Skip to main content

Application of LIPUS to the Temporomandibular Joint

  • Chapter
  • First Online:
Therapeutic Ultrasound in Dentistry

Abstract

The most common joint pathology affecting the temporomandibular joint (TMJ) is degenerative joint disease, also known as osteoarthritis (OA). TMJ-OA is characterized by mandibular condylar cartilage degradation due to mechanical overloading. Rheumatoid arthritis (RA) is also a systemic, chronic inflammatory disease of the TMJ with cartilage destruction and infiltration of inflammatory cells into synovial tissue. Since the fibrocartilage covering both the TMJ condyle and articular eminence is avascular, these fibrocartilage cells have limited ability to self-repair. Therefore, once the breakdown in the joint starts, TMJ-OA and TMJ-RA can be crippling, leading to a variety of morphological and functional deformities. From in vitro and in vivo studies, low-intensity pulsed ultrasound (LIPUS) downregulates COX-2 and PGE2 expression, upregulates HAS2 and HAS3 expression, and suppresses the proliferation and growth in IL-1β-stimulated synovial membrane cells and reduces COX-2 expression and synovial hyperplasia in RA joints. These results are indicative of distinct anabolic effect of LIPUS application that enhances the TMJ metabolism and regeneration. In conclusion, LIPUS may be a medical treatment option for degenerative joint diseases such as RA and OA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Widegren U, Wretman C, Lionikas A, Hedin G, Henriksson J. Influence of exercise intensity on ERK/MAP kinase signalling in human skeletal muscle. Pflugers Arch. 2000;441:317–22.

    Article  Google Scholar 

  2. Warwick R, Williams PL. Gray’s anatomy. Philadelphia, PA: Saunders Co.; 1973.

    Google Scholar 

  3. Gray RJM, Davies SJ, Quayle AA. Temporomandibular disorders: a clinical approach. London: British Dental Association; 1995.

    Google Scholar 

  4. Rees LA. The structure and function of the mandibular joint. Br Dent J. 1954;96:125–33.

    Google Scholar 

  5. Tanaka E, Kawai N, Tanaka M, Todoh M, van Eijden T, Hanaoka K, et al. The Frictional coefficient of the temporomandibular joint and its dependency on the magnitude and duration of joint loading. J Dent Res. 2004;83:404–7.

    Article  Google Scholar 

  6. Aoyama J, Tanaka E, Miyauchi M, Takata T, Hanaoka K, Hattori Y, et al. Immunolocalization of vascular endothelial growth factor in rat condylar cartilage during postnatal development. Histochem Cell Biol. 2004;122:35–40.

    Article  Google Scholar 

  7. Fujisawa T, Kuboki T, Kasai T, Sonoyama W, Kajima S, Uehara J, et al. A repetitive steady mouth opening induced an osteoarthritis-like lesion in the rabbit temporomandibular joint. J Dent Res. 2003;82:731–5.

    Article  Google Scholar 

  8. Tanaka E, Aoyama J, Miyauchi M, Takata T, Hanaoka K, Iwabe T, et al. Vascular endothelial growth factor plays an important autocrine/paracrine role in the progression of osteoarthritis. Histochem Cell Biol. 2005;123:275–81.

    Article  Google Scholar 

  9. Luder HU, Leblond CP, von der Mark K. Cellular stages in cartilage formation as revealed by morphometry, radioautography and type II collagen immunostaining of the mandibular condyle from weanling rats. Am J Anat. 1988;182:197–214.

    Article  Google Scholar 

  10. Ohno S, Schmid T, Tanne Y, Kamiya T, Honda K, Nakahara MO, et al. Expression of superficial zone protein in mandibular condyle cartilage. Osteoarthr Cart. 2006;14:807–13.

    Article  Google Scholar 

  11. Mizoguchi I, Toriya N, Nakao Y. Growth of the mandible and biological characteristics of the mandibular condylar cartilage. Jpn Dent Sci Rev. 2013;49:139–50.

    Article  Google Scholar 

  12. Fukada K, Shibata S, Suzuki S, Ohya K, Kuroda T. In situ hybridisation study of type I, II, X collagens and aggrecan mRNAs in the developing condylar cartilage of fetal mouse mandible. J Anat. 1999;195:321–9.

    Article  Google Scholar 

  13. Shen G, Rabie ABM, Zhao ZH, Kaluarachchi K. Forward deviation of the mandibular condyle enhances endochondral ossification of condylar cartilage indicated by increased expression of type X collagen. Arch Oral Biol. 2006;51:315–24.

    Article  Google Scholar 

  14. Park JH, Park BH, Kim HK, Park TS, Baek HS. Hypoxia decreases Runx2/Cbfa1 expression in human osteoblast-like cells. Mol Cell Endocrinol. 2002;192:197–203.

    Article  Google Scholar 

  15. Hartmann C, Tabin CJ. Dual roles of Wnt signaling during chondrogenesis in the chicken limb. Development. 2000;127:3141–59.

    PubMed  Google Scholar 

  16. Rabie ABM, Hägg U. Factors regulating mandibular condylar growth. Am J Orthod Dentofac Orthop. 2002;122:401–9.

    Article  Google Scholar 

  17. Glineburg RW, Laskin DM, Blaustein DI. The effects of immobilization on the primate temporomandibular joint: a histologic and histochemical study. J Oral Maxillofac Surg. 1982;40:3–8.

    Article  Google Scholar 

  18. Ghafari J, Degroote C. Condylar cartilage response to continuous mandibular displacement in the rat. Angle Orthod. 1986;5:49–57.

    Google Scholar 

  19. Nakao Y, Nagasaka MK, Toriya N, Arakawa T, Kashio H, Takuma T, Mizoguchi I. Proteoglycan expression is influenced by mechanical load in TMJ discs. J Dent Res. 2015;94:93–100.

    Article  Google Scholar 

  20. Linn FC. Lubrication of animal joints—I. The arthrotripsometer. J Bone Joint Surg. 1967;49-A:1079–98.

    Article  Google Scholar 

  21. Mabuchi K, Obara T, Ikegami K, Yamaguchi T, Kanayama T. Molecular weight independence of the effect of additive hyaluronic acid on the lubricating characteristics in synovial joints with experimental deterioration. Clin Biomech. 1999;14:352–6.

    Article  Google Scholar 

  22. Tanaka E, Detamore MS, Mercuri LG. Degenerative disorders of the temporomandibular joint: etiology, diagnosis, and treatment. J Dent Res. 2008;87:296–307.

    Article  Google Scholar 

  23. Nitzan DW. The process of lubrication impairment and its involvement in temporomandibular joint disc displacement: a theoretical concept. J Oral Maxillofac Surg. 2001;59:36–45.

    Article  Google Scholar 

  24. Scapino RP, Canham PB, Finlay HM, Mills DK. The behaviour of collagen fibres in stress relaxation and stress distribution in the jaw-joint of rabbits. Arch Oral Biol. 1996;41:1039–52.

    Article  Google Scholar 

  25. Tanaka E, Yamano E, Dalla-Bona DA, Watanabe M, Inubushi T, Shirakura M, et al. Dynamic compressive properties of the mandibular condylar cartilage. J Dent Res. 2006;85:571–5.

    Article  Google Scholar 

  26. Tanaka E, van Eijden T. Biomechanical behavior of the temporomandibular joint disc. Crit Rev Oral Biol Med. 2003;14:138–50.

    Article  Google Scholar 

  27. Sundblad L. Glycosaminoglycans and glycoproteins in synovial fluid. In: Balazs EA, Jeanloz RW, editors. The amino sugars. The chemistry and biology of compounds containing amino sugars. New York, NY: Academic Press; 1965. p. 229–50.

    Google Scholar 

  28. Yanaki T, Yamaguchi T. Temporary network formation of hyaluronate under a physiological condition. 1. Molecular-weight dependence. Biopolymers. 1990;30:415–25.

    Article  Google Scholar 

  29. Kitamura R, Tanimoto K, Tanne Y, Kamiya T, Huang Y-C, Tanaka N, et al. Effects of mechanical load on the expression and activity of hyaluronidase in cultured synovial membrane cells. J Biomed Mater Res. 2010;92A:87–93.

    Article  Google Scholar 

  30. Itano N, Sawai T, Yoshida M, Lenas P, Yamada Y, Imagawa M, et al. Three isoforms of mammalian hyaluronan synthases have distinct enzymatic properties. J Biol Chem. 1999;274:25085–92.

    Article  Google Scholar 

  31. Balazs E, Watson AD, Duff IF, Roseman S. Hyaluronic acid in synovial fluid. I. Molecular parameters of hyaluronic acid in normal and arthritis human fluids. Arthritis Rheum. 1967;10:357–76.

    Article  Google Scholar 

  32. Yoshida M, Sai S, Marumo K, Tanaka T, Itano N, Kimata K, et al. Expression analysis of three isoforms of hyaluronan synthase and hyaluronidase in the synovium of knees in osteoarthritis and rheumatoid arthritis by quantitative real-time reverse transcriptase polymerase chain reaction. Arthritis Res Ther. 2004;6:R514–20.

    Article  Google Scholar 

  33. Csoka AB, Frost GI, Stern R. The six hyaluronidase-like genes in the human and mouse genomes. Matrix Biol. 2001;20:499–508.

    Article  Google Scholar 

  34. Nagaya H, Yamagata T, Yamagata S, Iyoda K, Ito H, Hasegawa Y, et al. Examination of synovial fluid and serum hyaluronidase activity as a joint marker in rheumatoid arthritis and osteoarthritis patients (by zymography). Ann Rheum Dis. 1999;58:186–8.

    Article  Google Scholar 

  35. Carlsson GE, LeResche L. Epidemiology of temporomandibular disorders. In: Sessle BJ, Bryant PS, Dionne RA, editors. Temporomandibular disorders and related pain conditions. Seattle: Seattle Press; 1995.

    Google Scholar 

  36. Carlsson GE. Epidemiology and treatment need for temporomandibular disorders. J Orofac Pain. 1999;13:232–7.

    PubMed  Google Scholar 

  37. Farrar WB, McCarty WL Jr. The TMJ dilemma. J Ala Dent Assoc. 1979;63:19–26.

    PubMed  Google Scholar 

  38. Leonardi R, Lo Muzio L, Bernasconi G, Caltabiano C, Piacentini C, Caltabiano M. Expression of vascular endothelial growth factor in human dysfunctional temporomandibular joint disc. Arch Oral Biol. 2003;48:185–92.

    Article  Google Scholar 

  39. Yoshida H, Fujita S, Nishida M, Iizuka T. Immunohistochemical distribution of lymph capillaries and blood capillaries in the synovial membrane in cases of internal derangement of the temporomandibular joint. J Oral Pathol Med. 1997;26:356–61.

    Article  Google Scholar 

  40. Ghassemi-Nejad S, Kobezda T, Rauch TA, Matesz C, Grant TT, Mikecz K. Osteoarthritis-like damage of cartilage in the temporomandibular joints in mice with autoimmune inflammatory arthritis. Osteoarthr Cart. 2011;19:458–65.

    Article  Google Scholar 

  41. Kubota E, Kubota T, Matsumoto J, Shibata T, Murakami K-I. Synovial fluid cytokines and proteinases as markers of temporomandibular joint disease. J Oral Maxillofac Surg. 1998;56:534–43.

    Article  Google Scholar 

  42. Kuroda S, Tanimoto K, Izawa T, Fujihara S, Koolstra JH, Tanaka E. Biomechanical and biochemical characteristics of the mandibular condylar cartilage. Osteoarthr Cart. 2009;17:1408–15.

    Article  Google Scholar 

  43. Kardel R, Ulfgren AK, Reinholt FP, Holmlund A. Inflammatory cell and cytokine patterns in patients with painful clicking and osteoarthritis in the temporomandibular joint. Int J Oral Maxillofac Surg. 2003;32:390–6.

    Article  Google Scholar 

  44. Sato M, Nagata K, Kuroda S, Horiuchi S, Nakamura T, Karima M, et al. Low-intensity pulsed ultrasound activates integrin-mediated mechanotransduction pathway in synovial cells. Ann Biomed Eng. 2014;40:2156–63.

    Article  Google Scholar 

  45. Scheven BA, Man J, Millard JL, Cooper PR, Lea SC, Walmsley AD, Smith AJ. VEGF and odontoblast-like cells: stimulation by low frequency ultrasound. Arch Oral Biol. 2009;54:185–91.

    Article  Google Scholar 

  46. Neumann E, Lefèvre S, Zimmermann B, Gay S, Müller-Ladner U. Rheumatoid arthritis progression mediated by activated synovial fibroblasts. Trends Mol Med. 2010;16:458–68.

    Article  Google Scholar 

  47. Scott DL, Wolfe F, Huizinga TW. Rheumatoid arthritis. Lancet. 2010;376:1094–108.

    Article  Google Scholar 

  48. Audo R, Deschamps V, Hahne M, Combe B, Morel J. Apoptosis is not the major death mechanism induced by celecoxib on rheumatoid arthritis synovial fibroblasts. Arthritis Res Ther. 2007;9:R128.

    Article  Google Scholar 

  49. Huber LC, Distler O, Tarner I, Gay RE, Gay S, Pap T. Synovial fibroblasts: key players in rheumatoid arthritis. Rheumatology. 2006;45:669–75.

    Article  Google Scholar 

  50. Takeuchi R, Ryo A, Komitsu N, Mikuni-Takagaki Y, Fukui A, Takagi Y, et al. Low-intensity pulsed ultrasound activates the phosphatidylinositol 3 kinase/Akt pathway and stimulates the growth of chondrocytes in three-dimensional cultures: a basic science study. Arthritis Res Ther. 2008;10:R77.

    Article  Google Scholar 

  51. Iwabuchi Y, Tanimoto K, Tanne Y, Inubushi T, Kamiya T, Huang YC, et al. Effects of low-intensity pulsed ultrasound on the expression of cyclooxygenase-2 in mandibular condylar chondrocytes. J Oral Facial Pain Headache. 2014;28:261–8.

    Article  Google Scholar 

  52. El-Bialy TH, Elgazzar RF, Megahed EE, Royston TJ. Effects of ultrasound modes on mandibular osteodistraction. J Dent Res. 2008;87:953–7.

    Article  Google Scholar 

  53. Huebner JL, Kraus VB. Assessment of the utility of biomarkers of osteoarthritis in the guinea pig. Osteoarthr Cart. 2006;14:923–30.

    Article  Google Scholar 

  54. Konttinen YT, Saari H, Nordstrom DC. Effect of interleukin-1 on hyaluronate synthesis by synovial fibroblastic cells. Clin Rheumatol. 1991;10:151–4.

    Article  Google Scholar 

  55. Sampson PM, Rochester CL, Freundlich B, Elias JA. Cytokine regulation of human lung fibroblast hyaluronan (hyaluronic acid) production. Evidence for cytokine-regulated hyaluronan (hyaluronic acid) degradation and human lung fibroblast-derived hyaluronidase. J Clin Invest. 1992;90:1492–503.

    Article  Google Scholar 

  56. Nakamura T, Fujihara S, Katsura T, Yamamoto K, Inubushi T, Tanimoto K, Tanaka E. Effects of low-intensity pulsed ultrasound on the expression and activity of hyaluronic synthase and hyaluronidase in IL-1β-stimulated synovial cells. Ann Biomed Eng. 2010;38:3363–70.

    Article  Google Scholar 

  57. Lal H, Verma SK, Smith M, Guleria RS, Lu G, Foster DM, Dostal DE. Stretch-induced MAP kinase activation in cardiac myocytes: differential regulation through beta 1-integrin and focal adhesion kinase. J Mol Cell Cardiol. 2007;43:137–47.

    Article  Google Scholar 

  58. Zhou S, Schmelz A, Seufferlein T, Li Y, Zhao J, Bachem MG. Molecular mechanisms of low intensity pulsed ultrasound in human skin fibroblasts. J Biol Chem. 2004;279:54463–9.

    Article  Google Scholar 

  59. Hsu HC, Fong YC, Chang CS, Hsu CJ, Hsu SF, Lin JG, et al. Ultrasound induces cyclooxygenase-2 expression through integrin, integrin-linked kinase, Akt, NF-κB and p300 pathway in human chondrocytes. Cell Signal. 2007;19:2317–28.

    Article  Google Scholar 

  60. Rego EB, Inubushi T, Kawazoe A, Tanimoto K, Miyauchi M, Tanaka E, et al. Ultrasound stimulation induces PGE2 synthesis promoting cementoblastic differentiation through EP2/EP4 receptor pathway. Ultrasound Med Biol. 2010;36:907–15.

    Article  Google Scholar 

  61. El-Bialy T, El-Shamy I, Graber TM. Growth modification of the rabbit mandible using therapeutic ultrasound: is it possible to enhance functional appliance results? Angle Orthod. 2003;73:631–9.

    PubMed  Google Scholar 

  62. Oyonarte R, Zárate M, Rodriguez F. Low-intensity pulsed ultrasound stimulation of condylar growth in rats. Angle Orthod. 2009;79:964–70.

    Article  Google Scholar 

  63. Oyonarte R, Becerra D, Díaz-Zúñiga J, Rojas V, Carrion F. Morphological effects of mesenchymal stem cells and pulsed ultrasound on condylar growth in rats: a pilot study. Aust Orthod J. 2013;29:3–12.

    PubMed  Google Scholar 

  64. Chan CW, Qin L, Lee KM, Cheung WH, Cheng JCY, Leung KS. Dose-dependent effect of low-intensity pulsed ultrasound on callus formation during rapid distraction osteogenesis. J Orthop Res. 2006;24:2072–9.

    Article  Google Scholar 

  65. El-Bialy TH, Royston TJ, Magin RL, Evans CA, Zaki A-M, Frizzell LA. The effect of pulsed ultrasound on mandibular distraction. Ann Biomed Eng. 2002;30:1251–61.

    Article  Google Scholar 

  66. Schumann D, Kujat R, Zellner J, Angele MK, Nerlich M, Mayr E, et al. Treatment of human mesenchymal stem cells with pulsed low intensity ultrasound enhances the chondrogenic phenotype in vitro. Biorheology. 2006;43:431–43.

    PubMed  Google Scholar 

  67. Kaur H, Uludağ H, Dederich DN, El-Bialy T. Effect of increasing low-intensity pulsed ultrasound and a functional appliance on the mandibular condyle in growing rats. J Ultrasound Med. 2017;36:109–20.

    Article  Google Scholar 

  68. Kaur H, Uludağ H, El-Bialy T. Effect of nonviral plasmid delivered basic fibroblast growth factor and low intensity pulsed ultrasound on mandibular condylar growth: a preliminary study. Biomed Res Int. 2014;2014:426710.

    PubMed  PubMed Central  Google Scholar 

  69. Nakamura T, Fujihara S, Yamamoto-Nagata K, Katsura T, Inubushi T, Tanaka E. Low-intensity pulsed ultrasound reduces the inflammatory activity of synovitis. Ann Biomed Eng. 2011;39:2964–71.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiji Tanaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tanaka, E., Nakamura, T., Sato, M., Kaur, H., El-Bialy, T. (2018). Application of LIPUS to the Temporomandibular Joint. In: El-Bialy, T., Tanaka, E., Aizenbud, D. (eds) Therapeutic Ultrasound in Dentistry. Springer, Cham. https://doi.org/10.1007/978-3-319-66323-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66323-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66322-7

  • Online ISBN: 978-3-319-66323-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics