Skip to main content
Log in

The association between antibiotic use and resistance: the role of secondary antibiotics

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Using susceptibility rates of Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, and Enterobacter cloacae over time as markers, we assessed the significance of the change of susceptibility rates to imipenem, ceftriaxone, cefepime, piperacillin/tazobactam, and ciprofloxacin over time and the relationship to antibiotic use for the period 2000–2006. Antibiotic use–susceptibility relationships were assessed using longitudinal regression analysis. The variables “time” and define daily doses (DDD)/1,000 patient days for the specific drug related to the susceptibility rates of that particular model’s dependent variable were considered as the main effects, with significance determined at the 0.05 level. Decreases in susceptibility of the target organisms were common over the period of observation. Decreasing susceptibility trends over time were not statistically associated with the primary drug (e.g., organism susceptibility rate to imipenem with imipenem usage). However, secondary drug use was associated with susceptibility rates (e.g., susceptibility of E. cloacae to cefepime with piperacillin/tazobactam usage). These results suggest that antibiotic use–resistance relationships are influenced by the use of secondary antibiotics. Thus, a resistance problem may not be adequately addressed by simply altering the utilization of the primary antibiotic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. National Nosocomial Infections Surveillance System (2004) National Nosocomial Infections Surveillance (NNIS) System Report, data summary from January 1992 through June 2004, issued October 2004. Am J Infect Control 32:470–485. doi:10.1016/j.ajic.2004.10.001

    Article  Google Scholar 

  2. Neuhauser MM, Weinstein RA, Rydman R, Danziger LH, Karam G, Quinn JP (2003) Antibiotic resistance among gram-negative bacilli in US intensive care units: implications for fluoroquinolone use. JAMA 289:885–888. doi:10.1001/jama.289.7.885

    Article  CAS  PubMed  Google Scholar 

  3. Hidron AI, Edwards JR, Patel J, Horan TC, Sievert DM, Pollock DA, Fridkin SK (2008) Antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the National healthcare Safety Network at the Centers for Disease Control and Prevention, 2006–2007. Infect Control Hosp Epidemiol 29:996–1011. doi:10.1086/591861

    Article  PubMed  Google Scholar 

  4. Cosgrove SE, Carmeli Y (2003) The impact of antimicrobial resistance on health and economic outcomes. Clin Infect Dis 36:1433–1437. doi:10.1086/375081

    Article  PubMed  Google Scholar 

  5. Zervos MJ, Hershberger E, Nicolau DP, Ritchie DJ, Blackner LK, Coyle EA, Donnelly AJ, Eckel SF, Eng RHK, Hiltz A, Kuyumjian AG, Krebs W, McDaniel A, Hogan P, Lubowski TJ (2003) Relationship between fluoroquinolone use and changes in susceptibility to fluoroquinolones of selected pathogens in 10 United States Teaching Hospitals, 1991–2000. Clin Infect Dis 37:1643–1648. doi:10.1086/379709

    Article  CAS  PubMed  Google Scholar 

  6. Mutnick AH, Rhomberg PR, Sader HS, Jones RN (2004) Antimicrobial usage and resistance trend relationships from the MYSTIC Programme in North America (1999–2001). J Antimicrob Chemother 53:290–296. doi:10.1093/jac/dkh039

    Article  CAS  PubMed  Google Scholar 

  7. Bhavnani SM, Callen WA, Forrest A, Gilliland KK, Collins DA, Paladino JA, Schentag JJ (2003) Effect of fluoroquinolone expenditures on susceptibility of Pseudomonas aeruginosa to ciprofloxacin in U.S. hospitals. Am J Health Syst Pharm 60:1962–1970

    CAS  PubMed  Google Scholar 

  8. Clinical and Laboratory Standards Institute (CLSI) (2009) Analysis and presentation of cumulative antimicrobial susceptibility test data; Approved Guideline—Third Edition. CLSI document M39–A3 (ISBN 1-56238-692-1). CLSI, 940 West Valley Road, Suite 1400, Wayne, Pennsylvania 19087–1898 USA

  9. Durbin J, Watson GS (1951) Testing for serial correlation in least-squares regression. II. Biometrika 38:159–178. doi:10.2307/2332325

    CAS  PubMed  Google Scholar 

  10. Davies PDO (2004) Does increased use of antibiotics result in increased antibiotic resistance? Clin Infect Dis 39:18–19. doi:10.1086/420826

    Article  CAS  PubMed  Google Scholar 

  11. Greenland S, Morgenstern H (1989) Ecological bias, confounding, and effect modification. Int J Epidemiol 18:269–274. doi:10.1093/ije/18.1.269

    Article  CAS  PubMed  Google Scholar 

  12. Rahal JJ, Urban C, Horn D, Freeman K, Segal-Maurer S, Maurer J, Mariano N, Marks S, Burns JM, Dominick D, Lim M (1998) Class restriction of cephalosporin use to control total cephalosporin resistance in nosocomial Klebsiella. JAMA 280:1233–1237. doi:10.1001/jama.280.14.1233

    Article  CAS  PubMed  Google Scholar 

  13. Friedrich LV, White RL, Bosso JA (1999) Impact of use of multiple antimicrobials on changes in susceptibility of Gram-negative aerobes. Clin Infect Dis 28:1017–1024. doi:10.1086/514747

    Article  CAS  PubMed  Google Scholar 

  14. Aeschlimann JR (2003) The role of multidrug efflux pumps in the antibiotic resistance of Pseudomonas aeruginosa and other Gram-negative bacteria. Insights from the Society of Infectious Diseases Pharmacists. Pharmacotherapy 23:916–924. doi:10.1592/phco.23.7.916.32722

    Article  CAS  PubMed  Google Scholar 

  15. Schwaber MJ, Navon-Venezia S, Schwartz D, Carmeli Y (2005) High levels of antimicrobial coresistance among extended-spectrum-beta-lactamase-producing Enterobacteriaceae. Antimicrob Agents Chemother 49:2137–2139. doi:10.1128/AAC.49.5.2137-2139.2005

    Article  CAS  PubMed  Google Scholar 

  16. Colodner R, Samra Z, Keller N, Sprecher H, Block C, Peled N, Lazarovitch T, Bardenstein R, Schwartz-Harari O, Carmeli Y (2007) First national surveillance of susceptibility of extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella spp. to antimicrobials in Israel. Diagn Microbiol Infect Dis 57:201–205. doi:10.1016/j.diagmicrobio.2006.07.011

    Article  CAS  PubMed  Google Scholar 

  17. Ben-Ami R, Rodríguez-Baño J, Arslan H, Pitout JD, Quentin C, Calbo ES, Azap OK, Arpin C, Pascual A, Livermore DM, Garau J, Carmeli Y (2009) A multinational survey of risk factors for infection with extended-spectrum beta-lactamase-producing enterobacteriaceae in nonhospitalized patients. Clin Infect Dis 49:682–690. doi:10.1086/604713

    Article  PubMed  Google Scholar 

  18. Polk RE, Fox C, Mahoney A, Letcavage J, MacDougall C (2007) Measurement of adult antibacterial drug use in 130 US hospitals: comparison of defined daily dose and days of therapy. Clin Infect Dis 44:664–670. doi:10.1086/511640

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported, in part, by an investigator-initiated research grant from AstraZeneca Pharmaceuticals.

Conflicts of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Bosso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bosso, J.A., Mauldin, P.D. & Salgado, C.D. The association between antibiotic use and resistance: the role of secondary antibiotics. Eur J Clin Microbiol Infect Dis 29, 1125–1129 (2010). https://doi.org/10.1007/s10096-010-0972-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-010-0972-5

Keywords

Navigation