Skip to main content

MRI

  • Chapter
  • First Online:
Small Animal Imaging

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is not possible to separate the signals of adenosine from all other nucleobases; therefore NTP is the general term.

  2. 2.

    Circular polarized coils are often named as quadrature coils.

  3. 3.

    After all these steps it is possible to measure. The final processed spectrum is usable in most of the cases and gives the missing information about the tissue composition. Washout of contrast media in animals is much faster than in humans resulting in no interference with a following spectroscopy exam.

References

Basics of Magnetic Resonance Imaging (MRI)

  • Ardenkjaer-Larsen JH, Fridlund B, Gram A, Hansson G, Hansson L, Lerche MH, Servin R, Thaning M, Golman K. Increase in signal-to-noise ratio of > 10,000 times in liquid-state NMR. Proc Natl Acad Sci U S A. 2003a;100:10158–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baltes C, Radzwill N, Bosshard SC, Marek D, Rudin M. Micro MR imaging of the mouse brain at 9.4T using a cryogenic RF probe. NMR Biomed. 2009;22:834–42.

    Article  PubMed  Google Scholar 

  • Bar-Shir A, Bulte JWM, Gilad AA. Molecular engineering of nonmetallic biosensors for CEST MRI. ACS Chem Biol. 2015;10:1160–70.

    Article  CAS  PubMed  Google Scholar 

  • Bihan L. Molecular diffusion nuclear magnetic resonance imaging. Magn Reson Q. 1991;7:1–30.

    PubMed  Google Scholar 

  • Bloch F. Nuclear induction. Phys Rev. 1946;70:460–74.

    Article  CAS  Google Scholar 

  • Bloch F. Generalized theory of relaxation. Phys Rev. 1957;105:1206–22.

    Article  CAS  Google Scholar 

  • Bloch F, Siegert AJF. Magnetic resonance for nonrotating fields. Phys Rev. 1940;57:522.

    Article  Google Scholar 

  • Bloch F, Hansen WW, Packard M. The nuclear induction experiment. Phys Rev. 1946;70:474–85.

    Article  CAS  Google Scholar 

  • Bradley WG, Bydder GM. Advanced MR imaging techniques. London: Martin Dunitz Ltd; 1997.

    Google Scholar 

  • Bruder H, Fischer H, Graumann R, Deimling M. A new steady-state imaging sequence for simultaneous acquisition of two MR images with clearly different contrast. Magn Reson Med. 1988;7:35–42.

    Google Scholar 

  • Carrington A, McLachlan AD. Introduction to magnetic resonance. New York: Harper & Row; 1969.

    Google Scholar 

  • Ernst RR. Sensitivity enhancement in magnetic resonance. Adv Magn Reson. 1966;2:1–135.

    Article  CAS  Google Scholar 

  • Ernst RR, Bodenhausen G, Wokaun A. Principles of nuclear magnetic resonance in one and two dimensions. New York: Clarendon Press (Oxford); 1987. p. 108 ff–54 ff.

    Google Scholar 

  • Forsen S, Hoffmann RA. Study of moderately rapid chemical exchange reactions by means of nuclear magnetic double resonance. J Chem Phys. 1963;39:2892–901.

    Article  CAS  Google Scholar 

  • Frahm J, Haase A, Matthaei D. Rapid NMR imaging of dynamic processes using the FLASH technique. Magn Reson Med. 1986;3:321–7.

    Article  CAS  PubMed  Google Scholar 

  • Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med. 2002;47:1202–10.

    Article  PubMed  Google Scholar 

  • Haacke EM, Brown RW, Thompson MR, Venkatesan R. Magnetic resonance imaging: physical principles and sequence design. New York: John Wiley & Sons; 1999.

    Google Scholar 

  • Haacke EM, Xu Y, Cheng YC, Reichenbach JR. Susceptibility weighted imaging (SWI). Magn Reson Med. 2004;52:612–8.

    Article  PubMed  Google Scholar 

  • Haacke EM, Liu S, Buch S, Zheng W, Wu D, Ye Y. Quantitative susceptibility mapping: current status and future directions. Magn Reson Imaging. 2015;33:1–25.

    Article  PubMed  Google Scholar 

  • Haase A. Snapshot FLASH MRI. Applications to T1, T2 and chemical shift imaging. Magn Reson Med. 1990;13:77–89.

    Article  CAS  PubMed  Google Scholar 

  • Hahn E. Spin echoes. Phys Rev. 1950;80:580–94.

    Article  Google Scholar 

  • Heemskerk AM, Strijkers GJ, Vilanova A, Drost MR, Nicolay K. Determination of mouse skeletal muscle architecture using three-dimensional diffusion tensor imaging. Magn Reson Med. 2005;53:1333–40.

    Article  PubMed  Google Scholar 

  • Hennig J, Nauerth A, Friedburg H. RARE imaging: a fast imaging method for clinical MR. Magn Reson Med. 1986;3:823–33.

    Article  CAS  PubMed  Google Scholar 

  • Hsieh CY, Cheng YC, Neelavalli J, Haacke EM, Stafford RJ. An improved method for susceptibility and radius quantification of cylindrical objects from MRI. Magn Reson Imaging. 2015;33:420–36.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lauterbur PC. Image formation by induced local interactions: examples employing magnetic resonance. Nature. 1973;243:190–1.

    Article  Google Scholar 

  • Le Bihan D. Diffusion, confusion and functional MRI. Neuroimage. 2011;62:1131–6.

    Article  PubMed  Google Scholar 

  • Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology. 1988;168:497–505.

    Article  PubMed  Google Scholar 

  • Ljunggren S. A simple graphical representation of Fourier-based imaging methods. J Magn Reson. 1983;54:338–43.

    Google Scholar 

  • Lustig M, Donoho D, Pauly JM. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med. 2007;58:1182–95.

    Article  PubMed  Google Scholar 

  • Ma D, Gulani V, Seiberlich N, Liu K, Sunshine JL, Duerk JL, Griswold MA. Magnetic resonance fingerprinting. Nature. 2013;495:187–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mansfield P. Echo planar imaging by NMR. Br Med Bull. 1984;40:1987–90.

    Article  Google Scholar 

  • McMahom MT, Chan KWY. Developing MR probes for molecular imaging. Adv Cancer Res. 2014;124:297–327.

    Article  Google Scholar 

  • Moseley ME, Cohen Y, Kucharczyk J, Mintorovitch J, Asgari HS, Wendland MF, Tsuruda J, Norman D. Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system. Radiology. 1990;176:439–45.

    Article  CAS  PubMed  Google Scholar 

  • Overhauser AW. Polarization of nuclei in metals. Phys Rev. 1953;92:411–5.

    Article  CAS  Google Scholar 

  • Pauly JM, Le Roux P, Nishimura D, Macovski A. Parameter relations for the Shinnar-Le Roux selective excitation pulse design algorithm. IEEE Trans Med Imaging. 1991;10:53–65.

    Article  CAS  PubMed  Google Scholar 

  • Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med. 1999;42:952–62.

    Article  CAS  PubMed  Google Scholar 

  • Ratering D, Baltes C, Massner J, Marek D, Rudin M. Performance of a 200 MHz cryogenic RF probe designed for MRI and MRS of the murine brain. Magn Reson Med. 2008;69:1440–4.

    Article  CAS  Google Scholar 

  • Redfield AG. The theory of relaxation processes. Adv Magn Reson. 1965;1:1–32.

    Article  Google Scholar 

  • Schäfer A, Wharton S, Gowland P, Bowtell R. Using magnetic field simulation to study susceptibility-related phase contrast in gradient echo MRI. Neuroimage. 2009;48:126–37.

    Article  PubMed  Google Scholar 

  • Slichter CP. Principles of magnetic resonance. Berlin: Springer Verlag; 1978. p. 150.

    Book  Google Scholar 

  • Slichter CP. Principles of magnetic resonance. 3rd ed. New York: Springer Verlag; 1990.

    Book  Google Scholar 

  • Sodickson DK, Manning WJ. Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med. 1997;38:591–603.

    Article  CAS  PubMed  Google Scholar 

  • Stejskal EO, Tanner JE. Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys. 1965;42:288–92.

    Article  CAS  Google Scholar 

  • Stoeck CT, von Deuster C, Genet M, Atkinson D, Kozerke S. Second-order motion-compensated spin echo diffusion tensor imaging of the human heart. Magn Reson Med. 2016;75:1669–76. doi:10.1002/mrm.25784. [Epub ahead of print].

    Article  PubMed  Google Scholar 

  • Tuch DS, Reese TG, Wiegell MR, Makris N, Belliveau JW, Wedeen VJ. High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn Reson Med. 2002;48:577–82.

    Article  PubMed  Google Scholar 

  • Wangsness RK, Bloch F. The dynamical theory of nuclear induction. Phys Rev. 1953;89:728–39.

    Article  CAS  Google Scholar 

  • Wolff SD, Balaban RS. Magnetization transfer contrast (MTC) and tissue water proton relaxation in vivo. Magn Reson Med. 1989;10:135–44.

    Article  CAS  PubMed  Google Scholar 

MR Contrast Agents

In Vivo Magnetic Resonance Imaging and Spectroscopy with Hyperpolarized Agents

  • Abragam A, Goldman M. Principles of dynamic nuclear-polarization. Rep Prog Phys. 1978;41(3):395–467.

    Article  CAS  Google Scholar 

  • Adams RW, Aguilar JA, Atkinson KD, Cowley MJ, Elliott PIP, Duckett SB, et al. Reversible interactions with Para-hydrogen enhance NMR sensitivity by polarization transfer. Science. 2009b;323(5922):1708–11.

    Article  CAS  PubMed  Google Scholar 

  • Adams RW, Duckett SB, Green RA, Williamson DC, Green GGR. A theoretical basis for spontaneous polarization transfer in non-hydrogenative parahydrogen-induced polarization. J Chem Phys. 2009c;131(19):194505–15.

    Article  PubMed  CAS  Google Scholar 

  • Adriany G, Gruetter R. A half-volume coil for efficient proton decoupling in humans at 4 Tesla. J Magn Reson. 1997;125(1):178–84.

    Article  CAS  PubMed  Google Scholar 

  • Agraz J, Grunfeld A, Cunningham K, Li D, Wagner S. Improved PHIP polarization using a precision, low noise, voltage controlled current source. J Magn Reson. 2013;235:77–84.

    Article  CAS  PubMed  Google Scholar 

  • Allouche-Arnon H, Lerche MH, Karlsson M, Lenkinski RE, Katz-Brull R. Deuteration of a molecular probe for DNP hyperpolarization – a new approach and validation for choline chloride. Contrast Media Mol Imaging. 2011;6(6):499–506.

    Article  CAS  PubMed  Google Scholar 

  • Ardenkjær-Larsen JH, Fridlund B, Gram A, Hansson G, Hansson L, Lerche MH, et al. Increase in signal-to-noise ratio of > 10,000 times in liquid-state NMR. Proc Natl Acad Sci. 2003c;100(18):10158–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ardenkjaer-Larsen J-H, Golman K, Brindle KM. Hyperpolarized 13C magnetic resonance imaging – principles and applications. In: Weissleder R, Ross, Rehemtulla A, Gambhir SS, editors. Molecular imaging: principles and practice. Shelton: PMPH-USA; 2010.

    Google Scholar 

  • Ardenkjaer-Larsen JH, Johannesson H, Petersson JS, Wolber J. Hyperpolarized molecules in solutions. In: Faber C, Schroeder L, editors. In vivo MR imaging: methods and protocols. Methods in molecular biology. New York: Springer; 2011a.

    Google Scholar 

  • Ardenkjaer-Larsen JH, Johanneson H, Petersson JS, Wolber J. Applications of hyperpolarized agents in solutions. In: Faber C, Schroeder L, editors. Methods in molecular biology. New York: Springer; 2011b.

    Google Scholar 

  • Ardenkjaer-Larsen JH, Leach AM, Clarke N, Urbahn J, Anderson D, Skloss TW. Dynamic nuclear polarization polarizer for sterile use intent. NMR Biomed. 2011c;24(8):927–32.

    Article  CAS  PubMed  Google Scholar 

  • Bachert P, Bellemann ME, Layer G, Koch T, Semmler W, Lorenz W. In vivo 1H, 31P-{1H} and 13C-{1H} magnetic resonance spectroscopy of malignant histiocytoma and skeletal muscle tissue in man. NMR Biomed. 1992;5:161–70.

    Article  CAS  PubMed  Google Scholar 

  • Ball DR, Rowlands B, Dodd MS, Le Page L, Ball V, Carr CA, et al. Hyperpolarized butyrate: a metabolic probe of short chain fatty acid metabolism in the heart. Magn Reson Med Off J Soc Magn Reson Med Soc Magn Reson Med. 2014;71(5):1663–9.

    Article  CAS  Google Scholar 

  • Bär S, Lange T, Leibfritz D, Hennig J, von Elverfeldt D, Hövener J-B. On the spin order transfer from parahydrogen to another nucleus. J Magn Reson. 2012;225:25–35.

    Article  PubMed  CAS  Google Scholar 

  • Barskiy DA, Shchepin RV, Coffey AM, Theis T, Warren WS, Goodson BM, Chekmenev EY. Over 20% 15N hyperpolarization in under one minute for metronidazole, an antibiotic and hypoxia probe. J. Am. Chem. Soc. 2016;138:8080–83.

    Google Scholar 

  • Bastiaansen JAM, Cheng T, Mishkovsky M, Duarte JMN, Comment A, Gruetter R. In vivo enzymatic activity of acetylCoA synthetase in skeletal muscle revealed by 13C turnover from hyperpolarized [1-13C]acetate to [1-13C]acetylcarnitine. Biochim Biophys Acta BBA Gen Subj. 2013;1830(8):4171–8.

    Article  CAS  Google Scholar 

  • Bastiaansen JAM, Yoshihara HAI, Takado Y, Gruetter R, Comment A. Hyperpolarized 13C lactate as a substrate for in vivo metabolic studies in skeletal muscle. Metabolomics. 2014;6:1–9.

    Google Scholar 

  • Bastiaansen JAM, Cheng T, Lei H, Gruetter R and Comment A. Direct noninvasive estimation of myocardial tricarboxylic acid cycle flux in vivo using hyperpolarized 13C magnetic resonance. Journal of Molecular and Cellular Cardiology. 2015;87:129–37.

    Google Scholar 

  • Bastiaansen JAM, Merritt M, Comment A. Measuring changes in substrate utilization in the myocardium in response to fasting using hyperpolarized [1-13C]butyrate and [1-13C]pyruvate. Scientific Reports. 2016; 6:25573. doi:10.1038/srep25573.

    Google Scholar 

  • Batel M, Krajewski M, Weiss K, With O, Däpp A, Hunkeler A, et al. A multi-sample 94 GHz dissolution dynamic-nuclear-polarization system. J Magn Reson. 2012;214:166–74.

    Article  CAS  PubMed  Google Scholar 

  • Beeson H, Woods S. Guide for hydrogen hazards analysis on components and systems. NASA Johns space cent tex 77058-3696. 2003;TP-WSTF-937.

    Google Scholar 

  • Bhattacharya P, Chekmenev EY, Reynolds WF, Wagner S, Zacharias N, Chan HR, et al. Parahydrogen-induced polarization (PHIP) hyperpolarized MR receptor imaging in vivo: a pilot study of 13C imaging of atheroma in mice. NMR Biomed. 2011b;24(8):1023–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonhoeffer KF, Harteck P. Characteristics of parahydrogen. Z Elektrochem Angew Phys Chem. 1929;35:621–3.

    CAS  Google Scholar 

  • Borowiak R, Schwaderlapp N, Huethe F, Fischer E, Lickert T, Bär S, et al. A battery-driven, low-field NMR unit for thermally and hyperpolarized samples. Magn Reson Mater Phys Biol Med. 2013;26(5):491–9.

    Article  Google Scholar 

  • Bowers CR. Sensitivity enhancement utilizing parahydrogen. Encyclopedia of magnetic resonance [Internet]. John Wiley & Sons, Ltd; 2007 [cited 2013 Jan 23]. Available from: http://onlinelibrary.wiley.com/doi/10.1002/9780470034590.emrstm0489/abstract.

  • Bowers CR, Weitekamp DP. Transformation of symmetrization order to nuclear-spin magnetization by chemical reaction and nuclear magnetic resonance. Phys Rev Lett. 1986;57(21):2645–8.

    Article  CAS  PubMed  Google Scholar 

  • Bowers CR, Weitekamp DP. Para-hydrogen and synthesis allow dramatically enhanced nuclear alignment. J Am Chem Soc. 1987;109(18):5541–2.

    Article  CAS  Google Scholar 

  • Bretthorst GL. Bayesian analysis. I. Parameter estimation using quadrature NMR models. J Magn Reson 1969. 1990;88(3):533–51.

    CAS  Google Scholar 

  • Cai C, Coffey AM, Shchepin RV, Chekmenev EY, Waddell KW. Efficient transformation of parahydrogen spin order into heteronuclear magnetization. J Phys Chem B. 2013;117(5):1219–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canet D, Aroulanda C, Mutzenhardt P, Aime S, Gobetto R, Reineri F. Para-hydrogen enrichment and hyperpolarization. Concepts Magn Reson A. 2006;28A(5):321–30.

    Article  CAS  Google Scholar 

  • Cassidy MC, Chan HR, Ross BD, Bhattacharya PK, Marcus CM. In vivo magnetic resonance imaging of hyperpolarized silicon particles. Nat Nanotechnol. 2013;8(5):363–8.

    Article  CAS  PubMed  Google Scholar 

  • Chekmenev EY, Hövener J, Norton VA, Harris K, Batchelder LS, Bhattacharya P, et al. PASADENA hyperpolarization of succinic acid for MRI and NMR spectroscopy. J Am Chem Soc. 2008b;130(13):4212–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chekmenev EY, Chow SK, Tofan D, Weitekamp DP, Ross BD, Bhattacharya P. Fluorine-19 NMR chemical shift probes molecular binding to lipid membranes. J Phys Chem. 2008c;112:6285–7.

    Article  CAS  Google Scholar 

  • Chen AP, Albers MJ, Cunningham CH, Kohler SJ, Yen Y-F, Hurd RE, et al. Hyperpolarized C-13 spectroscopic imaging of the TRAMP mouse at 3T—Initial experience. Magn Reson Med. 2007b;58(6):1099–106.

    Article  CAS  PubMed  Google Scholar 

  • Chen AP, Kurhanewicz J, Bok R, Xu D, Joun D, Zhang V, et al. Feasibility of using hyperpolarized [1-13C]lactate as a substrate for in vivo metabolic 13C MRSI studies. Magn Reson Imaging. 2008b;26(6):721–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng T, Capozzi A, Takado Y, Balzan R, Comment A. Over 35% liquid-state 13C polarization obtained via dissolution dynamic nuclear polarization at 7 T and 1 K using ubiquitous nitroxyl radicals. Phys Chem Chem Phys. 2013a;15(48):20819–22.

    Article  CAS  PubMed  Google Scholar 

  • Cheng T, Mishkovsky M, Bastiaansen JAM, Ouari O, Hautle P, Tordo P, et al. Automated transfer and injection of hyperpolarized molecules with polarization measurement prior to in vivo NMR. NMR Biomed. 2013b;26(11):1582–8.

    Article  CAS  PubMed  Google Scholar 

  • Chiavazza E, Kubala E, Gringeri CV, Düwel S, Durst M, Schulte RF, et al. Earth’s magnetic field enabled scalar coupling relaxation of 13C nuclei bound to fast-relaxing quadrupolar 14N in amide groups. J Magn Reson San Diego Calif 1997. 2013;227:35–8.

    CAS  Google Scholar 

  • Coffey AM, Kovtunov KV, Barskiy DA, Koptyug IV, Shchepin RV, Waddell KW, et al. High-resolution low-field molecular magnetic resonance imaging of hyperpolarized liquids. Anal Chem. 2014;86(18):9042–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coffey AM, Shchepin RV, Truong ML, Wilkens K, Pham W, Chekmenev EY. Open-source automated parahydrogen hyperpolarizer for molecular imaging using 13C metabolic contrast agents. Anal Chem. 2016;88:8279–88.

    Google Scholar 

  • Comment A. Chapter 9 hyperpolarization: concepts, techniques and applications. New applications of NMR in drug discovery and development [Internet]. 2013 [cited 2015 Jan 1]. Available from: http://pubs.rsc.org/en/content/chapter/bk9781849734448-00252/978-1-84973-444-8.

  • Comment A, Merritt ME. Hyperpolarized magnetic resonance as a sensitive detector of metabolic function. Biochemistry (Mosc). 2014;53(47):7333–57.

    Article  CAS  Google Scholar 

  • Comment A, van den Brandt B, Uffmann K, Kurdzesau F, Jannin S, Konter JA, et al. Design and performance of a DNP prepolarizer coupled to a rodent MRI scanner. Concepts Magn Reson Part B Magn Reson Eng. 2007b;31B(4):255–69.

    Article  CAS  Google Scholar 

  • Comment A, van den Brandt B, Uffmann K, Kurdzesau F, Jannin S, Konter JA, et al. Principles of operation of a DNP prepolarizer coupled to a rodent MRI scanner. Appl Magn Reson. 2008;34(3-4):313–9.

    Article  CAS  Google Scholar 

  • Cowley MJ, Adams RW, Atkinson KD, Cockett MCR, Duckett SB, Green GGR, et al. Iridium N-Heterocyclic carbene complexes as efficient catalysts for magnetization transfer from para-hydrogen. J Am Chem Soc. 2011;133(16):6134–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cunningham CH, Lau JY, Chen AP, Geraghty BJ, Perks WJ, Roifman I, Wright GA, Connelly KA. Hyperpolarized 13C metabolic MRI of the human heart: initial experience. Circulation Research 2016:CIRCRESAHA.116.309769.

    Google Scholar 

  • Cunningham CH, Chen AP, Albers MJ, Kurhanewicz J, Hurd RE, Yen Y-F, et al. Double spin-echo sequence for rapid spectroscopic imaging of hyperpolarized 13C. J Magn Reson. 2007;187(2):357–62.

    Article  CAS  PubMed  Google Scholar 

  • Davies B, Morris T. Physiological parameters in laboratory animals and humans. Pharm Res. 1993;10(7):1093–5.

    Article  CAS  PubMed  Google Scholar 

  • Day SE, Kettunen MI, Gallagher FA, Hu D-E, Lerche M, Wolber J, et al. Detecting tumor response to treatment using hyperpolarized 13C magnetic resonance imaging and spectroscopy. Nat Med. 2007b;13(11):1382–7.

    Article  CAS  PubMed  Google Scholar 

  • Dementyev AE, Cory DG, Ramanathan C. Dynamic nuclear polarization in silicon microparticles. Phys Rev Lett. 2008;100(12):127601.

    Article  CAS  PubMed  Google Scholar 

  • Diehl K-H, Hull R, Morton D, Pfister R, Rabemampianina Y, Smith D, et al. A good practice guide to the administration of substances and removal of blood, including routes and volumes. J Appl Toxicol. 2001;21(1):15–23.

    Article  CAS  PubMed  Google Scholar 

  • Duarte JMN, Gruetter R. Glutamatergic and GABAergic energy metabolism measured in the rat brain by 13C NMR spectroscopy at 14.1 T. J Neurochem. 2013;126(5):579–90.

    Article  CAS  PubMed  Google Scholar 

  • Duckett SB, Sleigh CJ. Applications of the parahydrogen phenomenon: a chemical perspective. Prog Nucl Magn Reson Spectrosc. 1999;34(1):71–92.

    Google Scholar 

  • Duckett SB, Mewis RE. Application of parahydrogen induced polarization techniques in NMR spectroscopy and imaging. Acc Chem Res. 2012;45(8):1247–57.

    Article  CAS  PubMed  Google Scholar 

  • Durst M, Koellisch U, Frank A, Rancan G, Gringeri CV, Karas V, Wiesinger F, Menzel MI, Schwaiger M, Haase A, Schulte RF. Comparison of acquisition schemes for hyperpolarised 13C imaging. NMR Biomed. 2015;28:715–25.

    Google Scholar 

  • Eisenschmid TC, Kirss RU, Deutsch PP, Hommeltoft SI, Eisenberg R, Bargon J, et al. parahydrogen induced polarization in hydrogenation reactions. J Am Chem Soc. 1987;109(26):8089–91.

    Article  CAS  Google Scholar 

  • Emondts M, Ledbetter MP, Pustelny S, Theis T, Patton B, Blanchard JW, et al. Long-lived heteronuclear spin-singlet states in liquids at a zero magnetic field. Phys Rev Lett. 2014;112(7):077601.

    Article  CAS  PubMed  Google Scholar 

  • Evelhoch JL, Crowley MG, Ackerman JJH. Signal-to-noise optimization and observed volume localization with circular surface coils. J Magn Reson 1969. 1984;56(1):110–24.

    CAS  Google Scholar 

  • Farkas A. The thermal parahydrogen conversion. Z Phys Chem B Chem Elem Aufbau Mater. 1930;10(6):419–33.

    CAS  Google Scholar 

  • Feng B, Coffey A, Colon R, Chekmenev EY, Waddell K. A pulsed injection parahydrogen generator and techniques for quantifying enrichment. J Magn Reson. 2012a;214:258–62.

    Article  CAS  PubMed  Google Scholar 

  • Feng Y, Davis RM, Warren WS. Accessing long-lived nuclear singlet states between chemically equivalent spins without breaking symmetry. Nat Phys. 2012b;8(11):831–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freundlich A, Bhattacharya P, Techy G, Ward B, Ingram M, Ross BD. Rapid toxicity screening of novel PASADENA MRI contrast agents. Proc Intl Soc Mag Reson Med 14. Seattle; 2006.

    Google Scholar 

  • Gallagher FA, Kettunen MI, Day SE, Hu D-E, Ardenkjær-Larsen JH, Zandt R, et al. Magnetic resonance imaging of pH in vivo using hyperpolarized 13C-labelled bicarbonate. Nature. 2008c;453(7197):940–3.

    Article  CAS  PubMed  Google Scholar 

  • Gallagher FA, Kettunen MI, Hu D-E, Jensen PR, Zandt R, Karlsson M, et al. Production of hyperpolarized [1,4-13C2]malate from [1,4-13C2]fumarate is a marker of cell necrosis and treatment response in tumors. Proc Natl Acad Sci. 2009;106(47):19801–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gamliel A, Allouche-Arnon H, Nalbandian R, Barzilay C, Gomori J, Katz-Brull R. An apparatus for production of isotopically and spin-enriched hydrogen for induced polarization studies. Appl Magn Reson. 2010;39(4):329–45.

    Article  CAS  Google Scholar 

  • Glöggler S, Grunfeld AM, Ertas YN, McCormick J, Wagner S, Schleker PPM, et al. A nanoparticle catalyst for heterogeneous phase para-hydrogen-induced polarization in water. Angew Chem Int Ed. 2015;54:1–6.

    Article  CAS  Google Scholar 

  • Goldman M, Johannesson H. Conversion of a proton pair para order into C-13 polarization by rf irradiation, for use in MRI. Comptes Rendus Phys. 2005b;6(4-5):575–81.

    Article  CAS  Google Scholar 

  • Goldman M, Jóhannesson H, Axelsson O, Karlsson M. Hyperpolarization of 13C through order transfer from parahydrogen: a new contrast agent for MRI. Magn Reson Imaging. 2005b;23(2):153–7.

    Article  CAS  PubMed  Google Scholar 

  • Goldman M, Johannesson H, Axelsson O, Karlsson M. Design and implementation of C-13 hyperpolarization from para-hydrogen, for new MRI contrast agents. Comptes Rendus Chim. 2006;9(3-4):357–63.

    Article  CAS  Google Scholar 

  • Golman K, Axelsson O, Jóhannesson H, Månsson S, Olofsson C, Petersson JS. parahydrogen-induced polarization in imaging: subsecond 13C angiography. Magn Reson Med. 2001b;46(1):1–5.

    Article  CAS  PubMed  Google Scholar 

  • Golman K, Axelsson O, Johanneson H, Olofsson C, Mansson S, Petersson S. Para-hydrogen labelled agents and their use in magnetic resonance imaging [Internet]. 6574495, 2003a [cited 2012 Oct 29]. Available from: http://www.google.com/patents/US6574495.

  • Golman K, Olsson LE, Axelsson O, Mansson S, Karlsson M, Petersson JS. Molecular imaging using hyperpolarized 13C. Br J Radiol. 2003b;76:118–27.

    Article  CAS  Google Scholar 

  • Golman K, Zandt R, Thaning M. Real-time metabolic imaging. Proc Natl Acad Sci U S A. 2006b;103(30):11270–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golman K, Zandt R, Lerche M, Pehrson R, Ardenkjaer-Larsen JH. Metabolic imaging by hyperpolarized C-13 magnetic resonance imaging for in vivo tumor diagnosis. Cancer Res. 2006c;66(22):10855–60.

    Article  CAS  PubMed  Google Scholar 

  • Grant AK, Vinogradov E, Wang X, Lenkinski RE, Alsop DC. Perfusion imaging with a freely diffusible hyperpolarized contrast agent. Magn Reson Med. 2011;66(3):746–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gruetter R, Tkáč I. Field mapping without reference scan using asymmetric echo-planar techniques. Magn Reson Med. 2000;43(2):319–23.

    Article  CAS  PubMed  Google Scholar 

  • Haake M, Natterer J, Bargon J. Efficient NMR pulse sequences to transfer the parahydrogen-induced polarization to hetero nuclei. J Am Chem Soc. 1996;118(36):8688–91.

    Article  CAS  Google Scholar 

  • Happer W. Optical pumping. Rev Mod Phys. 1972;44(2):169–249.

    Article  CAS  Google Scholar 

  • Harrison C, Yang C, Jindal A, DeBerardinis RJ, Hooshyar MA, Merritt M, et al. Comparison of kinetic models for analysis of pyruvate-to-lactate exchange by hyperpolarized 13C NMR. NMR Biomed. 2012;25(11):1286–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirsch ML, Kalechofsky N, Belzer A, Rosay M, Kempf JG. Brute-force hyperpolarization for NMR and MRI. J Am Chem Soc. 2015;137:8428–34.

    Google Scholar 

  • Hommeltoft SI, Berry DH, Eisenberg R. A metal-centered radical-pair mechanism for alkyne hydrogenation with a binuclear rhodium hydride complex – CIDNP without organic radicals. J Am Chem Soc. 1986;108(17):5345–7.

    Article  CAS  Google Scholar 

  • Hövener J-B. Strategies to prolong the T1 time of hyperpolarized molecules. Proceedings of the 16th annual meeting of ISMRM. Toronto; 2008. p. 336.

    Google Scholar 

  • Hövener J-B, Chekmenev EY, Harris KC, Perman WH, Tran TT, Ross BD, et al. Quality assurance of PASADENA hyperpolarization for 13C biomolecules. Magn Reson Mater Biol Phys Med. 2009a;22(2):123–34.

    Article  CAS  Google Scholar 

  • Hövener J-B, Chekmenev E, Harris K, Perman W, Robertson L, Ross B, et al. PASADENA hyperpolarization of 13C biomolecules: equipment design and installation. Magn Reson Mater Phys Biol Med. 2009b;22(2):111–21.

    Article  CAS  Google Scholar 

  • Hövener J-B, Bär S, Leupold J, Jenne K, Leibfritz D, Hennig J, et al. A continuous-flow, high-throughput, high-pressure parahydrogen converter for hyperpolarization in a clinical setting. NMR Biomed. 2013a;26(2):124–31.

    Article  PubMed  CAS  Google Scholar 

  • Hövener J-B, Schwaderlapp N, Lickert T, Duckett SB, Mewis RE, Highton LAR, et al. A hyperpolarized equilibrium for magnetic resonance. Nat Commun [Internet]. 2013 December [cited 2013 Dec 16];4:2946. Available from: http://www.nature.com/ncomms/2013/131216/ncomms3946/full/ncomms3946.html.

  • Hövener J-B, Knecht S, Schwaderlapp N, Hennig J, von Elverfeldt D. Continuous re-hyperpolarization of nuclear spins using parahydrogen: theory and experiment. Chemphyschem. 2014a;15:2451–7.

    Article  PubMed  CAS  Google Scholar 

  • Hövener J-B, Schwaderlapp N, Borowiak R, Lickert T, Duckett SB, Mewis RE, et al. Toward biocompatible nuclear hyperpolarization using signal amplification by reversible exchange: quantitative in situ spectroscopy and high-field imaging. Anal Chem. 2014b;86(3):1767–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hu S, Larson PEZ, VanCriekinge M, Leach AM, Park I, Leon C, et al. Rapid sequential injections of hyperpolarized [1-13C]pyruvate in vivo using a sub-kelvin, multi-sample DNP polarizer. Magn Reson Imaging. 2013;31(4):490–6.

    Article  PubMed  CAS  Google Scholar 

  • Hund F. On the explanation of molecular spectra I. Z Phys. 1927;40(10):742–64.

    Article  CAS  Google Scholar 

  • Hurd RE, Yen Y-F, Chen A, Ardenkjaer-Larsen JH. Hyperpolarized 13C metabolic imaging using dissolution dynamic nuclear polarization. J Magn Reson Imaging. 2012;36(6):1314–28.

    Article  PubMed  Google Scholar 

  • Invento. Parahyperpol, [Internet]. Available from: http://www.invento-lab.com/ParaHyperpol.html.

  • Jannin S, Comment A, Kurdzesau F, Konter JA, Hautle P, van den Brandt B, et al. A 140GHz prepolarizer for dissolution dynamic nuclear polarization. J Chem Phys. 2008;128(24):241102.

    Article  CAS  PubMed  Google Scholar 

  • Jensen PR, Peitersen T, Karlsson M, Zandt R, Gisselsson A, Hansson G, et al. Tissue-specific short chain fatty acid metabolism and slow metabolic recovery after ischemia from hyperpolarized NMR in vivo. J Biol Chem. 2009;284(52):36077–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jindal AK, Merritt ME, Suh EH, Malloy CR, Sherry AD, Kovács Z. Hyperpolarized 89Y complexes as pH sensitive NMR probes. J Am Chem Soc. 2010;132(6):1784–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johannesson H, Axelsson O, Karlsson M. Transfer of para-hydrogen spin order into polarization by diabetic field cycling. C R Phys. 2004b;5(3):315–24.

    Article  CAS  Google Scholar 

  • Jóhannesson H, Macholl S, Ardenkjaer-Larsen JH. Dynamic nuclear polarization of [1-13C]pyruvic acid at 4.6 tesla. J Magn Reson. 2009;197(2):167–75.

    Article  PubMed  CAS  Google Scholar 

  • Johansson E, Månsson S, Wirestam R, Svensson J, Petersson JS, Golman K, et al. Cerebral perfusion assessment by bolus tracking using hyperpolarized 13C. Magn Reson Med. 2004b;51(3):464–72.

    Article  CAS  PubMed  Google Scholar 

  • Johnson RT, Paulson DN, Giffard RP, Wheatley JC. Bulk nuclear polarization of solid3He. J Low Temp Phys. 1973;10(1-2):35–58.

    Article  CAS  Google Scholar 

  • Josan S, Yen Y-F, Hurd R, Pfefferbaum A, Spielman D, Mayer D. Application of double spin-echo spiral chemical shift imaging to rapid metabolic mapping of hyperpolarized [1-13C]-pyruvate. J Magn Reson San Diego Calif 1997. 2011;209(2):332–6.

    CAS  Google Scholar 

  • Kadlecek S, Emami K, Ishii M, Rizi R. Optimal transfer of spin-order between a singlet nuclear pair and a heteronucleus. J Magn Reson. 2010;205(1):9–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kadlecek S, Vahdat V, Nakayama T, Ng D, Emami K, Rizi R. A simple and low-cost device for generating hyperpolarized contrast agents using parahydrogen. NMR Biomed. 2011;24(8):933–42.

    Article  CAS  PubMed  Google Scholar 

  • Keshari KR, Wilson DM. Chemistry and biochemistry of 13C hyperpolarized magnetic resonance using dynamic nuclear polarization. Chem Soc Rev. 2014;43(5):1627–59.

    Article  CAS  PubMed  Google Scholar 

  • Keshari KR, Kurhanewicz J, Bok R, Larson PEZ, Vigneron DB, Wilson DM. Hyperpolarized 13C dehydroascorbate as an endogenous redox sensor for in vivo metabolic imaging. Proc Natl Acad Sci. 2011b;108(46):18606–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khegai O, Schulte RF, Janich MA, Menzel MI, Farrell E, Otto AM, et al. Apparent rate constant mapping using hyperpolarized [1-(13)C]pyruvate. NMR Biomed. 2014;27(10):1256–65.

    Article  CAS  PubMed  Google Scholar 

  • Kinrade SD, Swaddle TW. Mechanisms of longitudinal silicon-29 nuclear magnetic relaxation in aqueous alkali-metal silicate solutions. J Am Chem Soc. 1986;108(23):7159–62.

    Article  CAS  Google Scholar 

  • Koellisch U, Gringeri CV, Rancan G, Farell EV, Menzel MI, Haase A, et al. Metabolic imaging of hyperpolarized [1-13C]acetate and [1-13C]acetylcarnitine - investigation of the influence of dobutamine induced stress. Magn Reson Med. 2015;74:1011–8.

    Article  CAS  PubMed  Google Scholar 

  • Kohler SJ, Yen Y, Wolber J, Chen AP, Albers MJ, Bok R, et al. In vivo 13carbon metabolic imaging at 3T with hyperpolarized 13C-1-pyruvate. Magn Reson Med. 2007;58(1):65–9.

    Article  CAS  PubMed  Google Scholar 

  • Koptyug IV, Kovtunov KV, Burt SR, Anwar MS, Hilty C, Han S-I, et al. para-hydrogen-induced polarization in heterogeneous hydrogenation reactions. J Am Chem Soc. 2007;129(17):5580–6.

    Article  CAS  PubMed  Google Scholar 

  • Koptyug IV, Zhivonitko VV, Kovtunov KV. New perspectives for parahydrogen-induced polarization in liquid phase heterogeneous hydrogenation: an aqueous phase and ALTADENA study. Chemphyschem. 2010;11(14):3086–8.

    Article  CAS  PubMed  Google Scholar 

  • Kovtunov KV, Beck IE, Bukhtiyarov VI, Koptyug IV. Observation of parahydrogen-induced polarization in heterogeneous hydrogenation on supported metal catalysts. Angew Chem Int Ed. 2008;47(8):1492–5.

    Article  CAS  Google Scholar 

  • Kovtunov KV, Koptyug IV. Parahydrogen-induced polarization in heterogeneous catalytic hydrogenations. In: Codd SL, Seymour JD, editors. Magnetic resonance microscopy [Internet]. Wiley-VCH Verlag GmbH & Co. KGaA; 2009 [cited 22 Mar 2013]. p. 99–115. Available from: http://onlinelibrary.wiley.com/doi/10.1002/9783527626052.ch7/summary.

  • Kurhanewicz J, Vigneron DB, Brindle K, Chekmenev EY, Comment A, Cunningham CH, et al. Analysis of cancer metabolism by imaging hyperpolarized nuclei: prospects for translation to clinical research. Neoplasia N Y N. 2011;13(2):81–97.

    Article  CAS  Google Scholar 

  • Larson PE, Kerr AB, Chen AP, Lustig MS, Zierhut ML, Hu S, et al. Multiband excitation pulses for hyperpolarized 13C dynamic chemical-shift imaging. J Magn Reson. 2008b;194(1):121–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lego D, Plaumann M, Trantzschel T, Bargon J, Scheich H, Buntkowsky G, et al. Parahydrogen-induced polarization of carboxylic acids: a pilot study of valproic acid and related structures. NMR Biomed. 2014;27(7):810–6.

    Article  CAS  PubMed  Google Scholar 

  • Leupold J, Månsson S, Petersson JS, Hennig J, Wieben O. Fast multiecho balanced SSFP metabolite mapping of 1H and hyperpolarized 13C compounds. Magn Reson Mater Phys Biol Med. 2009;22(4):251–6.

    Article  CAS  Google Scholar 

  • Lickert T, Schwaderlapp N, Bär S, Leupold J, Hennig J, Korvink J, et al. 13C-hyperpolarization by transferring parahydrogen spin order on a 7 T MRI-system. 16 Jahrestagung der DS ISMRM. Freiburg, Germany; 2013.

    Google Scholar 

  • Lingwood MD, Siaw TA, Sailasuta N, Abulseoud OA, Chan HR, Ross BD, et al. Hyperpolarized water as an MR imaging contrast agent: feasibility of in vivo imaging in a Rat model. Radiology. 2012;265(2):418–25.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lumata LL, Martin R, Jindal AK, Kovacs Z, Conradi MS, Merritt ME. Development and performance of a 129-GHz dynamic nuclear polarizer in an ultra-wide bore superconducting magnet. Magn Reson Mater Phys Biol Med. 2014;14:1–11.

    Google Scholar 

  • Mayer D, Levin YS, Hurd RE, Glover GH, Spielman DM. Fast metabolic imaging of systems with sparse spectra: application for hyperpolarized 13C imaging. Magn Reson Med Off J Soc Magn Reson Med Soc Magn Reson Med. 2006;56(4):932–7.

    Article  Google Scholar 

  • Mayer D, Yen Y-F, Josan S, Park JM, Pfefferbaum A, Hurd RE, et al. Application of hyperpolarized [1-13C]lactate for the in vivo investigation of cardiac metabolism. NMR Biomed. 2012b;25(10):1119–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCarney ER, Armstrong BD, Lingwood MD, Han S. Hyperpolarized water as an authentic magnetic resonance imaging contrast agent. Proc Natl Acad Sci. 2007;104(6):1754–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McRobbie DW, Moore EA, Graves MJ, Prince MR. MRI from picture to proton. New York: Cambridge University Press; 2006. p. 416.

    Book  Google Scholar 

  • Merritt ME, Harrison C, Storey C, Jeffrey FM, Sherry AD, Malloy CR. Hyperpolarized 13C allows a direct measure of flux through a single enzyme-catalyzed step by NMR. Proc Natl Acad Sci. 2007c;104(50):19773–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mewis RE, Atkinson KD, Cowley MJ, Duckett SB, Green GGR, Green RA, et al. Probing signal amplification by reversible exchange using an NMR flow system. Magn Reson Chem. 2014;52:358–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nabuurs C, Huijbregts B, Wieringa B, Hilbers CW, Heerschap A. 31P saturation transfer spectroscopy predicts differential intracellular macromolecular association of ATP and ADP in skeletal muscle. J Biol Chem. 2010;285(51):39588–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naressi A, Couturier C, Devos JM, Mangeat C, de Beer R, Graveron-Demilly D. Java-based graphical user interface for the MRUI quantitation package. Magn Reson Mater Biol Phys Med. 2001;2-3:141–52.

    Article  Google Scholar 

  • Natterer J, Bargon J. Parahydrogen induced polarization. Prog Nucl Magn Reson Spectrosc. 1997;31:293–315.

    Article  Google Scholar 

  • Nelson SJ, Kurhanewicz J, Vigneron DB, Larson PEZ, Harzstark AL, Ferrone M, et al. Metabolic imaging of patients with prostate cancer using hyperpolarized [1-13C]Pyruvate. Sci Transl Med. 2013b;5(198):198ra108.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nelson SJ, Ozhinsky E, Li Y, Park IW, Crane J. Strategies for rapid in vivo 1H and hyperpolarized 13C MR spectroscopic imaging. J Magn Reson San Diego Calif 1997. 2013c;229:187–97.

    CAS  Google Scholar 

  • Nonaka H, Hata R, Doura T, Nishihara T, Kumagai K, Akakabe M, et al. A platform for designing hyperpolarized magnetic resonance chemical probes. Nat Commun [Internet]. 2013 [cited 2013 Nov 8];4:2411. Available from: http://www.nature.com/ncomms/2013/130911/ncomms3411/full/ncomms3411.html.

  • Norton VA. Efficient generation of hyperpolarized molecules utilizing the scalar order of parahydrogen [Internet] [phd]. California Institute of Technology; 2010 [cited 2014 Mar 4]. Available from: http://resolver.caltech.edu/CaltechTHESIS:05212010-154212167.

  • Olsson LE, Chai C-M, Axelsson O, Karlsson M, Golman K, Petersson JS. MR coronary angiography in pigs with intraarterial injections of a hyperpolarized 13C substance. Magn Reson Med. 2006;55(4):731–7.

    Article  PubMed  Google Scholar 

  • Pfeuffer J, Tkáč I, Provencher SW, Gruetter R. Toward an in vivo neurochemical profile: quantification of 18 metabolites in short-echo-time 1H NMR spectra of the rat brain. J Magn Reson. 1999;141(1):104–20.

    Article  CAS  PubMed  Google Scholar 

  • Pileio G, Levitt MH. Theory of long-lived nuclear spin states in solution nuclear magnetic resonance. II. Singlet spin locking. J Chem Phys. 2009;130(21):214501 – 14.

    Article  PubMed  CAS  Google Scholar 

  • Pravica MG, Weitekamp DP. Net Nmr alignment by adiabatic transport of Para-hydrogen addition-products to high magnetic-field. Chem Phys Lett Chem Phys Lett. 1988;145(4):255–8.

    Article  CAS  Google Scholar 

  • Reineri F, Viale A, Giovenzana G, Santelia D, Dastru W, Gobetto R, et al. New hyperpolarized contrast agents for 13C-MRI from para-hydrogenation of oligooxyethylenic alkynes. J Am Chem Soc. 2008;130(45):15047–53.

    Article  CAS  PubMed  Google Scholar 

  • Reineri F, Santelia D, Viale A, Cerutti E, Poggi L, Tichy T, et al. Para-hydrogenated glucose derivatives as potential 13C-hyperpolarized probes for magnetic resonance imaging. J Am Chem Soc. 2010;132(20):7186–93.

    Article  CAS  PubMed  Google Scholar 

  • Reineri F, Viale A, Ellena S, Boi T, Daniele V, Gobetto R, et al. Use of labile precursors for the generation of hyperpolarized molecules from hydrogenation with parahydrogen and aqueous-phase extraction. Angew Chem Int Ed. 2011;50(32):7350–3.

    Article  CAS  Google Scholar 

  • Reineri F, Boi T, Aime S. ParaHydrogen induced polarization of 13C carboxylate resonance in acetate and pyruvate. Nat Commun. 2015;6:5858.

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues TB, Serrao EM, Kennedy BWC, Hu D-E, Kettunen MI, Brindle KM. Magnetic resonance imaging of tumor glycolysis using hyperpolarized 13C-labeled glucose. Nat Med. 2014;20(1):93–7.

    Article  CAS  PubMed  Google Scholar 

  • Roth M, Koch A, Kindervater P, Bargon J, Spiess HW, Munnemann K. (13)C hyperpolarization of a barbituric acid derivative via parahydrogen induced polarization. J Magn Reson. 2010;204(1):50–5.

    Article  CAS  PubMed  Google Scholar 

  • Rovedo P, Knecht S, Bäumlisberger T, Cremer AL, Duckett SB, Mewis RE, Green GGR, Burns M, Rayner PJ, Leibfritz D, Korvink JG, Hennig J, Pütz G, von Elverfeldt D, Hövener J-B. Molecular MRI in the earth’s magnetic field using continuous hyperpolarization of a biomolecule in water. J Phys Chem. B; 2016. doi:10.1021/acs.jpcb.6b02830.

  • Schlemmer H-PW, Sawatzki T, Sammet S, Dornacher I, Bachert P, van Kaick G, et al. Hepatic phospholipids in alcoholic liver disease assessed by proton-decoupled 31P magnetic resonance spectroscopy. J Hepatol. 2005;42(5):752–9.

    Article  PubMed  CAS  Google Scholar 

  • Scholz DJ, Janich MA, Köllisch U, Schulte RF, Ardenkjaer-Larsen JH, Frank A, et al. Quantified pH imaging with hyperpolarized 13C-bicarbonate. Magn Reson Med. 2015;73:2274–82.

    Article  CAS  PubMed  Google Scholar 

  • Schröder L, Lowery TJ, Hilty C, Wemmer DE, Pines A. Molecular imaging using a targeted magnetic resonance hyperpolarized biosensor. Science. 2006;314(5798):446–9.

    Article  PubMed  CAS  Google Scholar 

  • Schroeder MA, Atherton HJ, Cochlin LE, Clarke K, Radda GK, Tyler DJ. The effect of hyperpolarized tracer concentration on myocardial uptake and metabolism. Magn Reson Med. 2009b;61(5):1007–14.

    Article  CAS  PubMed  Google Scholar 

  • Shchepin RV, Coffey AM, Waddell KW, Chekmenev EY. PASADENA hyperpolarized 13C phospholactate. J Am Chem Soc. 2012;134(9):3957–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shchepin RV, Coffey AM, Waddell KW, Chekmenev EY. Parahydrogen induced polarization of 1-13C-Phospholactate-d2 for biomedical imaging with >30,000,000-fold NMR signal enhancement in water. Anal Chem. 2014c;86:5601–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi F, Coffey AM, Waddell KW, Chekmenev EY, Goodson BM. Heterogeneous solution NMR signal amplification by reversible exchange. Angew Chem. 2014;53:7495–8.

    Article  CAS  Google Scholar 

  • Sriram R, Kurhanewicz J, Vigneron DB. Hyperpolarized carbon-13 MRI and MRS studies. eMagRes [Internet]. John Wiley & Sons, Ltd; 2007 [cited 2015 Jan 5]. Available from: http://onlinelibrary.wiley.com/doi/10.1002/9780470034590.emrstm1253/abstract.

  • Tam S, Fajardo ME. Ortho/para hydrogen converter for rapid deposition matrix isolation spectroscopy. Rev Sci Instrum Rev Sci Instrum. 1999;70(4):1926–32.

    Article  CAS  Google Scholar 

  • Theis T, Truong M, Coffey AM, Chekmenev EY, Warren WS. LIGHT-SABRE enables efficient in-magnet catalytic hyperpolarization. J Magn Reson. 2014;248:23–6.

    Article  CAS  PubMed  Google Scholar 

  • Theis T, Truong ML, Coffey AM, Shchepin RV, Waddell KW, Shi F, et al. Microtesla SABRE enables 10% nitrogen-15 nuclear spin polarization. J Am Chem Soc [Internet]. 2015 [cited 2015 Jan 20];137:1404–7. Available from: http://dx.doi.org/10.1021/ja512242d.

  • Trantzschel T, Bernarding J, Plaumann M, Lego D, Gutmann T, Ratajczyk T, et al. Parahydrogen induced polarization in face of keto–enol tautomerism: proof of concept with hyperpolarized ethanol. Phys Chem Chem Phys. 2012;14(16):5601.

    Article  CAS  PubMed  Google Scholar 

  • Truong ML, Shi F, He P, Yuan B, Plunkett KN, Coffey AM, et al. Irreversible catalyst activation enables hyperpolarization and water solubility for NMR signal amplification by reversible exchange. J Phys Chem B. 2014;118(48):13882–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Heeswijk RB, Uffmann K, Comment A, Kurdzesau F, Perazzolo C, Cudalbu C, et al. Hyperpolarized lithium-6 as a sensor of nanomolar contrast agents. Magn Reson Med. 2009;61(6):1489–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vasos PR, Comment A, Sarkar R, Ahuja P, Jannin S, Ansermet J-P, et al. Long-lived states to sustain hyperpolarized magnetization. Proc Natl Acad Sci [Internet]. 2009 [cited 2013 Feb 18];106:18469–73. Available from: http://www.pnas.org/content/early/2009/10/16/0908123106.

  • Waddell KW, Coffey AM, Chekmenev EY. In situ detection of PHIP at 48 mT: demonstration using a centrally controlled polarizer. J Am Chem Soc. 2011;133(1):97–101.

    Article  CAS  PubMed  Google Scholar 

  • Wagner S. Conversion rate of para-hydrogen to ortho-hydrogen by oxygen: implications for PHIP gas storage and utilization. Magn Reson Mater Phys Biol Med. 2014;27(3):195–9.

    Article  CAS  Google Scholar 

  • Wiesinger F, Weidl E, Menzel MI, Janich MA, Khegai O, Glaser SJ, et al. IDEAL spiral CSI for dynamic metabolic MR imaging of hyperpolarized [1-13C]pyruvate. Magn Reson Med. 2012;68(1):8–16.

    Article  CAS  PubMed  Google Scholar 

  • Witney TH, Kettunen MI, Brindle KM. Kinetic modeling of hyperpolarized 13C label exchange between pyruvate and lactate in tumor cells. J Biol Chem. 2011;286(28):24572–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witte C, Schröder L. NMR of hyperpolarised probes. NMR Biomed. 2013;26(7):788–802.

    Article  PubMed  Google Scholar 

  • Xu V, Chan H, Lin A, Sailasuta N, Valencerina S, Tran T, et al. MR spectroscopy in diagnosis and neurological decision-making. Semin Neurol. 2008;28(4):407–22.

    Article  PubMed  Google Scholar 

  • Yoshihara H, Bastiaansen JAM, Karlsson M, Lerche M, Comment A, Schwitter J. Myocardial fatty acid metabolism probed with hyperpolarized [1-13C]octanoate. J Cardiovasc Magn Reson. 2015;17(Supp. 1):O101.

    Article  PubMed Central  Google Scholar 

  • Zacharias N, Chan H, Sailasuta N, Ross BD, Bhattacharya P. Real time molecular imaging of TCA cycle metabolism in vivo by hyperpolarized 1-13C diethyl succinate. J Am Chem Soc. 2012b;134(2):934–43.

    Article  CAS  PubMed  Google Scholar 

  • Zierhut ML, Yen Y-F, Chen AP, Bok R, Albers MJ, Zhang V, et al. Kinetic modeling of hyperpolarized 13C1-pyruvate metabolism in normal rats and TRAMP mice. J Magn Reson. 2010;202(1):85–92.

    Article  CAS  PubMed  Google Scholar 

MR Spectroscopy

  • Barker PB, Butterworth EJ, Boska MD, Nelson J, Welch KMA. Magnesium and pH imaging of the human brain at 3.0 tesla. Magn Reson Med. 1999;41:400–6.

    Article  CAS  PubMed  Google Scholar 

  • Bollard ME, Garrod S, Holmes E, Lindon JC, Humpfer E, Spraul M, Nicholson JK. High-resolution 1H and 1H-13C magic angle spinning NMR spectroscopy of rat liver. Magn Reson Med. 2000;44:201–7.

    Article  CAS  PubMed  Google Scholar 

  • Bottomley PA, Hardy CJ. Rapid, reliable in vivo assays of human phosphate metabolites by nuclear magnetic resonance. Clin Chem. 1989;35:392–5.

    CAS  PubMed  Google Scholar 

  • de Graaf R. In vivo NMR spectroscopy. New York: Wiley; 1998.

    Google Scholar 

  • Dong Z, Dreher W, Leibfritz D. Toward quantitative short-echo-time in vivo proton MR spectroscopy without water suppression. Magn Reson Med. 2006;55:1441–6.

    Article  CAS  PubMed  Google Scholar 

  • Neumann-Haefelin C, Kuhlmann J, Belz U, Kalisch J, Quint M, Gerl M, Juretschke P, Herling AW. Determinants of intramyocellular lipid concentrations in rat hind leg muscle. Magn Reson Med. 2003;50:242–8.

    Article  CAS  PubMed  Google Scholar 

  • Ordidge RJ, Connelly A, Lohmann JAB. Image-selected in vivo spectroscopy (ISIS). A new technique for spatially selective nmr spectroscopy. J Magn Reson. 1986;66:283–94.

    CAS  Google Scholar 

  • Pan DA, Lillioja S, Kriketos AD, Milner MR, Baur LA, Bogardus C, Jenkins AB, Storlien LH. Skeletal muscle triglyceride levels are inversely related to insulin action. Diabetes. 1997;46:983–8.

    Article  CAS  PubMed  Google Scholar 

  • Petroff OAC, Prichard JW, Behar KL, Alger JR, den Hollander JA, Shulman RG. Cerebral intracellular pH by 31P nuclear magnetic resonance spectroscopy. Neurology. 1985;35:781–8.

    Article  CAS  PubMed  Google Scholar 

  • Podo F. Tumour phospholipid metabolism. NMR Biomed. 1999;12(7):413–39.

    Article  CAS  PubMed  Google Scholar 

  • Renema WKJ, Schmidt A, van Asten JJA, Oerlemans F, Ullrich K, Wieringa B, Isbrandt D, Heerschap A. NMR spectroscopy of muscle and brain in guanidinoacetate methyltransferase (GAMT)-deficient mice: validation of an animal model to study creatine deficiency. Magn Reson Med. 2003;50:936–43.

    Article  CAS  PubMed  Google Scholar 

  • Street JC, Szwergold BS, Matei C, Kappler F, Koutcher JA. Study of the metabolism of choline and phosphatidylcholine in tumors in vivo using phosphonium-choline. MRM. 1997;3:769–75.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aileen Schroeter , Silvio Aime , Jan-Bernd Hövener or Silvio Aime .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Schroeter, A. et al. (2017). MRI. In: Kiessling, F., Pichler, B., Hauff, P. (eds) Small Animal Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-42202-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42202-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42200-8

  • Online ISBN: 978-3-319-42202-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics