ g_2= & {} 3x_{1}^2+2x_{2}^2-4x_{1}x_{2}+3x_{3}^2+2x_{4}^2-4x_{3}x_{4};\\ g_3= & {} x_{1}^2+6x_{2}^2-4x_{1}x_{2}+x_{3}^2+6x_{4}^2-4x_{3}x_{4}; \\ g_4= & {} x_{1}^2+4x_{2}^4-3x_{1}x_{2}+x_{3}^2+4x_{4}^4-3x_{3}x_{4};\\ g_5= & {} 2x_{1}^2+5x_{2}^2+3x_{1}x_{2}+2x_{3}^2+5x_{4}^2+3x_{3}x_{4}; \quad x\ge 0. \end{aligned}$$

Example P4_6 (4 variables, degree 6):

$$\begin{aligned} f= & {} x_{1}^4x_{2}^2+x_{1}^2x_{2}^4-x_{1}^2x_{2}^2+x_{3}^4x_{4}^2+x_{3}^2x_{4}^4-x_{3}^2x_{4}^2; \\ g_1= & {} x_{1}^2+x_{2}^2+x_{3}^2+x_{4}^2; \\ g_2= & {} 3x_{1}^2+2x_{2}^2-4x_{1}x_{2}+3x_{3}^2+2x_{4}^2-4x_{3}x_{4};\\ g_3= & {} x_{1}^2+6x_{2}^4-8x_{1}x_{2}+x_{3}^2+6x_{4}^4-8x_{3}x_{4}+2.5; \\ g_4= & {} x_{1}^4+3x_{2}^4+x_{3}^4+3x_{4}^4;\quad g_5=x_{1}^2+x_{2}^3+x_{3}^2+x_{4}^3; \quad x\ge 0. \end{aligned}$$

Example P4_8 (4 variables, degree 8):

$$\begin{aligned} f= & {} x_{1}^4x_{2}^2+x_{1}^2x_{2}^6-x_{1}^2x_{2}^2 +x_{3}^4x_{4}^2+x_{3}^2x_{4}^6-x_{3}^2x_{4}^2;\quad g_1=x_{1}^2+x_{2}^2+x_{3}^2+x_{4}^2; \\ g_2= & {} 3x_{1}^2+2x_{2}^2-4x_{1}x_{2}+3x_{3}^2+2x_{4}^2-4x_{3}x_{4};\\ g_3= & {} x_{1}^2+6x_{2}^4-8x_{1}x_{2}+x_{3}^2+6x_{4}^4-8x_{3}x_{4}+2.5; \\ g_4= & {} x_{1}^4+3x_{2}^4+x_{3}^4+3x_{4}^4;\quad g_5=x_{1}^2+x_{2}^3+x_{3}^2+x_{4}^3; \quad x\ge 0. \end{aligned}$$

Example P6_2 (6 variables, degree 2):

$$\begin{aligned} f= & {} x_{1}^2-x_{2}^2+x_{3}^2-x_{4}^2+x_{5}^2-x_{6}^2 + x_1-x_2; \\ g_1= & {} 2x_{1}^2+3x_{2}^2+2x_{1}x_{2}+2x_{3}^2+3x_{4}^2+2x_{3}x_{4} +2x_{5}^2+3x_{6}^2+2x_{5}x_{6}; \\ g_2= & {} 3x_{1}^2+2x_{2}^2-4x_{1}x_{2}+3x_{3}^2+2x_{4}^2-4x_{3}x_{4} +3x_{5}^2+2x_{6}^2-4x_{5}x_{6}; \\ g_3= & {} x_{1}^2+6x_{2}^2-4x_{1}x_{2}+x_{3}^2+6x_{4}^2-4x_{3}x_{4} +x_{5}^2+6x_{6}^2-4x_{5}x_{6}; \\ g_4= & {} x_{1}^2+4x_{2}^2-3x_{1}x_{2}+x_{3}^2+4x_{4}^2-3x_{3}x_{4}+x_{5}^2 +4x_{6}^2-3x_{5}x_{6}; \\ g_5= & {} 2x_{1}^2+5x_{2}^2+3x_{1}x_{2}+2x_{3}^2+5x_{4}^2+3x_{3}x_{4} +2x_{5}^2+5x_{6}^2+3x_{5}x_{6}; \quad x\ge 0. \end{aligned}$$

Example P6_4 (6 variables, degree 4):

$$\begin{aligned} f= & {} x_{1}^4-x_{2}^2+x_{3}^4-x_{4}^2+x_{5}^4-x_{6}^2 + x_1 - x_2; \\ g_1= & {} 2x_{1}^4+x_{2}^2+2x_{1}x_{2}+2x_{3}^4+x_{4}^2+2x_{3}x_{4}+2x_{5}^4+x_{6}^2+2x_{5}x_{6};\\ g_2= & {} 3x_{1}^2+x_{2}^2-4x_{1}x_{2}+3x_{3}^2+x_{4}^2-4x_{3}x_{4}+3x_{5}^2+x_{6}^2-4x_{5}x_{6};\\ g_3= & {} x_{1}^2+6x_{2}^2-4x_{1}x_{2}+x_{3}^2+6x_{4}^2-4x_{3}x_{4}+x_{5}^2+6x_{6}^2-4x_{5}x_{6};\\ g_4= & {} x_{1}^2+3x_{2}^4-3x_{1}x_{2}+x_{3}^2+3x_{4}^4-3x_{3}x_{4}+x_{5}^2+3x_{6}^4-3x_{5}x_{6};\\ g_5= & {} 2x_{1}^2+5x_{2}^2+3x_{1}x_{2}+2x_{3}^2+5x_{4}^2+3x_{3}x_{4} +2x_{5}^2+5x_{6}^2+3x_{5}x_{6}, \quad x\ge 0. \end{aligned}$$

Example P6_6 (6 variables, degree 6):

$$\begin{aligned} f= & {} x_{1}^6-x_{2}^6+x_{3}^6-x_{4}^6+x_{5}^6-x_{6}^6 +x_1-x_2; \\ g_1= & {} 2x_{1}^6+3x_{2}^2+2x_{1}x_{2}+2x_{3}^6+3x_{4}^2+2x_{3}x_{4}+2x_{5}^6+3x_{6}^2+2x_{5}x_{6};\\ g_2= & {} 3x_{1}^2+2x_{2}^2-4x_{1}x_{2}+3x_{3}^2+2x_{4}^2-4x_{3}x_{4}+3x_{5}^2+2x_{6}^2-4x_{5}x_{6};\\ g_3= & {} x_{1}^2+6x_{2}^2-4x_{1}x_{2}+x_{3}^2+6x_{4}^2-4x_{3}x_{4}+x_{5}^2+6x_{6}^2-4x_{5}x_{6};\\ g_4= & {} x_{1}^2+4x_{2}^6-3x_{1}x_{2}+x_{3}^2+4x_{4}^6-3x_{3}x_{4}+x_{5}^2+4x_{6}^6-3x_{5}x_{6};\\ g_5= & {} 2x_{1}^2+5x_{2}^2+3x_{1}x_{2}+2x_{3}^2+5x_{4}^2+3x_{3}x_{4} +2x_{5}^2+5x_{6}^2+3x_{5}x_{6}, \quad x\ge 0. \end{aligned}$$

Example P6_8 (6 variables, degree 8):

$$\begin{aligned} f= & {} x_{1}^8-x_{2}^8+x_{3}^8-x_{4}^8+x_{5}^8-x_{6}^8 + x_1-x_2; \\ g_1= & {} 2x_{1}^8+3x_{2}^2+2x_{1}x_{2}+2x_{3}^8+3x_{4}^2+2x_{3}x_{4}+2x_{5}^8+3x_{6}^2+2x_{5}x_{6};\\ g_2= & {} 3x_{1}^2+2x_{2}^2-4x_{1}x_{2}+3x_{3}^2+2x_{4}^2-4x_{3}x_{4}+3x_{5}^2+2x_{6}^2-4x_{5}x_{6};\\ g_3= & {} x_{1}^2+6x_{2}^2-4x_{1}x_{2}+x_{3}^2+6x_{4}^2-4x_{3}x_{4}+x_{5}^2+6x_{6}^2-4x_{5}x_{6};\\ g_4= & {} x_{1}^2+4x_{2}^8-3x_{1}x_{2}+x_{3}^2+4x_{4}^8-3x_{3}x_{4}+x_{5}^2+4x_{6}^8-3x_{5}x_{6};\\ g_5= & {} 2x_{1}^2+5x_{2}^2+3x_{1}x_{2}+2x_{3}^2+5x_{4}^2+3x_{3}x_{4}+2x_{5}^2+5x_{6}^2+3x_{5}x_{6}, \quad x\ge 0. \end{aligned}$$

Example P8_2 (8 variables, degree 2):

$$\begin{aligned} f= & {} x_{1}^2-x_{2}^2+x_{3}^2-x_{4}^2+x_{5}^2-x_{6}^2+x_{7}^2-x_{8}^2 + x_1-x_2; \\ g_1= & {} 2x_{1}^2+3x_{2}^2+2x_{1}x_{2}+2x_{3}^2+3x_{4}^2+2x_{3}x_{4}+2x_{5}^2\\&+\,3x_{6}^2+2x_{5}x_{6}+2x_{7}^2+3x_{8}^2+2x_{7}x_{8};\\ g_2= & {} 3x_{1}^2+2x_{2}^2-4x_{1}x_{2}+3x_{3}^2+2x_{4}^2-4x_{3}x_{4}+3x_{5}^2\\&+\,2x_{6}^2-4x_{5}x_{6}+3x_{7}^2+2x_{8}^2-4x_{7}x_{8};\\ g_3= & {} x_{1}^2+6x_{2}^2-4x_{1}x_{2}+x_{3}^2+6x_{4}^2-4x_{3}x_{4}+x_{5}^2\\&+\,6x_{6}^2-4x_{5}x_{6}+x_{7}^2+6x_{8}^2-4x_{7}x_{8};\\ g_4= & {} x_{1}^2+4x_{2}^2-3x_{1}x_{2}+x_{3}^2+4x_{4}^2-3x_{3}x_{4}+x_{5}^2\\&\ +\,4x_{6}^2-3x_{5}x_{6}+x_{7}^2+4x_{8}^2-3x_{7}x_{8};\\ g_5= & {} 2x_{1}^2+5x_{2}^2+3x_{1}x_{2}+2x_{3}^2+5x_{4}^2+3x_{3}x_{4}\\&\ +\,2x_{5}^2+5x_{6}^2+3x_{5}x_{6}+2x_{7}^2+5x_{8}^2+3x_{7}x_{8}; \quad x\ge 0. \end{aligned}$$

Example P8_4 (8 variables, degree 4):

$$\begin{aligned} f= & {} x_{1}^4-x_{2}^4+x_{3}^4-x_{4}^4+x_{5}^4-x_{6}^4+x_{7}^4-x_{8}^4 + x_1-x_2;\\ g_1= & {} 2x_{1}^4+3x_{2}^2+2x_{1}x_{2}+2x_{3}^4+3x_{4}^2+2x_{3}x_{4}+2x_{5}^4\\&\ +\,3x_{6}^2+2x_{5}x_{6}+2x_{7}^4+3x_{8}^2+2x_{7}x_{8};\\ g_2= & {} 3x_{1}^2+2x_{2}^2-4x_{1}x_{2}+3x_{3}^2+2x_{4}^2-4x_{3}x_{4}+3x_{5}^2\\&\ +\,2x_{6}^2-4x_{5}x_{6}+3x_{7}^2+2x_{8}^2-4x_{7}x_{8};\\ g_3= & {} x_{1}^2+6x_{2}^2-4x_{1}x_{2}+x_{3}^2+6x_{4}^2-4x_{3}x_{4}+x_{5}^2\\&\ +\,6x_{6}^2-4x_{5}x_{6}+x_{7}^2+6x_{8}^2-4x_{7}x_{8};\\ g_4= & {} x_{1}^2+4x_{2}^4-3x_{1}x_{2}+x_{3}^2+4x_{4}^4-3x_{3}x_{4}+x_{5}^2\\&\ +\,4x_{6}^4-3x_{5}x_{6}+x_{7}^2+4x_{8}^4-3x_{7}x_{8};\\ g_5= & {} 2x_{1}^2+5x_{2}^2+3x_{1}x_{2}+2x_{3}^2+5x_{4}^2+3x_{3}x_{4}+2x_{5}^2\\&\ +\,5x_{6}^2+3x_{5}x_{6}+2x_{7}^2+5x_{8}^2+3x_{7}x_{8}, \quad x\ge 0. \end{aligned}$$

Example P8_6 (8 variables, degree 6):

$$\begin{aligned} f= & {} x_{1}^6-x_{2}^6+x_{3}^6-x_{4}^6+x_{5}^6-x_{6}^6+x_{7}^6-x_{8}^6 + x_1-x_2;\\ g_1= & {} 2x_{1}^6+3x_{2}^2+2x_{1}x_{2}+2x_{3}^6+3x_{4}^2+2x_{3}x_{4}+2x_{5}^6\\&\ +\,3x_{6}^2+2x_{5}x_{6}+2x_{7}^6+3x_{8}^2+2x_{7}x_{8};\\ g_2= & {} 3x_{1}^2+2x_{2}^2-4x_{1}x_{2}+3x_{3}^2+2x_{4}^2-4x_{3}x_{4}+3x_{5}^2\\&\ +\,2x_{6}^2-4x_{5}x_{6}+3x_{7}^2+2x_{8}^2-4x_{7}x_{8};\\ g_3= & {} x_{1}^2+6x_{2}^2-4x_{1}x_{2}+x_{3}^2+6x_{4}^2-4x_{3}x_{4}+x_{5}^2\\&\ +\,6x_{6}^2-4x_{5}x_{6}+x_{7}^2+6x_{8}^2-4x_{7}x_{8};\\ g_4= & {} x_{1}^2+4x_{2}^6-3x_{1}x_{2}+x_{3}^2+4x_{4}^6-3x_{3}x_{4}+x_{5}^2\\&\ +\,4x_{6}^6-3x_{5}x_{6}+x_{7}^2+4x_{8}^6-3x_{7}x_{8};\\ g_5= & {} 2x_{1}^2+5x_{2}^2+3x_{1}x_{2}+2x_{3}^2+5x_{4}^2+3x_{3}x_{4}+2x_{5}^2\\&\ +\,5x_{6}^2+3x_{5}x_{6}+2x_{7}^2+5x_{8}^2+3x_{7}x_{8}, \quad x\ge 0. \end{aligned}$$

Example P10_2 (10 variables, degree 2):

$$\begin{aligned} f= & {} x_{1}^2-x_{2}^2+x_{3}^2-x_{4}^2+x_{5}^2-x_{6}^2+x_{7}^2-x_{8}^2+x_{9}^2-x_{10}^2+x_1-x_2;\\ g_1= & {} 2x_{1}^2+3x_{2}^2+2x_{1}x_{2}+2x_{3}^2+3x_{4}^2+2x_{3}x_{4}+2x_{5}^2+3x_{6}^2+2x_{5}x_{6}\\&\ +\,2x_{7}^2+3x_{8}^2+2x_{7}x_{8}+2x_{9}^2+3x_{10}^2+2x_{9}x_{10};\\ g_2= & {} 3x_{1}^2+2x_{2}^2-4x_{1}x_{2}+3x_{3}^2+2x_{4}^2-4x_{3}x_{4}+3x_{5}^2+2x_{6}^2-4x_{5}x_{6}\\&\ +\,3x_{7}^2+2x_{8}^2-4x_{7}x_{8}+3x_{9}^2+2x_{10}^2-4x_{9}x_{10};\\ g_3= & {} x_{1}^2+6x_{2}^2-4x_{1}x_{2}+x_{3}^2+6x_{4}^2-4x_{3}x_{4}+x_{5}^2+6x_{6}^2-4x_{5}x_{6}\\&\ +\,x_{7}^2+6x_{8}^2-4x_{7}x_{8}+x_{9}^2+6x_{10}^2-4x_{9}x_{10};\\ g_4= & {} x_{1}^2+4x_{2}^2-3x_{1}x_{2}+x_{3}^2+4x_{4}^2-3x_{3}x_{4}+x_{5}^2+4x_{6}^2-3x_{5}x_{6}\\&\ +\,x_{7}^2+4x_{8}^2-3x_{7}x_{8}+x_{9}^2+4x_{10}^2-3x_{9}x_{10};\\ g_5= & {} 2x_{1}^2+5x_{2}^2+3x_{1}x_{2}+2x_{3}^2+5x_{4}^2+3x_{3}x_{4}+2x_{5}^2+5x_{6}^2+3x_{5}x_{6}\\&\ +\,2x_{7}^2+5x_{8}^2+3x_{7}x_{8}+2x_{9}^2+5x_{10}^2+3x_{9}x_{10}; \quad x \ge 0. \end{aligned}$$

Example P10_4 (10 variables, degree 4):

$$\begin{aligned} f= & {} x_{1}^4-x_{2}^4+x_{3}^4-x_{4}^4+x_{5}^4-x_{6}^4+x_{7}^4-x_{8}^4+x_{9}^4-x_{10}^4 + x_1-x_2;\\ g_1= & {} 2x_{1}^4+3x_{2}^2+2x_{1}x_{2}+2x_{3}^4+3x_{4}^2+2x_{3}x_{4}+2x_{5}^4+3x_{6}^2+2x_{5}x_{6}\\&\ +\,2x_{7}^4+3x_{8}^2+2x_{7}x_{8}+2x_{9}^4+3x_{11}^2+2x_{9}x_{10};\\ g_2= & {} 3x_{1}^2+2x_{2}^2-4x_{1}x_{2}+3x_{3}^2+2x_{4}^2-4x_{3}x_{4}+3x_{5}^2+2x_{6}^2-4x_{5}x_{6}\\&\ +\,3x_{7}^2+2x_{8}^2-4x_{7}x_{8}+3x_{9}^2+2x_{10}^2-4x_{9}x_{10};\\ g_3= & {} x_{1}^2+6x_{2}^2-4x_{1}x_{2}+x_{3}^2+6x_{4}^2-4x_{3}x_{4}+x_{5}^2+6x_{6}^2-4x_{5}x_{6}\\&\ +\,x_{7}^2+6x_{8}^2-4x_{7}x_{8}+x_{9}^2+6x_{10}^2-4x_{9}x_{10};\\ g_4= & {} x_{1}^2+4x_{2}^4-3x_{1}x_{2}+x_{3}^2+4x_{4}^4-3x_{3}x_{4}+x_{5}^2+4x_{6}^4-3x_{5}x_{6}\\&\ +\,x_{7}^2+4x_{8}^4-3x_{7}x_{8}+x_{9}^2+4x_{10}^4-3x_{9}x_{10};\\ g_5= & {} 2x_{1}^2+5x_{2}^2+3x_{1}x_{2}+2x_{3}^2+5x_{4}^2+3x_{3}x_{4}+2x_{5}^2+5x_{6}^2+3x_{5}x_{6}\\&\ +\,2x_{7}^2+5x_{8}^2+3x_{7}x_{8}+2x_{9}^2+5x_{10}^2+3x_{9}x_{10}; \quad x \ge 0. \end{aligned}$$

Example P20_2 (20 variables, degree 2):

$$\begin{aligned} f= & {} x_{1}^2-x_{2}^2+x_{3}^2-x_{4}^2+x_{5}^2-x_{6}^2+x_{7}^2-x_{8}^2+x_{9}^2-x_{10}^2+x_{11}^2-x_{12}^2 + x_1-x_2\\&+\,x_{13}^2-x_{14}^2+x_{15}^2-x_{16}^2+x_{17}^2-x_{18}^2+x_{19}^2-x_{20}^2;\\ g_1= & {} 2x_{1}^2+3x_{2}^2+2x_{1}x_{2}+2x_{3}^2+3x_{4}^2+2x_{3}x_{4}+2x_{5}^2+3x_{6}^2+2x_{5}x_{6}+2x_{7}^2+3x_{8}^2\\&+\,2x_{7}x_{8}+2x_{9}^2+3x_{10}^2+2x_{9}x_{10}+2x_{11}^2+3x_{12}^2+2x_{11}x_{12}+2x_{13}^2+3x_{14}^2\\&+\,2x_{13}x_{14}+2x_{15}^2+3x_{16}^2+2x_{15}x_{16}+2x_{17}^2+3x_{18}^2+2x_{17}x_{18}+2x_{19}^2+3x_{10}^2\\&+\,2x_{20}x_{20};\\ g_2= & {} 3x_{1}^2+2x_{2}^2-4x_{1}x_{2}+3x_{3}^2+2x_{4}^2-4x_{3}x_{4}+3x_{5}^2+2x_{6}^2-4x_{5}x_{6}+3x_{7}^2+2x_{8}^2\\&-\,4x_{7}x_{8}+3x_{9}^2+2x_{10}^2-4x_{9}x_{10}+3x_{11}^2+2x_{12}^2-4x_{11}x_{12}+3x_{13}^2+2x_{14}^2\\&-\,4x_{13}x_{14}+3x_{15}^2+2x_{16}^2-4x_{15}x_{16}+3x_{17}^2+2x_{19}^2-4x_{18}x_{18}+3x_{19}^2+2x_{20}^2\\&-\,4x_{19}x_{20};\\ g_3= & {} x_{1}^2+6x_{2}^2-4x_{1}x_{2}+x_{3}^2+6x_{4}^2-4x_{3}x_{4}+x_{5}^2+6x_{6}^2-4x_{5}x_{6}+x_{7}^2+6x_{8}^2-4x_{7}x_{8}\\&+\,x_{9}^2+6x_{10}^2-4x_{9}x_{10}+x_{11}^2+6x_{12}^2-4x_{11}x_{12}+x_{13}^2+6x_{14}^2-4x_{13}x_{14}\\&+\,x_{15}^2+6x_{17}^2-4x_{16}x_{16}+x_{17}^2+6x_{18}^2-4x_{17}x_{18}+x_{19}^2+6x_{20}^2-4x_{19}x_{20};\\ g_4= & {} x_{1}^2+4x_{2}^2-3x_{1}x_{2}+x_{3}^2+4x_{4}^2-3x_{3}x_{4}+x_{5}^2+4x_{6}^2-3x_{5}x_{6}+x_{7}^2+4x_{8}^2-3x_{7}x_{8}\\&+\,x_{9}^2+4x_{10}^2-3x_{9}x_{10}+x_{1}^2+4x_{12}^2-3x_{11}x_{12}+x_{13}^2+4x_{14}^2-3x_{15}x_{14}\\&+\,x_{15}^2+4x_{16}^2-3x_{15}x_{16}+x_{17}^2+4x_{18}^2-3x_{17}x_{18}+x_{19}^2+4x_{20}^2-3x_{19}x_{20};\\ g_5= & {} 2x_{1}^2+5x_{2}^2+3x_{1}x_{2}+2x_{3}^2+5x_{4}^2+3x_{3}x_{4}+2x_{5}^2+5x_{6}^2+3x_{5}x_{6}+2x_{7}^2+5x_{8}^2\\&+\,3x_{7}x_{8}+2x_{9}^2+5x_{10}^2+3x_{9}x_{10}+2x_{11}^2+5x_{13}^2+3x_{12}x_{12}+2x_{13}^2+5x_{14}^2\\&+\,3x_{13}x_{14}+2x_{15}^2+5x_{16}^2+3x_{15}x_{16}+2x_{17}^2+5x_{18}^2+3x_{17}x_{18}+2x_{19}^2+5x_{20}^2\\&+\,3x_{19}x_{20}; \quad x \ge 0. \end{aligned}$$

Example P20_4 (20 variables, degree 4): same as P20_2 except that f is replaced by

$$\begin{aligned} f= & {} x_{1}^4-x_{2}^4+x_{3}^2-x_{4}^2+x_{5}^2-x_{6}^2+x_{7}^2-x_{8}^2+x_{9}^2-x_{10}^2+x_{11}^2-x_{12}^2 + x_1-x_2\\&+x_{13}^2-x_{14}^2+x_{15}^2-x_{16}^2+x_{17}^2-x_{18}^2+x_{19}^2-x_{20}^2; \end{aligned}$$

1.3 Test functions for BSOS versus LP relaxations of Krivine-Stengle on convex problems in Table 2

Example C4_2 (4 variables, degree 2):

$$\begin{aligned} f= & {} x_1^2+x_2^2+x_3^2+x_4^2 + 2x_1x_2-x_1-x_2;\\ g_1= & {} -x_1^2-2x_2^2-x_3^2-2x_4^2+1;\\ g_2= & {} -2x_1^2-x_2^2-2x_3^2-x_4^2+1; \\ g_3= & {} -x_1^2-4x_2^2-x_3^2-4x_4^2+1.25;\\ g_4= & {} -4x_1^2-x_2^2-4x_3^2-x_4^2+1.25; \\ g_5= & {} -2x_1^2-3x_2^2-2x_3^2-3x_4^2+1.1; \quad x\ge 0. \end{aligned}$$

Example C4_4 (4 variables, degree 4):

$$\begin{aligned} f= & {} x_1^4+x_2^4+x_3^4+x_4^4 + 3x_1^2x_2^2-x_1-x_2; \\ g_1= & {} -x_1^4-2x_2^4-x_3^4-2x_4^4+1;\\ g_2= & {} -2x_1^4-x_2^4-2x_3^4-x_4^4+1; \\ g_3= & {} -x_1^4-4x_2^4-x_3^4-4x_4^4+1.25;\\ g_4= & {} -4x_1^4-x_2^4-4x_3^4-x_4^4+1.25; \\ g_5= & {} -2x_1^4-3x_2^2-2x_3^4-3x_4^2+1.1; \quad x\ge 0. \end{aligned}$$

Example C4_6 (4 variables, degree 6):

$$\begin{aligned} f= & {} x_1^6+x_2^6+x_3^6+x_4^6 + \frac{10}{3} x_1^3x_2^3-x_1-x_2; \\ g_1= & {} -x_1^6-2x_2^6-x_3^6-2x_4^6+1;\\ g_2= & {} -2x_1^6-x_2^6-2x_3^6-x_4^6+1;\\ g_3= & {} -x_1^6-4x_2^2-x_3^6-4x_4^2+1.25;\\ g_4= & {} -4x_1^6-x_2^2-4x_3^6-x_4^2+1.25;\nonumber \\ g_5= & {} -2x_1^2-3x_2^6-2x_3^2-3x_4^6+1.1; \quad x\ge 0. \end{aligned}$$

Example C6_2 (6 variables, degree 2):

$$\begin{aligned} f= & {} x_1^2+x_2^2+x_3^2+x_4^2+x_5^2+x_6^2 + 2x_1x_2-x_1-x_2;\nonumber \\ g_1= & {} -x_1^2-2x_2^2-x_3^2-2x_4^2-x_5^2-2x_6^2+1;\\ g_2= & {} -2x_1^2-x_2^2-2x_3^2-x_4^2-2x_5^2-x_6^2+1;\nonumber \\ g_3= & {} -x_1^2-4x_2^2-x_3^2-4x_4^2-x_5^2-4x_6^2+1.25;\\ g_4= & {} -4x_1^2-x_2^2-4x_3^2-x_4^2-4x_5^2-x_6^2+1.25;\nonumber \\ g_5= & {} -2x_1^2-3x_2^2-2x_3^2-3x_4^2-2x_5^2-3x_6^2+1.1; \quad x\ge 0. \end{aligned}$$

Example C6_4 (6 variables, degree 4):

$$\begin{aligned} f= & {} x_1^4+x_2^4+x_3^4+x_4^4+x_5^4+x_6^4+3x_1^2x_2^2-x_1-x_2;\nonumber \\ g_1= & {} -x_1^4-2x_2^4-x_3^4-2x_4^4-x_5^4-2x_6^4+1;\\ g_2= & {} -2x_1^4-x_2^4-2x_3^4-x_4^4-2x_5^4-x_6^4+1;\nonumber \\ g_3= & {} -x_1^4-4x_2^4-x_3^4-4x_4^4-x_5^4-4x_6^4+1.25;\\ g_4= & {} -4x_1^4-x_2^4-4x_3^4-x_4^4-4x_5^4-x_6^4+1.25;\\ g_5= & {} -2x_1^4-3x_2^2-2x_3^4-3x_4^2-2x_5^4-3x_6^2+1.1; \quad x\ge 0. \end{aligned}$$

Example C6_6 (6 variables, degree 6):

$$\begin{aligned} f= & {} x_1^6+x_2^6+x_3^6+x_4^6+x_5^6+x_6^6+\frac{10}{3}x_1^2x_2^3-x_1-x_2;\nonumber \\ g_1= & {} -x_1^6-2x_2^6-x_3^6-2x_4^6-x_5^6-2x_6^6+1;\\ g_2= & {} -2x_1^6-x_2^6-2x_3^6-x_4^6-2x_5^6-x_6^6+1;\nonumber \\ g_3= & {} -x_1^6-4x_2^2-x_3^6-4x_4^2-x_5^6-4x_6^2+1.25;\\ g_4= & {} -4x_1^6-x_2^2-4x_3^6-x_4^2-4x_5^6-x_6^2+1.25;\nonumber \\ g_5= & {} -2x_1^2-3x_2^6-2x_3^2-3x_4^6-2x_5^2-3x_6^6+1.1; \quad x\ge 0. \end{aligned}$$

Example C8_2 (8 variables, degree 2):

$$\begin{aligned} f= & {} x_1^2+x_2^2+x_3^2+x_4^2+x_5^2+x_6^2+x_7^2+x_8^2+2x_1x_2-x_1-x_2;\nonumber \\ g_1= & {} -x_1^2-2x_2^2-x_3^2-2x_4^2-x_5^2-2x_6^2-x_7^2-2x_8^2+1;\\ g_2= & {} -2x_1^2-x_2^2-2x_3^2-x_4^2-2x_5^2-x_6^2-2x_7^2-x_8^2+1; \nonumber \\ g_3= & {} -x_1^2-4x_2^2-x_3^2-4x_4^2-x_5^2-4x_6^2-x_7^2-4x_8^2+1.25;\\ g_4= & {} -4x_1^2-x_2^2-4x_3^2-x_4^2-4x_5^2-x_6^2-4x_7^2-x_8^2+1.25;\nonumber \\ g_5= & {} -2x_1^2-3x_2^2-2x_3^2-3x_4^2-2x_5^2-3x_6^2-2x_7^2-3x_8^2+1.1; \quad x \ge 0. \end{aligned}$$

Example C8_4 (8 variables, degree 4):

$$\begin{aligned} f= & {} x_1^4+x_2^4+x_3^4+x_4^4+x_5^4+x_6^4+x_7^4+x_8^4+3x_1^2x_2^2-x_1-x_2;\nonumber \\ g_1= & {} -x_1^4-2x_2^4-x_3^4-2x_4^4-x_5^2-2x_6^4-x_7^4-2x_8^4+1;\\ g_2= & {} -2x_1^4-x_2^4-2x_3^4-x_4^4-2x_5^2-x_6^4-2x_7^4-x_8^4+1;\nonumber \\ g_3= & {} -x_1^4-4x_2^4-x_3^4-4x_4^4-x_5^4-4x_6^4-x_7^4-4x_8^4+1.25;\\ g_4= & {} -4x_1^4-x_2^4-4x_3^4-x_4^4-4x_5^4-x_6^4-4x_7^4-x_8^4+1.25;\nonumber \\ g_5= & {} -2x_1^4-3x_2^2-2x_3^4-3x_4^2-2x_5^4-3x_6^2-2x_7^4-3x_8^2+1.1; \quad x \ge 0. \end{aligned}$$

Example C10_2 (10 variables, degree 2):

$$\begin{aligned} f= & {} x_1^2+x_2^2+x_3^2+x_4^2+x_5^2+x_6^2+x_7^2+x_8^2+x_9^2+x_{10}^2 +2x_1x_2-x_1-x_2; \\ g_1= & {} -x_1^2-2x_2^2-x_3^2-2x_4^2-x_5^2-2x_6^2-x_7^2-2x_8^2-x_9^2-2x_{10}^2+1; \\ g_2= & {} -2x_1^2-x_2^2-2x_3^2-x_4^2-2x_5^2-x_6^2-2x_7^2-x_8^2-2x_9^2-x_{10}^2+1; \\ g_3= & {} -x_1^2-4x_2^2-x_3^2-4x_4^2-x_5^2-4x_6^2-x_7^2-4x_8^2-x_9^2-4x_{10}^2+1.25;\\ g_4= & {} -4x_1^2-x_2^2-4x_3^2-x_4^2-4x_5^2-x_6^2-4x_7^2-x_8^2-4x_9^2-x_{10}^2+1.25;\\ g_5= & {} -2x_1^2-3x_2^2-2x_3^2-3x_4^2-2x_5^2-3x_6^2-2x_7^2-3x_8^2-2x_9^2 \\&-3x_{10}^2+1.1; \quad x \ge 0. \end{aligned}$$

Example C10_4 (10 variables, degree 4):

$$\begin{aligned} f= & {} x_1^4+x_2^4+x_3^4+x_4^4+x_5^4+x_6^4+x_7^4+x_8^4+x_9^4+x_{10}^4 +3x_1^2x_2^2-x_1-x_2; \\ g_1= & {} -x_1^4-2x_2^4-x_3^4-2x_4^4-x_5^4-2x_6^4-x_7^4-2x_8^4-x_9^4-2x_{10}^4+1; \\ g_2= & {} -2x_1^4-x_2^4-2x_3^4-x_4^4-2x_5^4-x_6^4-2x_7^4-x_8^4-2x_9^4-x_{10}^4+1; \\ g_3= & {} -x_1^4-4x_2^4-x_3^4-4x_4^4-x_5^4-4x_6^4-x_7^4-4x_8^4-x_9^4-4x_{10}^4+1.25;\\ g_4= & {} -4x_1^4-x_2^4-4x_3^4-x_4^4-4x_5^4-x_6^4-4x_7^4-x_8^4-4x_9^4-x_{10}^4+1.25;\\ g_5= & {} -2x_1^4-3x_2^2-2x_3^4-3x_4^2-2x_5^4-3x_6^2-2x_7^4-3x_8^2-2x_9^4 \\&-3x_{10}^2+1.1; \quad x \ge 0. \end{aligned}$$

Example C20_2 (20 variables, degree 2):

$$\begin{aligned} f= & {} x_1^2+x_2^2+x_3^2+x_4^2+x_5^2+x_6^2+x_7^2+x_8^2+x_9^2+x_{10}^2 + 2x_1x_2-x_1-x_2 \\&+\,x_{11}^2+x_{12}^2+x_{13}^2+x_{14}^2+x_{15}^2+x_{16}^2+x_{17}^2+x_{18}^2+x_{19}^2+x_{20}^2;\\ g_1= & {} -x_1^2-2x_2^2-x_3^2-2x_4^2-x_5^2-2x_6^2-x_7^2-2x_8^2-x_9^2-2x_{10}^2 \\&-\,x_{11}^2-2x_{12}^2-x_{13}^2-2x_{14}^2-x_{15}^2-2x_{16}^2-x_{17}^2-2x_{18}^2-x_{19}^2-2x_{20}^2+1; \\ g_2= & {} -2x_1^2-x_2^2-2x_3^2-x_4^2-2x_5^2-x_6^2-2x_7^2-x_8^2-2x_9^2-x_{10}^2 \\&-\,2x_{11}^2-x_{12}^2-2x_{13}^2-x_{14}^2-2x_{15}^2-x_{16}^2-2x_{17}^2-x_{18}^2-2x_{19}^2-x_{20}^2+1;\\ g_3= & {} -x_1^2-4x_2^2-x_3^2-4x_4^2-x_5^2-4x_6^2-x_7^2-4x_8^2-x_9^2-4x_{10}^2 \\&-\,x_{11}^2-4x_{12}^2-x_{13}^2-4x_{14}^2-x_{15}^2-4x_{16}^2-x_{17}^2-4x_{18}^2-x_{19}^2-4x_{20}^2+1.25;\\ g_4= & {} -4x_1^2-x_2^2-4x_3^2-x_4^2-4x_5^2-x_6^2-4x_7^2-x_8^2-4x_9^2-x_{10}^2\\&-\,4x_{11}^2-x_{12}^2-4x_{13}^2-x_{14}^2-4x_{15}^2-x_{16}^2-4x_{17}^2-x_{18}^2-4x_{19}^2-x_{20}^2+1.25;\\ g_5= & {} -2x_1^2-3x_2^2-2x_3^2-3x_4^2-2x_5^2-3x_6^2-2x_7^2-3x_8^2-2x_9^2-3x_{10}^2\\&-\,2x_{11}^2-3x_{12}^2-2x_{13}^2-3x_{14}^2-2x_{15}^2-3x_{16}^2-2x_{17}^2-3x_{18}^2-2x_{19}^2\\&-\,3x_{20}^2+1.1; \quad x \ge 0. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lasserre, J.B., Toh, KC. & Yang, S. A bounded degree SOS hierarchy for polynomial optimization. EURO J Comput Optim 5, 87–117 (2017). https://doi.org/10.1007/s13675-015-0050-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13675-015-0050-y

Keywords

Mathematics Subject Classification

Navigation