Skip to main content

Backdoor Treewidth for SAT

  • Conference paper
  • First Online:
Theory and Applications of Satisfiability Testing – SAT 2017 (SAT 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10491))

Abstract

A strong backdoor in a CNF formula is a set of variables such that each possible instantiation of these variables moves the formula into a tractable class. The algorithmic problem of finding a strong backdoor has been the subject of intensive study, mostly within the parameterized complexity framework. Results to date focused primarily on backdoors of small size. In this paper we propose a new approach for algorithmically exploiting strong backdoors for SAT: instead of focusing on small backdoors, we focus on backdoors with certain structural properties. In particular, we consider backdoors that have a certain tree-like structure, formally captured by the notion of backdoor treewidth.

First, we provide a fixed-parameter algorithm for SAT parameterized by the backdoor treewidth w.r.t. the fundamental tractable classes Horn, Anti-Horn, and 2CNF. Second, we consider the more general setting where the backdoor decomposes the instance into components belonging to different tractable classes, albeit focusing on backdoors of treewidth 1 (i.e., acyclic backdoors). We give polynomial-time algorithms for SAT and #SAT for instances that admit such an acyclic backdoor.

Supported by the Austrian Science Fund (FWF), project P26696. Robert Ganian is also affiliated with FI MU, Brno, Czech Republic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A clause containing exactly two literals is also known as a Krom clause.

References

  1. Arnborg, S., Courcelle, B., Proskurowski, A., Seese, D.: An algebraic theory of graph reduction. In: Ehrig, H., Kreowski, H.-J., Rozenberg, G. (eds.) Graph Grammars 1990. LNCS, vol. 532, pp. 70–83. Springer, Heidelberg (1991). doi:10.1007/BFb0017382

    Chapter  Google Scholar 

  2. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press, Amsterdam (2009)

    MATH  Google Scholar 

  3. Bodlaender, H.L., Fluiter, B.: Reduction algorithms for constructing solutions in graphs with small treewidth. In: Cai, J.-Y., Wong, C.K. (eds.) COCOON 1996. LNCS, vol. 1090, pp. 199–208. Springer, Heidelberg (1996). doi:10.1007/3-540-61332-3_153

    Chapter  Google Scholar 

  4. Bodlaender, H.L., van Antwerpen-de Fluiter, B.: Reduction algorithms for graphs of small treewidth. Inf. Comput. 167(2), 86–119 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bodlaender, H.L., Hagerup, T.: Parallel algorithms with optimal speedup for bounded treewidth. In: Fülöp, Z., Gécseg, F. (eds.) ICALP 1995. LNCS, vol. 944, pp. 268–279. Springer, Heidelberg (1995). doi:10.1007/3-540-60084-1_80

    Chapter  Google Scholar 

  6. Boros, E., Hammer, P.L., Sun, X.: Recognition of \(q\)-Horn formulae in linear time. Discr. Appl. Math. 55(1), 1–13 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press, Cambridge (2009). http://mitpress.mit.edu/books/introduction-algorithms

    MATH  Google Scholar 

  8. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Cham (2015). doi:10.1007/978-3-319-21275-3

    Book  MATH  Google Scholar 

  9. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173, 4th edn. Springer, Heidelberg (2012). doi:10.1007/978-3-662-53622-3

    MATH  Google Scholar 

  10. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer, London (2013). doi:10.1007/978-1-4471-5559-1

    Book  MATH  Google Scholar 

  11. Fellows, M.R., Langston, M.A.: An analogue of the Myhill-Nerode theorem and its use in computing finite-basis characterizations (extended abstract). In: FOCS, pp. 520–525 (1989)

    Google Scholar 

  12. de Fluiter, B.: Algorithms for graphs of small treewidth. Ph.D. thesis, Utrecht University (1997)

    Google Scholar 

  13. Fomin, F.V., Lokshtanov, D., Misra, N., Ramanujan, M.S., Saurabh, S.: Solving d-SAT via backdoors to small treewidth. In: Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, pp. 630–641, 4–6 January 2015 (2015)

    Google Scholar 

  14. Ganian, R., Ramanujan, M.S., Szeider, S.: Combining treewidth and backdoors for CSP. In: 34th Symposium on Theoretical Aspects of Computer Science (STACS 2017). Leibniz International Proceedings in Informatics (LIPIcs), vol. 66, pp. 36:1–36:17. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2017)

    Google Scholar 

  15. Ganian, R., Ramanujan, M.S., Szeider, S.: Discovering archipelagos of tractability for constraint satisfaction and counting. ACM Trans. Algorithms 13(2), 29:1–29:32 (2017). http://doi.acm.org/10.1145/3014587

    Article  MathSciNet  Google Scholar 

  16. Gaspers, S., Szeider, S.: Backdoors to satisfaction. In: Bodlaender, H.L., Downey, R., Fomin, F.V., Marx, D. (eds.) The Multivariate Algorithmic Revolution and Beyond. LNCS, vol. 7370, pp. 287–317. Springer, Heidelberg (2012). doi:10.1007/978-3-642-30891-8_15

    Chapter  Google Scholar 

  17. Grohe, M., Kawarabayashi, K., Marx, D., Wollan, P.: Finding topological subgraphs is fixed-parameter tractable. In: Proceedings of the 43rd ACM Symposium on Theory of Computing, STOC 2011, San Jose, CA, USA, pp. 479–488, 6–8 June 2011

    Google Scholar 

  18. Hopcroft, J.E., Tarjan, R.E.: Efficient algorithms for graph manipulation [H] (algorithm 447). Commun. ACM 16(6), 372–378 (1973)

    Article  Google Scholar 

  19. Kleine Büning, H., Kullmann, O.: Minimal unsatisfiability and autarkies, Chap. 11. In: Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185, pp. 339–401. IOS Press, Amsterdam (2009)

    Google Scholar 

  20. Kleine Büning, H., Zhao, X.: Satisfiable formulas closed under replacement. In: Kautz, H., Selman, B. (eds.) Proceedings for the Workshop on Theory and Applications of Satisfiability. Electronic Notes in Discrete Mathematics, vol. 9. Elsevier Science Publishers, North-Holland (2001)

    Google Scholar 

  21. Kloks, T. (ed.): Treewidth: Computations and Approximations. LNCS, vol. 842. Springer, Heidelberg (1994). doi:10.1007/BFb0045375

    MATH  Google Scholar 

  22. Nishimura, N., Ragde, P., Szeider, S.: Detecting backdoor sets with respect to Horn and binary clauses. In: Proceedings of Seventh International Conference on Theory and Applications of Satisfiability Testing (SAT 2004), Vancouver, BC, Canada, pp. 96–103, 10–13 May 2004

    Google Scholar 

  23. Ordyniak, S., Paulusma, D., Szeider, S.: Satisfiability of acyclic and almost acyclic CNF formulas. Theor. Comput. Sci. 481, 85–99 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width. J. Algorithms 7(3), 309–322 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  25. Samer, M., Szeider, S.: Fixed-parameter tractability, Chap. 13. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, pp. 425–454. IOS Press, Amsterdam (2009)

    Google Scholar 

  26. Samer, M., Szeider, S.: Algorithms for propositional model counting. J. Discrete Algorithms 8(1), 50–64 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Samer, M., Szeider, S.: Constraint satisfaction with bounded treewidth revisited. J. Comput. Syst. Sci. 76(2), 103–114 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Williams, R., Gomes, C., Selman, B.: On the connections between backdoors, restarts, and heavy-tailedness in combinatorial search. In: Informal Proceedings of the Sixth International Conference on Theory and Applications of Satisfiability Testing (SAT 2003), S. Margherita Ligure - Portofino, Italy, pp. 222–230, 5–8 May 2003

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Ganian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Ganian, R., Ramanujan, M.S., Szeider, S. (2017). Backdoor Treewidth for SAT. In: Gaspers, S., Walsh, T. (eds) Theory and Applications of Satisfiability Testing – SAT 2017. SAT 2017. Lecture Notes in Computer Science(), vol 10491. Springer, Cham. https://doi.org/10.1007/978-3-319-66263-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66263-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66262-6

  • Online ISBN: 978-3-319-66263-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics