Skip to main content

Analysis and Application of a Displacement CPG-Based Method on Articulated Frames

  • Conference paper
  • First Online:
Advances in Computing (CCC 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 735))

Included in the following conference series:

Abstract

The large evolution of robotics in the last 20 years has been developed with the great contribution of new techniques from computational intelligence, inspired in living things. They have changed the design of articulated artificial systems. The Central Pattern Generators were revealed in the 90´s as regulators of autonomous and rhythmic movements on fish, reptiles, birds and mammals. In this work, through recurrent and dynamical neural networks for the simulation and physical assembly of a quadruped robot with three joints per leg, the concept of Central Pattern Generators (CPG) is applied. A distributed autonomous control architecture based on modular and hierarchical CPG is designed and embedded in software systems. Five recurrent neural networks, organized in two layers, are simultaneously managed to generate signals, synchronize and execute the movement of each joint from each leg, and for the total movement production of different gaits. Successful autonomous decision-making results found for different gaits are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gutiérrez, C., Castro, M.: Why do people think that computers cannot. Revista Informática y Sociedad, San José, Costa Rica, pp. 645–680 (1987). (in Spanish)

    Google Scholar 

  2. Fuentes, C., de la Cruz, J.: Generator of walking modes for quadruped robots based on neurophysiological principles. M.Sc. Thesis. Universidad Simón Bolívar (2006). (in Spanish)

    Google Scholar 

  3. Buchli, J., Ijspeert, A.J.: Distributed central pattern generator model for robotics application based on phase sensitivity analysis. In: Ijspeert, A.J., Murata, M., Wakamiya, N. (eds.) BioADIT 2004. LNCS, vol. 3141, pp. 333–349. Springer, Heidelberg (2004). doi:10.1007/978-3-540-27835-1_25

    Chapter  Google Scholar 

  4. Crespi, A., Ijspeert, A.J.: AmphiBot II: an amphibious snake robot that crawls and swims using a central pattern generator. In: 9th International Conference on Climbing and Walking Robots, vol. 50, pp. 19–27 (2006)

    Google Scholar 

  5. Zhao, W., Hu, Y., Wang, L.: Construction and central pattern generator-based control of a flipper-actuated turtle-like underwater robot. Adv. Robot. 23, 19–43 (2009)

    Article  Google Scholar 

  6. Inada, H., Ishii, K.: A bipedal walk using central pattern generator (CPG). In: 1st Meeting Entitled Brain, IT, vol. 1269, pp. 185–188 (2004)

    Google Scholar 

  7. Huang, W., Chew, C.-M., Hong, G.-S.: Coordination in CPG and its application on bipedal walking. In: IEEE Conference on Robotics, Automation and Mechatronics, pp. 450–455 (2008)

    Google Scholar 

  8. Cappelletto, J., Estévez, P., Grieco, J.C., Medina-Meléndez, W., Fernández-López, G.: Gait synthesis in legged robot locomotion using a CPG-based model. In: Bio Inspiration and Robotics: Walking and Climbing Robots, Vienna, pp. 227–246 (2007)

    Google Scholar 

  9. Cohen, A.H., Rossignol, S., Grillner, S.: Neural Control of Rhythmic Movements in Vertebrate, p. 500. Wiley, Great Britain (1989)

    Google Scholar 

  10. Hooper, S.L.: Central Pattern Generators. Ohio University, Athens, Ohio, USA (2001)

    Google Scholar 

  11. Taylor, A.L., Goaillard, J.-M., Marder, E.: How multiple conductances determine electrophysiological properties in a multi compartment model. J. Neurosci. 29, 5573–5586 (2009)

    Article  Google Scholar 

  12. Prinz, A.A., Billimoria, C.P., Marder, E.: Alternative to hand-tuning conductance-based models: construction and analysis of databases of model neurons. J. Neurophysiol. 90, 3998–4015 (2003)

    Article  Google Scholar 

  13. Maufroy, C., Kimura, H., Takase, K.: Towards a general neural controller for 3D quadrupedal locomotion. In: SICE Annual Conference, Japan, August 2008

    Google Scholar 

  14. Ijspeert, A.J.: Central pattern generators for locomotion control in animals and robots: a review. Prepr. Neural Networks. 21(4), 642–653 (2008)

    Article  Google Scholar 

  15. Bower, J.M., Beeman, D.: The Book of Genesis. Springer, New York (2003). Chap. 8

    MATH  Google Scholar 

  16. Crespi, A., Badertscher, A., Guignard, A., Ijspeert, A.J.: AmphiBot I: an amphibious snake-like robot. Robot. Auton. Syst. 50, 163–175 (2005)

    Article  Google Scholar 

  17. Inada, H., Ishii, K.: Behavior generation of bipedal robot using central pattern generator (CPG). In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 4, pp. 27–31 (2003)

    Google Scholar 

  18. Or, J.: A control system for a flexible spine belly-dancing humanoid. Artif. Life 12, 63–87 (2006)

    Article  Google Scholar 

  19. Inada, H., Ishii, K.A.: Bipedal walk using central pattern generator (CPG). In: 1st Meeting Entitled Brain, IT, vol. 1269, pp. 185–188 (2004)

    Google Scholar 

  20. Vogelstein, R., Tenore, F., Etienne-Cummings, R., Lewis, M., Cohen, A.: Dynamic control of the central pattern generator for locomotion. Biol. Cybern. 95, 555–566 (2006)

    Article  MATH  Google Scholar 

  21. Huerta, R., Varona, P., Rabinovich, M., Abarbanel, H.: Topology selection by chaotic neurons of a pyloric central pattern generator. Biol. Cybern. 84, L1–L8 (2001)

    Article  Google Scholar 

  22. Vavoulis, D., Straub, V., Kemenes, I., Kemenes, G., Feng, J., Benjamin, P.: Dynamic control of a central pattern generator circuit: a computational model of the snail feeding network. Eur. J. Neurosci. 25, 2805–2818 (2007)

    Article  Google Scholar 

  23. Gonzalez-Gomez, J., Zhang, H., Boemo, E.: Locomotion principles of 1D topology pitch and pitch-yaw-connecting modular robots. In: Habib, M.K. (ed.) Bioinspiration and Robotics Walking and Climbing Robots (2007). ISBN 978-3-902613-15-8, InTech. http://www.intechopen.com/books/bioinspiration_and_robotics_walking_and_climbing_robots/locomotion_princIples_of_1d_topology_pitch_and_pitch-yaw-connecting_modular_robots

  24. Matsuo, T., Ishii, K.A.: CPG control system for a modular type mobile robot. In: 3rd International Conference on Brain-Inspired Information Technology “BrainIT 2006”, vol. 1301, pp. 206–209 (2006)

    Google Scholar 

  25. Ishii, T., Masakado, S., Ishii, K.: Locomotion of a quadruped robot using CPG. In: IEEE International Joint Conference on Neural Networks, vol. 4, pp. 25–29 (2004)

    Google Scholar 

  26. Fujii, A., Saito, N., Nakahira, K., Ishiguro, A., Eggenberger, P.: Generation of an adaptive controller CPG for a quadruped robot with neuromodulation mechanism. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 30, pp. 619–2624 (2002)

    Google Scholar 

  27. Sun, L., Meng, M.Q.-H., Chen, W., Liang, H., Mei, T.: Design of quadruped robot based CPG and fuzzy neural network. In: IEEE International Conference on Automation and Logistics, pp. 2403–2408 (2007)

    Google Scholar 

  28. Ramírez, M., David, F.: Computational model modulating sensorimotor transformation. Ph.D. thesis in Physics. Universidad del Valle, Cali, Colombia (2006). (in Spanish)

    Google Scholar 

  29. Wang, M., Yu, J., Tan, M., Zhang, G.: A CPG-based sensory feedback control method for robotic fish locomotion. In: 30th Chinese Control Conference, July 2011

    Google Scholar 

  30. Liu, C., Chen, Q., Xu, T.: Locomotion control of quadruped robots based on central pattern generators. In: 8th World Congress on Intelligent Control and Automation, pp. 1167–1172, June 2011

    Google Scholar 

  31. Oliveira, M., Santos, C.P., Costa, L., Matos, V., Ferreira, M.: Multi-objective parameter CPG optimization for gait generation of a quadruped robot considering behavioral diversity. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2286–2291, September 2011

    Google Scholar 

  32. Katie, B., Alec, S., Sam, P., Roy, N., Tedrake, R.: Reliable dynamic motions for a stiff quadruped. tracts. Adv. Robot. 54, 319–328 (2009)

    Google Scholar 

  33. Betancourt, H.J.L.: Lever mechanism design assisted by computer. Revista Ingeniería Mecánica, Habana, vol. 4, no 3, pp. 35–39 (2001). (in Spanish)

    Google Scholar 

  34. Pinto, C., Golubitsky, M.: Central pattern generators for bipedal locomotion. Math. Biol. 53, 474–489 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  35. Jiménez-Estrada, I.: Locomotion in vertebrates. Elementos 31, 28 (1998)

    Google Scholar 

  36. Nandi, G.C., Ijspeert, A.J., Chakraborty, P., Nandi, A.: Development of adaptive modular active leg (AMAL) using bipedal robotics technology. Robot. Auton. Syst. 57, 603–616 (2009)

    Article  Google Scholar 

  37. Fukuoka, Y., Kimura, H., Cohen, A.H.: Adaptive dynamic walking of a quadruped robot on irregular terrain based on biological concepts. Int. J. Robot. Res. 22(3–4), 187–202 (2003)

    Article  Google Scholar 

  38. Nakada, K., Asai, T., Amemiya, Y.: An analog current-mode CMOS implementation of central pattern generator for robot locomotion. In: Proceedings of the 2nd International Symposium on Adaptive Motion of Animals and Machines, Kyoto, Japan, March 2003

    Google Scholar 

  39. Wiklendt, L.: Spiking Neural Networks for Robot Locomotion Control, Ph.D. thesis, Computer Sciences, The University of Newcastle (2014)

    Google Scholar 

  40. Kasabov, N., et al.: NeuCube: a spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data. Neural Netw. 52, 62–76 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edgar Mario Rico .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Rico, E.M., Hernandez, J.A. (2017). Analysis and Application of a Displacement CPG-Based Method on Articulated Frames. In: Solano, A., Ordoñez, H. (eds) Advances in Computing. CCC 2017. Communications in Computer and Information Science, vol 735. Springer, Cham. https://doi.org/10.1007/978-3-319-66562-7_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66562-7_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66561-0

  • Online ISBN: 978-3-319-66562-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics