Skip to main content
  • 1785 Accesses

Abstract

Magnetic resonance imaging (MRI) with indirect detection through chemical exchange saturation transfer (CEST) offers unique features for quantitative imaging as many biophysical and biochemical tissue parameters are linked to exchange-coupled magnetisation pools. The CEST approach also greatly improves the sensitivity of MRI and represents an emerging technique in diagnostic imaging. It uses an induced signal loss in an abundant spin pool to capture information from a dilute spin pool through an actively driven saturation transfer process and achieves much better signal than direct readout of the magnetisation from the low concentration analyte. This chapter provides an introduction into the concepts of CEST and its recent developments considering an extended library of agents, quantitative evaluation for contributing physico-chemical parameters, and advanced encoding techniques. CEST applications nowadays rely on endogenous and synthetic agents that are both discussed here. The inclusion of spin hyperpolarisation as another signal amplification concept illustrates special features that come with the increased dynamic range and extended timescale that magnetisation from hyperpolarised nuclei provide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Terreno E, et al. Conference abstracts. Contrast Media Mol Imaging. 2010;5:333–45.

    Article  CAS  Google Scholar 

  2. Abstracts from the 2nd international workshop on CEST and PARACEST techniques, Dallas, USA, June 1–2, 2011. Contrast Media Mol Imaging. 2012;7:101–20.

    Google Scholar 

  3. Mani T, et al. Proceedings for October CEST, the third international workshop on CEST imaging, 15–17 October 2012. Contrast Media Mol Imaging. 2013;8:293–331.

    Article  CAS  Google Scholar 

  4. PENN-CEST Symposium 2015. http://mediasite.med.upenn.edu/Mediasite/Catalog/Full/2d773ae853fb4a2f953af8c0bdffada621. Accessed 27 Nov 2016.

  5. van Zijl PCM, Yadav NN. Chemical exchange saturation transfer (CEST): what is in a name and what isn’t? Magn Reson Med. 2011;65:927–48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Woods M, Woessner DE, Sherry AD. Paramagnetic lanthanide complexes as PARACEST agents for medical imaging. Chem Soc Rev. 2006;35:500–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. De Leon-Rodriguez LM, et al. Responsive MRI agents for sensing metabolism in vivo. Acc Chem Res. 2009;42:948–57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Wu Y, Evbuomwan M, Melendez M, Opina A, Sherry AD. Advantages of macromolecular to nanosized chemical-exchange saturation transfer agents for MRI applications. Future Med Chem. 2010;2:351–66.

    Article  CAS  PubMed  Google Scholar 

  9. Terreno E, Castelli DD, Aime S. Encoding the frequency dependence in MRI contrast media: the emerging class of CEST agents. Contrast Media Mol Imaging. 2010;5:78–98.

    CAS  PubMed  Google Scholar 

  10. Vinogradov E, Sherry AD, Lenkinski RE. CEST: from basic principles to applications, challenges and opportunities. J Magn Reson. 2013;229:155–72.

    Article  CAS  PubMed  Google Scholar 

  11. Zaiss M, Bachert P. Chemical exchange saturation transfer (CEST) and MR Z-spectroscopy in vivo: a review of theoretical approaches and methods. Phys Med Biol. 2013;58:R221.

    Article  PubMed  Google Scholar 

  12. McMahon MT, Gilad AA. Cellular and molecular imaging using chemical exchange saturation transfer. Top Magn Reson Imaging. 2016;25:197–204.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wu B, et al. An overview of CEST MRI for non-MR physicists. EJNMMI Phys. 2016;3:19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. McMahon MT, Gilad AA, Bulte JWM, van Zijl PCM, editors. Chemical exchange saturation transfer imaging - advances and applications. Singapore: Pan Stanford Publising; 2016.

    Google Scholar 

  15. cest-sources.org. Available at: http://www.cest-sources.org/doku.php. Accessed 27 Nov 2016.

  16. Schröder L. Xenon for NMR biosensing – inert but alert. Phys Med. 2013;29:3–16.

    Article  PubMed  Google Scholar 

  17. Schröder L. In: Hane FT, editor. Hyperpolarized and inert gas MRI. Cambridge: Academic; 2017. p. 263–77.

    Chapter  Google Scholar 

  18. Schnurr M, Witte C, Schröder L. Hyperpolarized xenon-129 magnetic resonance: concepts, production, techniques and applications. Cambridge: RSC Publishing; 2015.

    Google Scholar 

  19. Wemmer DE. Hyperpolarized xenon-129 magnetic resonance: concepts, production, techniques and applications. Cambridge: RSC Publishing; 2015.

    Google Scholar 

  20. Wang Y, Dmochowski IJ. An expanded palette of xenon-129 NMR biosensors. Acc Chem Res. 2016;49:2179–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Meet the 45 Tesla hybrid magnet - MagLab. National High Magnetic Field Laboratory - Meet the 45 Tesla hybrid magnet. Available at: https://nationalmaglab.org/about/around-the-lab/meet-the-magnets/meet-the-45-tesla-hybrid-magnet. Accessed 1 Dec 2016.

  22. Forsén S, Hoffman RA. Study of moderately rapid chemical exchange reactions by means of nuclear magnetic double resonance. J Chem Phys. 1963;39:2892.

    Article  Google Scholar 

  23. Kuchel PW. Spin-exchange NMR spectroscopy in studies of the kinetics of enzymes and membrane transport. NMR Biomed. 1990;3:102–19.

    Article  CAS  PubMed  Google Scholar 

  24. Harel E, Schröder L, Xu S. Novel detection schemes of nuclear magnetic resonance and magnetic resonance imaging: applications from analytical chemistry to molecular sensors. Annu Rev Anal Chem. 2008;1:133–63.

    Article  CAS  Google Scholar 

  25. McConnell H, Reaction M. Rates by nuclear magnetic resonance. J Chem Phys. 2004;28:430–1.

    Article  Google Scholar 

  26. Sun PZ, Benner T, Kumar A, Sorensen AG. Investigation of optimizing and translating pH-sensitive pulsed-chemical exchange saturation transfer (CEST) imaging to a 3T clinical scanner. Magn Reson Med. 2008;60:834–41.

    Article  PubMed  Google Scholar 

  27. Kunth M, Witte C, Schröder L. Continuous-wave saturation considerations for efficient xenon depolarization. NMR Biomed. 2015;28:601–6.

    Article  CAS  PubMed  Google Scholar 

  28. Woessner DE, Zhang S, Merritt ME, Sherry AD. Numerical solution of the Bloch equations provides insights into the optimum design of PARACEST agents for MRI. Magn Reson Med. 2005;53:790–9.

    Article  CAS  PubMed  Google Scholar 

  29. Murase K, Tanki N. Numerical solutions to the time-dependent Bloch equations revisited. Magn Reson Imaging. 2011;29:126–31.

    Article  PubMed  Google Scholar 

  30. Ward KM, Aletras AH, Balaban RS. A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST). J Magn Reson. 2000;143:79–87.

    Article  CAS  PubMed  Google Scholar 

  31. Zhou J, Wilson DA, Sun PZ, Klaus JA, Van Zijl PCM. Quantitative description of proton exchange processes between water and endogenous and exogenous agents for WEX, CEST, and APT experiments. Magn Reson Med. 2004;51:945–52.

    Article  PubMed  CAS  Google Scholar 

  32. Kim J, Wu Y, Guo Y, Zheng H, Sun PZ. A review of optimization and quantification techniques for chemical exchange saturation transfer MRI toward sensitive in vivo imaging. Contrast Media Mol Imaging. 2015;10:163–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yuan J, Zhou J, Ahuja AT, Wang Y-XJ. MR chemical exchange imaging with spin-lock technique (CESL): a theoretical analysis of Z-spectrum using a two-pool R1ρ relaxation model beyond the fast-exchange limit. Phys Med Biol. 2012;57:8185–200.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Zaiss M, Bachert P. Exchange-dependent relaxation in the rotating frame for slow and intermediate exchange -- modeling off-resonant spin-lock and chemical exchange saturation transfer. NMR Biomed. 2013;26:507–18.

    Article  CAS  PubMed  Google Scholar 

  35. Zaiss M, Bachert P. Equivalence of spin-lock and magnetization transfer NMR experiments. arXiv:1203.2067; 2012.

    Google Scholar 

  36. Cobb JG, Li K, Xie J, Gochberg DF, Gore JC. Exchange-mediated contrast in CEST and spin-lock imaging. Magn Reson Imaging. 2014;32:28–40.

    Article  PubMed  Google Scholar 

  37. Roeloffs V, Meyer C, Bachert P, Zaiss M. Towards quantification of pulsed spinlock and CEST at clinical MR scanners: an analytical interleaved saturation–relaxation (ISAR) approach. NMR Biomed. 2015;28:40–53.

    PubMed  Google Scholar 

  38. Balaban RS, Ceckler TL. Magnetization transfer contrast in magnetic resonance imaging. Magn Reson Q. 1992;8:116–37.

    CAS  PubMed  Google Scholar 

  39. Yadav NN, Chan KWY, Jones CK, McMahon MT, van Zijl PCM. Time domain removal of irrelevant magnetization in chemical exchange saturation transfer Z-spectra. Magn Reson Med. 2013;70:547–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lee J-S, Regatte RR, Jerschow A. Isolating chemical exchange saturation transfer contrast from magnetization transfer asymmetry under two-frequency rf irradiation. J Magn Reson. 2012;215:56–63.

    Article  CAS  PubMed  Google Scholar 

  41. Zaiss M, Schmitt B, Bachert P. Quantitative separation of CEST effect from magnetization transfer and spillover effects by Lorentzian-line-fit analysis of z-spectra. J Magn Reson. 2011;211:149–55.

    Article  CAS  PubMed  Google Scholar 

  42. Zaiss M, et al. Inverse Z-spectrum analysis for spillover-, MT-, and T1-corrected steady-state pulsed CEST-MRI – application to pH-weighted MRI of acute stroke. NMR Biomed. 2014;27:240–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zaiss M, et al. A combined analytical solution for chemical exchange saturation transfer and semi-solid magnetization transfer. NMR Biomed. 2015;28:217–30.

    Article  CAS  PubMed  Google Scholar 

  44. Ling W, Regatte RR, Navon G, Jerschow A. Assessment of glycosaminoglycan concentration in vivo by chemical exchange-dependent saturation transfer (gagCEST). Proc Natl Acad Sci U S A. 2008;105:2266–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zaiss M, Kunz P, Goerke S, Radbruch A, Bachert P. MR imaging of protein folding in vitro employing nuclear-Overhauser-mediated saturation transfer. NMR Biomed. 2013;26:1815–22.

    Article  CAS  PubMed  Google Scholar 

  46. Xu J, et al. On the origins of chemical exchange saturation transfer (CEST) contrast in tumors at 9.4 T. NMR Biomed. 2014;27:406–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Xu J, et al. Variable delay multi-pulse train for fast chemical exchange saturation transfer and relayed-nuclear overhauser enhancement MRI: variable delay multi-pulse CEST. Magn Reson Med. 2014;71:1798–812.

    Article  CAS  PubMed  Google Scholar 

  48. Kim M, Gillen J, Landman BA, Zhou J, van Zijl PCM. Water saturation shift referencing (WASSR) for chemical exchange saturation transfer (CEST) experiments. Magn Reson Med. 2009;61:1441–50.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Windschuh J, et al. Correction of B1-inhomogeneities for relaxation-compensated CEST imaging at 7 T. NMR Biomed. 2015;28:529–37.

    Article  PubMed  Google Scholar 

  50. Stancanello J, et al. Development and validation of a smoothing-splines-based correction method for improving the analysis of CEST-MR images. Contrast Media Mol Imaging. 2008;3:136–49.

    Article  CAS  PubMed  Google Scholar 

  51. Terreno E, et al. Methods for an improved detection of the MRI-CEST effect. Contrast Media Mol Imaging. 2009;4:237–47.

    Article  CAS  PubMed  Google Scholar 

  52. McMahon MT, et al. Quantifying exchange rates in chemical exchange saturation transfer agents using the saturation time and saturation power dependencies of the magnetization transfer effect on the magnetic resonance imaging signal (QUEST and QUESP): Ph calibration for poly-L-lysine and a starburst dendrimer. Magn Reson Med. 2006;55:836–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sun PZ. Simplified quantification of labile proton concentration-weighted chemical exchange rate (k(ws)) with RF saturation time dependent ratiometric analysis (QUESTRA): normalization of relaxation and RF irradiation spillover effects for improved quantitative chemical exchange saturation transfer (CEST) MRI. Magn Reson Med. 2012;67:936–42.

    Article  CAS  PubMed  Google Scholar 

  54. Randtke EA, Chen LQ, Corrales LR, Pagel MD. The Hanes-Woolf linear QUESP method improves the measurements of fast chemical exchange rates with CEST MRI. Magn Reson Med. 2014;71:1603–12.

    Article  CAS  PubMed  Google Scholar 

  55. Liu G, Song X, Chan KWY, McMahon MT. Nuts and bolts of chemical exchange saturation transfer MRI. NMR Biomed. 2013;26:810–28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Dixon WT, et al. A concentration-independent method to measure exchange rates in PARACEST agents. Magn Reson Med. 2010;63:625–32.

    Article  CAS  PubMed  Google Scholar 

  57. Sun PZ, Wang Y, Dai Z, Xiao G, Wu R. Quantitative chemical exchange saturation transfer (qCEST) MRI - RF spillover effect-corrected omega plot for simultaneous determination of labile proton fraction ratio and exchange rate: RF spillover effect-corrected omega plot analysis. Contrast Media Mol Imaging. 2014;9:268–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Meissner J-E, et al. Quantitative pulsed CEST-MRI using Ω-plots. NMR Biomed. 2015;28:1196–208.

    Article  CAS  PubMed  Google Scholar 

  59. Sun PZ. Simultaneous determination of labile proton concentration and exchange rate utilizing optimal RF power: radio frequency power (RFP) dependence of chemical exchange saturation transfer (CEST) MRI. J Magn Reson. 2010;202:155–61.

    Article  CAS  PubMed  Google Scholar 

  60. Sun PZ, Wang Y, Xiao G, Wu R. Simultaneous experimental determination of labile proton fraction ratio and exchange rate with irradiation radio frequency power-dependent quantitative CEST MRI analysis. Contrast Media Mol Imaging. 2013;8:246–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jones CK, et al. Amide proton transfer imaging of human brain tumors at 3T. Magn Reson Med. 2006;56:585–92.

    Article  PubMed  Google Scholar 

  62. Zhou J, Payen J-F, Wilson DA, Traystman RJ, van Zijl PCM. Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI. Nat Med. 2003;9:1085–90.

    Article  CAS  PubMed  Google Scholar 

  63. Sun PZ, Zhou J, Huang J, van Zijl P. Simplified quantitative description of amide proton transfer (APT) imaging during acute ischemia. Magn Reson Med. 2007;57:405–10.

    Article  PubMed  Google Scholar 

  64. van Zijl PCM, Jones CK, Ren J, Malloy CR, Sherry AD. MRI detection of glycogen in vivo by using chemical exchange saturation transfer imaging (glycoCEST). Proc Natl Acad Sci U S A. 2007;104:4359–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Melkus G, Grabau M, Karampinos DC, Majumdar S. Ex vivo porcine model to measure pH dependence of chemical exchange saturation transfer effect of glycosaminoglycan in the intervertebral disc. Magn Reson Med. 2014;71:1743–9.

    Article  CAS  PubMed  Google Scholar 

  66. Zhou Z, et al. Quantitative chemical exchange saturation transfer MRI of intervertebral disc in a porcine model. Magn Reson Med. 2016;76:1677–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Rivlin M, Tsarfaty I, Navon G. Functional molecular imaging of tumors by chemical exchange saturation transfer MRI of 3-O-methyl-D-glucose. Magn Reson Med. 2014;72:1375–80.

    Article  CAS  PubMed  Google Scholar 

  68. Rivlin M, Navon G. Glucosamine and N-acetyl glucosamine as new CEST MRI agents for molecular imaging of tumors. Sci Rep. 2016;6:32648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Haris M, et al. Exchange rates of creatine kinase metabolites: feasibility of imaging creatine by chemical exchange saturation transfer MRI. NMR Biomed. 2012;25:1305–9.

    Article  CAS  PubMed  Google Scholar 

  70. Haris M, et al. A technique for in vivo mapping of myocardial creatine kinase metabolism. Nat Med. 2014;20:209–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ivchenko O, et al. Proton transfer pathways, energy landscape, and kinetics in creatine–water systems. J Phys Chem B. 2014;118:1969–75.

    CAS  PubMed  Google Scholar 

  72. Haris M, et al. MICEST: a potential tool for non-invasive detection of molecular changes in Alzheimer’s disease. J Neurosci Methods. 2013;212:87–93.

    Article  CAS  PubMed  Google Scholar 

  73. Goffeney N, Bulte JW, Duyn J, Bryant LH Jr, van Zijl PC. Sensitive NMR detection of cationic-polymer-based gene delivery systems using saturation transfer via proton exchange. J Am Chem Soc. 2001;123:8628–9.

    Article  CAS  PubMed  Google Scholar 

  74. Snoussi K, Bulte JWM, Guéron M, van Zijl PCM. Sensitive CEST agents based on nucleic acid imino proton exchange: detection of poly(rU) and of a dendrimer-poly(rU) model for nucleic acid delivery and pharmacology. Magn Reson Med. 2003;49:998–1005.

    Article  CAS  PubMed  Google Scholar 

  75. Liu G, Gilad AA. MRI of CEST-based reporter gene. Methods Mol Biol. 2011;771:733–46.

    Article  CAS  PubMed  Google Scholar 

  76. Gilad AA, et al. Artificial reporter gene providing MRI contrast based on proton exchange. Nat Biotechnol. 2007;25:217–9.

    Article  CAS  PubMed  Google Scholar 

  77. Bar-Shir A, et al. Human protamine-1 as an MRI reporter gene based on chemical exchange. ACS Chem Biol. 2014;9:134–8.

    Article  CAS  PubMed  Google Scholar 

  78. Bar-Shir A, Liu G, Greenberg MM, Bulte JWM, Gilad AA. Synthesis of a probe for monitoring HSV1-tk reporter gene expression using chemical exchange saturation transfer MRI. Nat Protoc. 2013;8:2380–91.

    Article  CAS  PubMed  Google Scholar 

  79. McMahon MT, et al. New ‘multicolor’ polypeptide diamagnetic chemical exchange saturation transfer (DIACEST) contrast agents for MRI. Magn Reson Med. 2008;60:803–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yang X, et al. Salicylic acid and analogues as diaCEST MRI contrast agents with highly shifted exchangeable proton frequencies. Angew Chem Int Ed. 2013;52:8116–9.

    Article  CAS  Google Scholar 

  81. Song X, et al. Salicylic acid analogues as chemical exchange saturation transfer MRI contrast agents for the assessment of brain perfusion territory and blood-brain barrier opening after intra-arterial infusion. J Cereb Blood Flow Metab. 2016. https://doi.org/10.1177/0271678X16637882.

  82. Caravan P. Strategies for increasing the sensitivity of gadolinium based MRI contrast agents. Chem Soc Rev. 2006;35:512.

    Article  CAS  PubMed  Google Scholar 

  83. Zhang S, Wu K, Sherry AD. Gd3+ complexes with slowly exchanging bound-water molecules may offer advantages in the design of responsive MR agents. Investig Radiol. 2001;36:82–6.

    Article  CAS  Google Scholar 

  84. Sherry AD, Wu Y. The importance of water exchange rates in the design of responsive agents for MRI. Curr Opin Chem Biol. 2013;17:167–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhang S, Winter P, Wu K, Sherry AD. A novel europium(III)-based MRI contrast agent. J Am Chem Soc. 2001;123:1517–8.

    Article  CAS  PubMed  Google Scholar 

  86. Aime S, Carrera C, Delli Castelli D, Geninatti Crich S, Terreno E. Tunable imaging of cells labeled with MRI-PARACEST agents. Angew Chem Int Ed Engl. 2005;44:1813–5.

    Article  CAS  PubMed  Google Scholar 

  87. Zhang S, Merritt M, Woessner DE, Lenkinski RE, Sherry AD. PARACEST agents: modulating MRI contrast via water proton exchange. Acc Chem Res. 2003;36:783–90.

    Article  CAS  PubMed  Google Scholar 

  88. Viswanathan S, et al. Multi-frequency PARACEST agents based on europium(III)-DOTA-tetraamide ligands. Angew Chem Int Ed Engl. 2009;48:9330–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wu Y, et al. Polymeric PARACEST agents for enhancing MRI contrast sensitivity. J Am Chem Soc. 2008;130:13854–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Castelli DD, Terreno E, Longo D, Aime S. Nanoparticle-based chemical exchange saturation transfer (CEST) agents. NMR Biomed. 2013;26:839–49.

    Article  CAS  PubMed  Google Scholar 

  91. Soesbe TC, Merritt ME, Green KN, Rojas-Quijano FA, Sherry AD. T2 exchange agents: a new class of paramagnetic MRI contrast agent that shortens water T2 by chemical exchange rather than relaxation. Magn Reson Med. 2011;66:1697–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Mani T, et al. The stereochemistry of amide side chains containing carboxyl groups influences water exchange rates in EuDOTA-tetraamide complexes. J Biol Inorg Chem. 2014;19:161–71.

    Article  CAS  PubMed  Google Scholar 

  93. Aime S, Delli Castelli D, Terreno E. Highly sensitive MRI chemical exchange saturation transfer agents using liposomes. Angew Chem Int Ed Engl. 2005;44:5513–5.

    Article  CAS  PubMed  Google Scholar 

  94. Terreno E, et al. From spherical to osmotically shrunken paramagnetic liposomes: an improved generation of LIPOCEST MRI agents with highly shifted water protons. Angew Chem. 2007;119:984–6.

    Article  Google Scholar 

  95. Terreno E, et al. First ex-vivo MRI co-localization of two LIPOCEST agents. Contrast Media Mol Imaging. 2008;3:38–43.

    Article  CAS  PubMed  Google Scholar 

  96. Terreno E, et al. Determination of water permeability of paramagnetic liposomes of interest in MRI field. J Inorg Biochem. 2008;102:1112–9.

    Article  CAS  PubMed  Google Scholar 

  97. Zhao JM, et al. Size-induced enhancement of chemical exchange saturation transfer (CEST) contrast in liposomes. J Am Chem Soc. 2008;130:5178–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Terreno E, et al. Osmotically shrunken LIPOCEST agents: an innovative class of magnetic resonance imaging contrast media based on chemical exchange saturation transfer. Chemistry. 2009;15:1440–8.

    Article  CAS  PubMed  Google Scholar 

  99. Delli Castelli D, et al. In vivo MRI multicontrast kinetic analysis of the uptake and intracellular trafficking of paramagnetically labeled liposomes. J Control Release. 2010;144:271–9.

    Article  CAS  PubMed  Google Scholar 

  100. Langereis S, et al. A temperature-sensitive liposomal 1H CEST and 19F contrast agent for MR image-guided drug delivery. J Am Chem Soc. 2009;131:1380–1.

    Article  CAS  PubMed  Google Scholar 

  101. Castelli DD, Boffa C, Giustetto P, Terreno E, Aime S. Design and testing of paramagnetic liposome-based CEST agents for MRI visualization of payload release on pH-induced and ultrasound stimulation. J Biol Inorg Chem. 2014;19:207–14.

    Article  CAS  PubMed  Google Scholar 

  102. Opina ACL, et al. TmDOTA-tetraglycinate encapsulated liposomes as pH-sensitive LipoCEST agents. PLoS One. 2011;6:e27370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Flament J, et al. In vivo CEST MR imaging of U87 mice brain tumor angiogenesis using targeted LipoCEST contrast agent at 7 T. Magn Reson Med. 2013;69:179–87.

    Article  CAS  PubMed  Google Scholar 

  104. Chan KWY, Bulte JWM, McMahon MT. Diamagnetic chemical exchange saturation transfer (diaCEST) liposomes: physicochemical properties and imaging applications. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2014;6:111–24.

    Article  CAS  PubMed  Google Scholar 

  105. Liu G, et al. In vivo multicolor molecular MR imaging using diamagnetic chemical exchange saturation transfer liposomes. Magn Reson Med. 2012;67:1106–13.

    Article  CAS  PubMed  Google Scholar 

  106. Chan KWY, et al. MRI-detectable pH nanosensors incorporated into hydrogels for in vivo sensing of transplanted-cell viability. Nat Mater. 2013;12:268–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ferrauto G, et al. Lanthanide-loaded erythrocytes as highly sensitive chemical exchange saturation transfer MRI contrast agents. J Am Chem Soc. 2014;136:638–41.

    Article  CAS  PubMed  Google Scholar 

  108. Grüll H, et al. Block copolymer vesicles containing paramagnetic lanthanide complexes: a novel class of T1- and CEST MRI contrast agents. Soft Matter. 2010;6:4847–50.

    Article  CAS  Google Scholar 

  109. Zhang S, Malloy CR, Sherry AD. MRI thermometry based on PARACEST agents. J Am Chem Soc. 2005;127:17572–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zhang S, Trokowski R, Sherry AD. A paramagnetic CEST agent for imaging glucose by MRI. J Am Chem Soc. 2003;125:15288–9.

    Article  CAS  PubMed  Google Scholar 

  111. Ren J, Trokowski R, Zhang S, Malloy CR, Sherry AD. Imaging the tissue distribution of glucose in livers using a PARACEST sensor. Magn Reson Med. 2008;60:1047–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Aime S, Delli Castelli D, Fedeli F, Terreno E. A paramagnetic MRI-CEST agent responsive to lactate concentration. J Am Chem Soc. 2002;124:9364–5.

    Article  CAS  PubMed  Google Scholar 

  113. Song B, et al. A europium(III)-based PARACEST agent for sensing singlet oxygen by MRI. Dalton Trans Camb Engl 2003. 2013;42:8066–9.

    CAS  Google Scholar 

  114. Trokowski R, Ren J, Kálmán FK, Sherry AD. Selective sensing of zinc ions with a PARACEST contrast agent. Angew Chem Int Ed Engl. 2005;44:6920–3.

    Article  CAS  PubMed  Google Scholar 

  115. Hingorani DV, Randtke EA, Pagel MD. A catalyCEST MRI contrast agent that detects the enzyme-catalyzed creation of a covalent bond. J Am Chem Soc. 2013;135:6396–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Fernández-Cuervo G, Tucker KA, Malm SW, Jones KM, Pagel MD. Diamagnetic imaging agents with a modular chemical design for quantitative detection of β-galactosidase and β-glucuronidase activities with catalyCEST MRI. Bioconjug Chem. 2016;27:2549–57.

    Article  CAS  Google Scholar 

  117. Sinharay S, Fernández-Cuervo G, Acfalle JP, Pagel MD. Detection of sulfatase enzyme activity with a catalyCEST MRI contrast agent. Chemistry. 2016;22:6491–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Sinharay S, et al. Noninvasive detection of enzyme activity in tumor models of human ovarian cancer using catalyCEST MRI. Magn Reson Med. 2016;77(5):2005–14. https://doi.org/10.1002/mrm.26278.

    Article  PubMed  CAS  Google Scholar 

  119. Ward KM, Balaban RS. Determination of pH using water protons and chemical exchange dependent saturation transfer (CEST). Magn Reson Med. 2000;44:799–802.

    Article  CAS  PubMed  Google Scholar 

  120. Aime S, Delli Castelli D, Terreno E. Novel pH-reporter MRI contrast agents. Angew Chem Int Ed. 2002;41:4334–6.

    Article  CAS  Google Scholar 

  121. Aime S, et al. Paramagnetic lanthanide(III) complexes as pH-sensitive chemical exchange saturation transfer (CEST) contrast agents for MRI applications. Magn Reson Med. 2002;47:639–48.

    Article  CAS  PubMed  Google Scholar 

  122. Wu Y, Soesbe TC, Kiefer GE, Zhao P, Sherry AD. A responsive europium(III) chelate that provides a direct readout of pH by MRI. J Am Chem Soc. 2010;132:14002–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Sheth VR, Liu G, Li Y, Pagel MD. Improved pH measurements with a single PARACEST MRI contrast agent. Contrast Media Mol Imaging. 2012;7:26–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Longo DL, et al. A general MRI-CEST ratiometric approach for pH imaging: demonstration of in vivo pH mapping with iobitridol. J Am Chem Soc. 2014;136:14333–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Wu R, Longo DL, Aime S, Sun PZ. Quantitative description of radiofrequency (RF) power-based ratiometric chemical exchange saturation transfer (CEST) pH imaging. NMR Biomed. 2015;28:555–65.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Yang X, et al. Developing imidazoles as CEST MRI pH sensors. Contrast Media Mol Imaging. 2016;11:304–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Zeng H, et al. 15N heteronuclear chemical exchange saturation transfer MRI. J Am Chem Soc. 2016;138:11136–9.

    Article  CAS  PubMed  Google Scholar 

  128. Ratnakar SJ, et al. Europium(III) DOTA-tetraamide complexes as redox-active MRI sensors. J Am Chem Soc. 2012;134:5798–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Tsitovich PB, Spernyak JA, Morrow JR. A redox-activated MRI contrast agent that switches between paramagnetic and diamagnetic states. Angew Chem. 2013;125:14247–50.

    Article  Google Scholar 

  130. Dorazio SJ, Olatunde AO, Spernyak JA, Morrow JR. CoCEST: cobalt(II) amide-appended paraCEST MRI contrast agents. Chem Commun (Camb). 2013;49:10025–7.

    Article  CAS  Google Scholar 

  131. Ratnakar SJ, et al. Modulation of CEST images in vivo by T1 relaxation: a new approach in the design of responsive PARACEST agents. J Am Chem Soc. 2013;135:14904–7.

    Article  CAS  PubMed  Google Scholar 

  132. Napolitano R, Soesbe TC, De León-Rodríguez LM, Sherry AD, Udugamasooriya DG. On-bead combinatorial synthesis and imaging of chemical exchange saturation transfer magnetic resonance imaging agents to identify factors that influence water exchange. J Am Chem Soc. 2011;133:13023–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Zhang S, et al. A novel class of polymeric pH-responsive MRI CEST agents. Chem Commun (Camb). 2013;49:6418–20.

    Article  CAS  Google Scholar 

  134. Liu G, et al. Monitoring enzyme activity using a diamagnetic chemical exchange saturation transfer MRI contrast agent. J Am Chem Soc. 2011;133:16326–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Bar-Shir A, et al. Metal ion sensing using ion chemical exchange saturation transfer 19F magnetic resonance imaging. J Am Chem Soc. 2013;135:12164–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Witte C, et al. Magnetic resonance imaging of cell surface glycosylation using Hyper-CEST xenon biosensors. In: Proceedings of the WMIC; 2014.

    Google Scholar 

  137. Goodson BM. Nuclear magnetic resonance of laser-polarized noble gases in molecules, materials, and organisms. J Magn Reson. 2002;155:157–216.

    Article  CAS  PubMed  Google Scholar 

  138. Schroder L, Lowery TJ, Hilty C, Wemmer DE, Pines A. Molecular imaging using a targeted magnetic resonance hyperpolarized biosensor. Science. 2006;314:446–9.

    Article  PubMed  CAS  Google Scholar 

  139. Ruppert K, Brookeman JR, Hagspiel KD, Mugler JP. Probing lung physiology with xenon polarization transfer contrast (XTC). Magn Reson Med. 2000;44:349–57.

    Article  CAS  PubMed  Google Scholar 

  140. Ruppert K, et al. XTC MRI: sensitivity improvement through parameter optimization. Magn Reson Med. 2007;57:1099–109.

    Article  PubMed  Google Scholar 

  141. Dregely I, et al. Multiple-exchange-time xenon polarization transfer contrast (MXTC) MRI: initial results in animals and healthy volunteers. Magn Reson Med. 2012;67:943–53.

    Article  PubMed  Google Scholar 

  142. Kunth, M., Döpfert, J., Witte, C. & Schröder, L. Simultaneous MRI monitoring of diffusion of multiple hyper-CEST contrast agents. In: 54th experimental nuclear magnetic resonance conference (ENC), Asilomar, CA, 2013.

    Google Scholar 

  143. Garcia S, et al. Sensitivity enhancement by exchange mediated magnetization transfer of the xenon biosensor signal. J Magn Reson. 2007;184:72–7.

    Article  CAS  PubMed  Google Scholar 

  144. Witte C, Kunth M, Döpfert J, Rossella F, Schröder L. Hyperpolarized xenon for NMR and MRI applications. J Vis Exp. 2012;67:e4268. https://doi.org/10.3791/4268.

    Google Scholar 

  145. Witte C, Kunth M, Rossella F, Schröder L. Observing and preventing rubidium runaway in a direct-infusion xenon-spin hyperpolarizer optimized for high-resolution hyper-CEST (chemical exchange saturation transfer using hyperpolarized nuclei) NMR. J Chem Phys. 2014;140:084203.

    Article  CAS  PubMed  Google Scholar 

  146. Lowery TJ, et al. Distinguishing multiple chemotaxis Y protein conformations with laser-polarized 129Xe NMR. Protein Sci. 2005;14:848–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Brotin T, Dutasta J-P. Cryptophanes and their complexes—present and future. Chem Rev. 2009;109:88–130.

    Article  CAS  PubMed  Google Scholar 

  148. Spence MM, et al. Functionalized xenon as a biosensor. Proc Natl Acad Sci U S A. 2001;98:10654–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Jacobson DR, et al. Measurement of radon and xenon binding to a cryptophane molecular host. Proc Natl Acad Sci U S A. 2011;108:10969–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Huber G, et al. Interaction of xenon with cucurbit[5]uril in water. ChemPhysChem. 2011;12:1053–5.

    Article  CAS  PubMed  Google Scholar 

  151. Kim BS, et al. Water soluble cucurbit[6]uril derivative as a potential Xe carrier for 129Xe NMR-based biosensors. Chem Commun. 2008;2008:2756–8. https://doi.org/10.1039/B805724A.

    Article  CAS  Google Scholar 

  152. Kunth M, Witte C, Hennig A, Schröder L. Identification, classification, and signal amplification capabilities of high-turnover gas binding hosts in ultra-sensitive NMR. Chem Sci. 2015;6:6069–75.

    Article  CAS  Google Scholar 

  153. Schnurr M, Sloniec-Myszk J, Döpfert J, Schröder L, Hennig A. Supramolecular assays for mapping enzyme activity by displacement-triggered change in hyperpolarized 129Xe magnetization transfer NMR spectroscopy. Angew Chem Int Ed. 2015;54:13444–7.

    Article  CAS  Google Scholar 

  154. Stevens TK, Ramirez RM, Pines A. Nanoemulsion contrast agents with sub-picomolar sensitivity for xenon NMR. J Am Chem Soc. 2013;135:9576–9.

    Article  CAS  PubMed  Google Scholar 

  155. Klippel S, Freund C, Schröder L. Multichannel MRI labeling of mammalian cells by switchable nanocarriers for hyperpolarized xenon. Nano Lett. 2014;14:5721–6.

    Article  CAS  PubMed  Google Scholar 

  156. Fogarty HA, et al. A cryptophane core optimized for xenon encapsulation. J Am Chem Soc. 2007;129:10332–3.

    Article  CAS  PubMed  Google Scholar 

  157. Huber G, et al. Cryptophane-xenon complexes in organic solvents observed through NMR spectroscopy. J Phys Chem A. 2008;112:11363–72.

    Article  CAS  PubMed  Google Scholar 

  158. Kotera N, et al. Design and synthesis of new cryptophanes with intermediate cavity sizes. Org Lett. 2011;13:2153–5.

    Article  CAS  PubMed  Google Scholar 

  159. Kunth M, Döpfert J, Witte C, Rossella F, Schröder L. Optimized use of reversible binding for fast and selective NMR localization of caged xenon. Angew Chem Int Ed. 2012;51:8217–20.

    Article  CAS  Google Scholar 

  160. Klippel S, et al. Cell tracking with caged xenon: using cryptophanes as MRI reporters upon cellular internalization. Angew Chem Int Ed. 2014;53:493–6.

    Article  CAS  Google Scholar 

  161. Schröder L, et al. Temperature response of Xe129 depolarization transfer and its application for ultrasensitive NMR detection. Phys Rev Lett. 2008;100:257603.

    Article  PubMed  CAS  Google Scholar 

  162. Schröder L, et al. Temperature-controlled molecular depolarization gates in nuclear magnetic resonance. Angew Chem Int Ed. 2008;47:4316–20.

    Article  CAS  Google Scholar 

  163. Bai Y, Hill PA, Dmochowski IJ. Utilizing a water-soluble cryptophane with fast xenon exchange rates for picomolar sensitivity NMR measurements. Anal Chem. 2012;84:9935–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Hilty C, Lowery TJ, Wemmer DE, Pines A. Spectrally resolved magnetic resonance imaging of a xenon biosensor. Angew Chem Int Ed. 2006;45:70–3.

    Article  CAS  Google Scholar 

  165. Meldrum T, et al. A xenon-based molecular sensor assembled on an MS2 viral capsid scaffold. J Am Chem Soc. 2010;132:5936–7.

    Article  CAS  PubMed  Google Scholar 

  166. Jeong K, et al. Targeted molecular imaging of cancer cells using MS2-based 129Xe NMR. Bioconjug Chem. 2016;27:1796–801.

    Article  CAS  PubMed  Google Scholar 

  167. Palaniappan KK, et al. Molecular imaging of cancer cells using a bacteriophage-based 129Xe NMR biosensor. Angew Chem Int Ed Engl. 2013;52:4849–53.

    Article  CAS  PubMed  Google Scholar 

  168. Stevens TK, et al. HyperCEST detection of a 129Xe-based contrast agent composed of cryptophane-a molecular cages on a bacteriophage scaffold. Magn Reson Med. 2013;69:1245–52.

    Article  CAS  PubMed  Google Scholar 

  169. Berthault P, Bogaert-Buchmann A, Desvaux H, Huber G, Boulard Y. Sensitivity and multiplexing capabilities of MRI based on polarized 129Xe biosensors. J Am Chem Soc. 2008;130:16456–7.

    Article  CAS  PubMed  Google Scholar 

  170. Meldrum T, Schröder L, Denger P, Wemmer DE, Pines A. Xenon-based molecular sensors in lipid suspensions. J Magn Reson. 2010;205:242–6.

    Article  CAS  PubMed  Google Scholar 

  171. Wei Q, et al. Designing 129Xe NMR biosensors for matrix metalloproteinase detection. J Am Chem Soc. 2006;128:13274–83.

    Article  CAS  PubMed  Google Scholar 

  172. Schilling F, et al. MRI thermometry based on encapsulated hyperpolarized xenon. ChemPhysChem. 2010;11:3529–33.

    Article  CAS  PubMed  Google Scholar 

  173. Roy V, et al. A cryptophane biosensor for the detection of specific nucleotide targets through xenon NMR spectroscopy. Chemphyschem. 2007;8:2082–5.

    Article  CAS  PubMed  Google Scholar 

  174. Kotera N, et al. A sensitive zinc-activated 129Xe MRI probe. Angew Chem Int Ed Engl. 2012;51:4100–3.

    Article  CAS  PubMed  Google Scholar 

  175. Tassali N, et al. Smart detection of toxic metal ions - Pb2+ and Cd2+ - using a 129Xe NMR-based sensor. Anal Chem. 2014;86:1783–8. https://doi.org/10.1021/ac403669p.

    Article  CAS  PubMed  Google Scholar 

  176. Chambers JM, et al. Cryptophane xenon-129 nuclear magnetic resonance biosensors targeting human carbonic anhydrase. J Am Chem Soc. 2009;131:563–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Berthault P, et al. Effect of pH and counterions on the encapsulation properties of xenon in water-soluble cryptophanes. Chemistry. 2010;16:12941–6.

    Article  CAS  PubMed  Google Scholar 

  178. Riggle BA, Wang Y, Dmochowski IJ. A ‘smart’ 129Xe NMR biosensor for pH-dependent cell labeling. J Am Chem Soc. 2015;137:5542–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Boutin C, et al. Cell uptake of a biosensor detected by hyperpolarized 129Xe NMR: the transferrin case. Bioorg Med Chem. 2011;19:4135–43.

    Article  CAS  PubMed  Google Scholar 

  180. Khan NS, Riggle BA, Seward GK, Bai Y, Dmochowski IJ. Cryptophane-folate biosensor for 129Xe NMR. Bioconjug Chem. 2015;26:101–9.

    Article  CAS  PubMed  Google Scholar 

  181. Seward GK, Wei Q, Dmochowski IJ. Peptide-mediated cellular uptake of cryptophane. Bioconjug Chem. 2008;19:2129–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Seward GK, Bai Y, Khan NS, Dmochowski IJ. Cell-compatible, integrin-targeted cryptophane-129Xe NMR biosensors. Chem Sci. 2011;2:1103–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Rossella F, Rose HM, Witte C, Jayapaul J, Schröder L. Design and characterization of two bifunctional cryptophane A-based host molecules for xenon magnetic resonance imaging applications. ChemPlusChem. 2014;79:1463–71.

    Article  CAS  Google Scholar 

  184. Rose HM, et al. Development of an antibody-based, modular biosensor for 129Xe NMR molecular imaging of cells at nanomolar concentrations. Proc Natl Acad Sci U S A. 2014;111:11697–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Witte C, et al. Live-cell MRI with xenon hyper-CEST biosensors targeted to metabolically labeled cell-surface glycans. Angew Chem Int Ed. 2015;54:2806–10.

    Article  CAS  Google Scholar 

  186. Schnurr M, Sydow K, Rose HM, Dathe M, Schröder L. Brain endothelial cell targeting via a peptide-functionalized liposomal carrier for xenon hyper-CEST MRI. Adv Healthc Mater. 2015;4:40–5.

    Article  CAS  PubMed  Google Scholar 

  187. Sloniec J, et al. Biomembrane interactions of functionalized cryptophane-a: combined fluorescence and 129Xe NMR studies of a bimodal contrast agent. Chemistry. 2013;19:3110–8.

    Article  CAS  PubMed  Google Scholar 

  188. Booker RD, Sum AK. Biophysical changes induced by xenon on phospholipid bilayers. Biochim Biophys Acta. 2013;1828:1347–56.

    Article  CAS  PubMed  Google Scholar 

  189. Schnurr M, Witte C, Schröder L. Functionalized 129Xe as a potential biosensor for membrane fluidity. Phys Chem Chem Phys. 2013;15:14178.

    Article  CAS  PubMed  Google Scholar 

  190. Schnurr M, Witte C, Schröder L. Depolarization laplace transform analysis of exchangeable hyperpolarized 129Xe for detecting ordering phases and cholesterol content of biomembrane models. Biophys J. 2014;106:1301–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Koskela H, Heikkinen O, Kilpeläinen I, Heikkinen S. Rapid and accurate processing method for amide proton exchange rate measurement in proteins. J Biomol NMR. 2007;37:313–20.

    Article  CAS  PubMed  Google Scholar 

  192. Zaiss M, Schnurr M, Bachert P. Analytical solution for the depolarization of hyperpolarized nuclei by chemical exchange saturation transfer between free and encapsulated xenon (HyperCEST). J Chem Phys. 2012;136:144106–10.

    Article  PubMed  CAS  Google Scholar 

  193. Kunth M, Witte C, Schröder L. Quantitative chemical exchange saturation transfer with hyperpolarized nuclei (qHyper-CEST): sensing xenon-host exchange dynamics and binding affinities by NMR. J Chem Phys. 2014;141:194202.

    Article  CAS  PubMed  Google Scholar 

  194. Kunth M, Witte C, Schröder L. Determination of Absolute xenon-host concentration by quantitative 129Xe MRI using hyper-CEST. In: Proceedings of the WMIC; 2014.

    Google Scholar 

  195. Sun PZ, et al. Simulation and optimization of pulsed radio frequency irradiation scheme for chemical exchange saturation transfer (CEST) MRI-demonstration of pH-weighted pulsed-amide proton CEST MRI in an animal model of acute cerebral ischemia. Magn Reson Med. 2011;66:1042–8.

    Article  PubMed  PubMed Central  Google Scholar 

  196. Keupp J, Baltes C, Harvey PR, van den Brink J. Parallel RF transmission based MRI technique for highly sensitive detection of amide proton transfer in the human brain at 3T. Proc Intl Soc Magn Reson Med. 2011;19:710.

    Google Scholar 

  197. Song X, et al. CEST phase mapping using a length and offset varied saturation (LOVARS) scheme. Magn Reson Med. 2012;68:1074–86.

    Article  PubMed  PubMed Central  Google Scholar 

  198. Friedman JI, McMahon MT, Stivers JT, Van Zijl PCM. Indirect detection of labile solute proton spectra via the water signal using frequency-labeled exchange (FLEX) transfer. J Am Chem Soc. 2010;132:1813–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Lin C-Y, et al. Using frequency-labeled exchange transfer to separate out conventional magnetization transfer effects from exchange transfer effects when detecting ParaCEST agents. Magn Reson Med. 2012;67:906–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Lin C-Y, Yadav NN, Ratnakar J, Sherry AD, van Zijl PCM. In vivo imaging of paraCEST agents using frequency labeled exchange transfer MRI. Magn Reson Med. 2014;71:286–93.

    Article  PubMed  Google Scholar 

  201. Yadav NN, et al. Detection of rapidly exchanging compounds using on-resonance frequency-labeled exchange (FLEX) transfer. Magn Reson Med. 2012;68:1048–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Vinogradov E, Soesbe TC, Balschi JA, Sherry AD, Lenkinski RE. pCEST: positive contrast using chemical exchange saturation transfer. J Magn Reson. 2012;215:64–73.

    Article  CAS  PubMed  Google Scholar 

  203. Soesbe TC, Togao O, Takahashi M, Sherry AD. SWIFT-CEST: a new MRI method to overcome T2 shortening caused by PARACEST contrast agents. Magn Reson Med. 2012;68:816–21.

    Article  PubMed  Google Scholar 

  204. Liu G, Gilad AA, Bulte JWM, van Zijl PCM, McMahon MT. High-throughput screening of chemical exchange saturation transfer MR contrast agents. Contrast Media Mol Imaging. 2010;5:162–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Varma G, Lenkinski RE, Vinogradov E. Keyhole chemical exchange saturation transfer. Magn Reson Med. 2012;68:1228–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Döpfert J, Witte C, Kunth M, Schröder L. Sensitivity enhancement of (hyper-)CEST image series by exploiting redundancies in the spectral domain. Contrast Media Mol Imaging. 2014;9:100–7.

    Article  PubMed  CAS  Google Scholar 

  207. Xu X, Lee J-S, Jerschow A. Ultrafast scanning of exchangeable sites by NMR spectroscopy. Angew Chem Int Ed Engl. 2013;52:8281–4.

    Article  CAS  PubMed  Google Scholar 

  208. Döpfert J, Witte C, Schröder L. Slice-selective gradient-encoded CEST spectroscopy for monitoring dynamic parameters and high-throughput sample characterization. J Magn Reson. 2013;237:34–9.

    Article  PubMed  CAS  Google Scholar 

  209. Wilson NE, D’Aquilla K, Debrosse C, Hariharan H, Reddy R. Localized, gradient-reversed ultrafast z-spectroscopy in vivo at 7T. Magn Reson Med. 2016;76:1039–46.

    Article  PubMed  PubMed Central  Google Scholar 

  210. Zhou IY, et al. Tissue characterization with quantitative high-resolution magic angle spinning chemical exchange saturation transfer Z-spectroscopy. Anal Chem. 2016;88:10379–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Döpfert J, Witte C, Schröder L. Fast gradient-encoded CEST spectroscopy of hyperpolarized xenon. ChemPhysChem. 2014;15(2):261–4. https://doi.org/10.1002/cphc.201300888.

    Article  PubMed  CAS  Google Scholar 

  212. Zhao L, et al. Gradient-echo imaging considerations for hyperpolarized 129Xe MR. J Magn Reson B. 1996;113:179–83.

    Article  CAS  Google Scholar 

  213. Boutin C, Léonce E, Brotin T, Jerschow A, Berthault P. Ultrafast Z-spectroscopy for 129Xe NMR-based sensors. J Phys Chem Lett. 2013;4:4172–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Reich HJ. WinDNMR: dynamic NMR spectra for windows. J Chem Educ. 1995;72:1086.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Part of this work has been supported by the Human Frontiers Science Program (MK funded through programme grant no. RGP0050/2016) and a Koselleck Grant of the German Research Foundation (SCHR 995-1/1 to LS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leif Schröder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Kunth, M., Schröder, L. (2018). CEST MRI. In: Sack, I., Schaeffter, T. (eds) Quantification of Biophysical Parameters in Medical Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-65924-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65924-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65923-7

  • Online ISBN: 978-3-319-65924-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics