Skip to main content

An algebraic theory of graph reduction

  • Conference paper
  • First Online:
Graph Grammars and Their Application to Computer Science (Graph Grammars 1990)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 532))

Abstract

We show how membership in classes of graphs definable in monadic second order logic and of bounded treewidth can be decided by finite sets of terminating reduction rules. The method is constructive in the sense that we describe an algorithm which will produce, from a formula in monadic second order logic and an integer k such that the class defined by the formula is of treewidth ≤ k, a set of rewrite rules that reduces any member of the class to one of finitely many graphs, in a number of steps bounded by the size of the graph. This reduction system corresponds to an algorithm that runs in time linear in the size of the graph.

Supported by NFR and STU.

Supported by the ”Programme de Recherches Coordonnées: Mathematiques et Informatique” and the ESPRIT-BRA project 3299 ”Computing by Graph Transformations”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.V. Aho, J.E. Hopcroft and J.D. Ullman, Design and Analysis of Computer Algorithms Addison-Wesley 1972.

    Google Scholar 

  2. S. Arnborg, Efficient Algorithms for Combinatorial Problems on Graphs with Bounded Decomposability — A Survey, BIT 25 (1985), 2–33

    Article  Google Scholar 

  3. S. Arnborg, D.G. Corneil and A. Proskurowski, Complexity of Finding Embeddings in a k-tree, SIAM J. Alg. and Discr. Methods 8(1987), 277–287

    Google Scholar 

  4. S. Arnborg, B. Courcelle, A. Proskurowski, and D. Seese,An algebraic theory of graph reduction, Technical Report LaBRI TR 90-02, University of Bordeaux (1990).

    Google Scholar 

  5. S. Arnborg, J. Lagergren and D. Seese, Problems Easy for Tree-decomposable graphs (extended abstract). Proc. 15 th ICALP, Springer Verlag, Lect. Notes in Comp. Sc.317 (1988) 38–51

    Google Scholar 

  6. S. Arnborg, J. Lagergren and D. Seese, Problems Easy for Tree-decomposable graphs to appear, J. of Algorithms.

    Google Scholar 

  7. S. Arnborg and A. Proskurowski, Characterization and Recognition of Partial 3-trees, SIAM J. Alg. and Discr. Methods 7(1986), 305–314

    Google Scholar 

  8. S. Arnborg and A. Proskurowski, Linear Time Algorithms for NP-hard Problems on Graphs Embedded in k-trees, Discr. Appl. Math. 23(1989) 11–24

    Article  Google Scholar 

  9. S. Arnborg, A. Proskurowski and D.G. Corneil, Forbidden minors characterization of partial 3-trees, Discrete Math., to appear

    Google Scholar 

  10. M. Bauderon and B. Courcelle, Graph expressions and graph rewritings, Mathematical Systems Theory 20(1987), 83–127

    Article  Google Scholar 

  11. J.A. Bern, E. Lawler and A. Wong, Linear time computation of optimalsubgraphs of decomposable graphs, J. of Algorithms 8 (1987), 216–235

    Article  Google Scholar 

  12. T. Beyer, W. Jones and S. Mitchell, Linear algorithms for isomorphism of maximal outerplanar graphs, JACM 26(4), Oct.1979, 603–610

    Article  Google Scholar 

  13. H.L. Bodlaender, Dynamic Programming on Graphs with Bounded Tree-width, MIT/LCS/TR-394, MIT 1987.

    Google Scholar 

  14. H.L. Bodlaender, Improved self-reduction algorithms for graphs with bounded treewidth. RUU-CS-88-29, University of Utrecht 1988.

    Google Scholar 

  15. B. Courcelle, Equivalence and transformation of regular systems. Applications to recursive program schemes and grammars, Theoretical Computer Science 42(1986), 1–22

    Article  Google Scholar 

  16. B. Courcelle, The monadic second order logic of graphs I: Recognizable sets of finite graphs, Information and Computation85 (1990) 12–75

    Article  Google Scholar 

  17. B. Courcelle, The monadic second order logic of graphs III: Tree-width, forbidden minors, and complexity issues, Report I-8852, Bordeaux-1 University (1988)

    Google Scholar 

  18. B. Courcelle, Graph rewriting: an algebraic and logical approach, in “Handbook of Theoretical Computer Science”, Volume B, J.B. van Leeuwen, Ed. Elsevier, 194–242.

    Google Scholar 

  19. B. Courcelle, Some applications of logic, universal algebra and of category theory to the theory of graph transformations, Bulletin of the EATCS 36, October 1988, 161–218.

    Google Scholar 

  20. B. Courcelle, The monadic second-order logic of graphs: Definable sets of finite graphs, LNCS 344 (1989) 30–53.

    Google Scholar 

  21. B. Courcelle, Graphs as relational structures; an algebraic and logical approach, this volume.

    Google Scholar 

  22. J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, North Holland (1976)

    Google Scholar 

  23. H. Ehrig, M. Nagl, G. Rozenberg and A. Rosenfeld, (Eds.), Proceedings of the 3rd international workshop on Graph Grammars and their Application to Computer Science, Springer Verlag, Lect. Notes in Comp. Sc.291

    Google Scholar 

  24. M. Fellows and M. Langston, An analogue of the Myhill-Nerode theorem and its use in computing finite basis characterizations, FOCS 1989 520–525

    Google Scholar 

  25. M. Hecht and J. Ullmann, Flow graph reducibility, SIAM J. Comp. 1(1972)188–202

    Article  Google Scholar 

  26. J. Lagergren, manuscript (1987)

    Google Scholar 

  27. Y. Kajitani, A. Ishizuka and S. Ueno, Characterization of partial 3-trees in terms of 3 structures, Graphs and Combinatorics2(1986) 233–246.

    Article  Google Scholar 

  28. T. Lengauer and E. Wanke, Efficient analysis of graph properties on context-free graph languages, ICALP 88, LNCS 317, (1988), 379–393

    Google Scholar 

  29. J. Matoušek and R. Thomas, Algorithms finding tree-decompositions of graphs, manuscript (1988)

    Google Scholar 

  30. N. Robertson and P.D. Seymour, Some new results on the well-quasi ordering of graphs, Annals of Discrete Mathematics 23(1987), 343–354

    Google Scholar 

  31. N. Robertson and P.D. Seymour, Graph Minors X Preprint.

    Google Scholar 

  32. N. Robertson and P.D. Seymour, Graph Minors XIII, The Disjoint Path Problem Preprint.

    Google Scholar 

  33. N. Robertson and P.D. Seymour, Graph Minors XIV, Wagners conjecture, Preprint.

    Google Scholar 

  34. M.M. Syslo, Linear time Algorithm for Coding Outerplanar Graphs, Institute of Computer Science, Wroclaw University, Raport Nr N-20 (1977)

    Google Scholar 

  35. J.W. Thatcher, J.B. Wright, Generalized Finite Automata Theory with an Application to a Decision Problem in Second-Order Logic, Mathematical Systems Theory 2(1968), 57–81.

    Article  Google Scholar 

  36. A. Wald and C.J. Colbourn, Steiner Trees, Partial 2-trees, and Minimum IFI Networks, Networks 13 (1983), 159–167

    Google Scholar 

  37. T.V. Wimer, Linear algorithms on k-terminal graphs, PhD. thesis, Clemson University, August 1987

    Google Scholar 

  38. T.V.Wimer, S.T.Hedetniemi, and R.Laskar, A methodology for constructing linear graph algorithms, DCS, Clemson University, September 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Hartmut Ehrig Hans-Jörg Kreowski Grzegorz Rozenberg

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Arnborg, S., Courcelle, B., Proskurowski, A., Seese, D. (1991). An algebraic theory of graph reduction. In: Ehrig, H., Kreowski, HJ., Rozenberg, G. (eds) Graph Grammars and Their Application to Computer Science. Graph Grammars 1990. Lecture Notes in Computer Science, vol 532. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0017382

Download citation

  • DOI: https://doi.org/10.1007/BFb0017382

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-54478-4

  • Online ISBN: 978-3-540-38395-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics