Skip to main content

Methods for the High Resolution Analysis of Glycoconjugates

  • Chapter
  • First Online:
Coupling and Decoupling of Diverse Molecular Units in Glycosciences

Abstract

Glycans and their conjugates form the largest and most diverse class of biological molecules found in nature. These glycosides are vital for numerous cellular functions including recognition events, protein stabilisation and energy storage. Additionally, abnormalities within these structures are associated with a wide range of disease states. As a result, robust analytical techniques capable of in depth characterisation of carbohydrates and their binding partners are required. This chapter provides an overview of currently used analytical techniques, focussing on chromatographic and mass spectrometry-based methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shin I, Park S, Lee MR (2005) Carbohydrate microarrays: An advanced technology for functional studies of glycans. Chem-Eur J 11:2894–2901

    Article  CAS  Google Scholar 

  2. Varki A, C.R, Esko JD, et al. (2009) Essentials of glycobiology, 2 edn. Cold Spring Harbor, New York

    Google Scholar 

  3. Apweiler R, Hermjakob H, Sharon N (1999) On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim Biophys Acta-Gen Subj 1473:4–8

    Article  CAS  Google Scholar 

  4. Ohtsubo K, Marth JD (2006) Glycosylation in cellular mechanisms of health and disease. Cell 126:855–867

    Article  CAS  Google Scholar 

  5. Yoshida-Moriguchi T et al (2010) O-Mannosyl phosphorylation of alpha-dystroglycan is required for laminin binding. Science 327:88–92

    Article  CAS  Google Scholar 

  6. Sperandio M, Gleissner CA, Ley K (2009) Glycosylation in immune cell trafficking. Immunol Rev 230:97–113

    Article  CAS  Google Scholar 

  7. Bode L (2012) Human milk oligosaccharides: every baby needs a sugar mama. Glycobiology

    Google Scholar 

  8. Poulin MB et al (2014) Specificity of a UDP-GalNAc pyranose-furanose mutase: a potential therapeutic target for campylobacter jejuni infections. ChemBioChem 15:47–56

    Article  CAS  Google Scholar 

  9. Morris HR et al (1996) Gender-specific glycosylation of human glycodelin affects its contraceptive activity. J Biol Chem 271:32159–32167

    Article  CAS  Google Scholar 

  10. Benoff S (1997) Carbohydrates and fertilization: an overview. Mol Hum Reprod 3:599–637

    Article  CAS  Google Scholar 

  11. Schröter S, Osterhoff C, McArdle W, Ivell R (1999) The glycocalyx of the sperm surface. Human Reprod Update 5:302–313

    Article  Google Scholar 

  12. Paszek MJ et al (2014) The cancer glycocalyx mechanically primes integrin-mediated growth and survival. Nat Adv Online Pub (2014)

    Google Scholar 

  13. Jacob F et al (2012) Serum antiglycan antibody detection of nonmucinous ovarian cancers by using a printed glycan array. Int J Cancer 130:138–146

    Article  CAS  Google Scholar 

  14. Springer GFT, Tn (1984) General carcinoma auto-antigens. Science 224:1198–1206

    Google Scholar 

  15. Bones J, Mittermayr S, O’Donoghue N, Guttman A, Rudd PM (2010) Ultra performance liquid chromatographic profiling of serum N-glycans for fast and efficient identification of cancer associated alterations in glycosylation. Anal Chem 82:10208–10215

    Article  CAS  Google Scholar 

  16. Chen YT et al (2013) Identification of novel tumor markers for oral squamous cell carcinoma using glycoproteomic analysis. Clin Chim Acta 420:45–53

    Article  CAS  Google Scholar 

  17. Lauc G et al (2013) Loci associated with N-glycosylation of human immunoglobulin G show pleiotropy with autoimmune diseases and haematological cancers. PLoS Genet 9

    Google Scholar 

  18. Gornik O, Gornik I, Gasparovic V, Lauc G (2008) Change in transferrin sialylation is a potential prognostic marker for severity of acute pancreatitis. Clin Biochem 41:504–510

    Article  CAS  Google Scholar 

  19. Hennet T (2012) Diseases of glycosylation beyond classical congenital disorders of glycosylation. Biochimica et Biophysica Acta (BBA)—General Subjects 1820:1306–1317

    Google Scholar 

  20. Iskratsch T, Braun A, Paschinger K, Wilson IBH (2009) Specificity analysis of lectins and antibodies using remodeled glycoproteins. Anal Biochem 386:133–146

    Article  CAS  Google Scholar 

  21. Kumar SR, Sauter ER, Quinn TP, Deutscher SL (2005) Thomsen-friedenreich and Tn antigens in nipple fluid: carbohydrate biomarkers for breast cancer detection. Clin Cancer Res 11:6868–6871

    Article  CAS  Google Scholar 

  22. Anthony RM et al (2008) Recapitulation of IVIG Anti-inflammatory activity with a recombinant IgG Fc. Science 320:373–376

    Article  CAS  Google Scholar 

  23. Kanda Y et al (2007) Comparison of biological activity among nonfucosylated therapeutic IgG1 antibodies with three different N-linked Fc oligosaccharides: the high-mannose, hybrid, and complex types. Glycobiology 17:104–118

    Article  CAS  Google Scholar 

  24. Thanabalasingham G et al (2013) Mutations in HNF1A result in marked alterations of plasma glycan profile. Diabetes 62:1329–1337

    Article  CAS  Google Scholar 

  25. Lodish HF et al (2000) Molecular cell biology, 4th edn. New York

    Google Scholar 

  26. Royle L et al (2003) Secretory IgA N- and O-glycans provide a link between the innate and adaptive immune systems. J Biol Chem 278:20140–20153

    Article  CAS  Google Scholar 

  27. Clardy J, Walsh C (2004) Lessons from natural molecules. Nature 432:829–837

    Article  CAS  Google Scholar 

  28. Dalziel M, Crispin M, Scanlan CN, Zitzmann N, Dwek RA (2014) Emerging principles for the therapeutic exploitation of glycosylation. Science 343

    Google Scholar 

  29. Thaker MN, Wright GD (2015) Opportunities for synthetic biology in antibiotics: expanding glycopeptide chemical diversity. ACS Synth Biol 4:195–206

    Article  CAS  Google Scholar 

  30. Ragauskas AJ et al (2006) The path forward for biofuels and biomaterials. Science 311:484–489

    Article  CAS  Google Scholar 

  31. Azadi P, Inderwildi OR, Farnood R, King DA (2013) Liquid fuels, hydrogen and chemicals from lignin: a critical review. Renew Sust Energ Rev 21:506–523

    Article  CAS  Google Scholar 

  32. Brinchi L, Cotana F, Fortunati E, Kenny JM (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym 94:154–169

    Article  CAS  Google Scholar 

  33. Krištić J et al (2014) Glycans are a novel biomarker of chronological and biological ages. J Gerontol Series A: Biol Sci Med Sci 69:779–789

    Article  CAS  Google Scholar 

  34. Wuhrer M et al (2006) Gender-specific expression of complex-type N-glycans in schistosomes. Glycobiology 16:991–1006

    Article  CAS  Google Scholar 

  35. Krishnamoorthy L, Mahal LK (2009) Glycomic analysis: an array of technologies. ACS Chem Biol 4:715–732

    Article  CAS  Google Scholar 

  36. Katrlik J, Svitel J, Gemeiner P, Kozar T, Tkac J (2010) Glycan and lectin microarrays for glycomics and medicinal applications. Med Res Rev 30:394–418

    CAS  Google Scholar 

  37. Marino K, Bones J, Kattla JJ, Rudd PM (2010) A systematic approach to protein glycosylation analysis: a path through the maze. Nat Chem Biol 6:713–723

    Article  CAS  Google Scholar 

  38. Spiro RG (2002) Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology 12:43R–56R

    Article  CAS  Google Scholar 

  39. Mellquist JL, Kasturi L, Spitalnik SL, Shakin-Eshleman SH (1998) The amino acid following an asn-X-Ser/Thr sequon is an important determinant of N-linked core glycosylation efficiency. Biochemistry 37:6833–6837

    Article  CAS  Google Scholar 

  40. Dell A, Galadari A, Sastre F, Hitchen P (2010) Similarities and differences in the glycosylation mechanisms in prokaryotes and eukaryotes. Int J Microbiol 2010:14

    Article  CAS  Google Scholar 

  41. Mescher MF, Strominger JL (1976) Purification and characterization of a prokaryotic glucoprotein from the cell envelope of Halobacterium salinarium. J Biol Chem 251:2005–2014

    CAS  Google Scholar 

  42. Young NM et al (2002) Structure of the N-Linked glycan present on multiple glycoproteins in the gram-negative bacterium, Campylobacter jejuni. J Biol Chem 277:42530–42539

    Article  CAS  Google Scholar 

  43. Stanley P (2011) Golgi glycosylation. Cold Spring Harbor Perspect. Biol 3

    Google Scholar 

  44. Roth Z, Yehezkel G, Khalaila I (2012) Identification and quantification of protein glycosylation. Int J Carbohydrate Chem 2012:10

    Article  CAS  Google Scholar 

  45. Steentoft C et al (2013) Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. The EMBO J 32:1478–1488

    Article  CAS  Google Scholar 

  46. Both P et al (2014) Discrimination of epimeric glycans and glycopeptides using IM-MS and its potential for carbohydrate sequencing. Nat Chem 6:65–74

    Article  CAS  Google Scholar 

  47. Hart GW, Copeland RJ (2010) Glycomics hits the big time. Cell 143:672–676

    Article  CAS  Google Scholar 

  48. Jensen PH, Karlsson NG, Kolarich D, Packer NH (2012) Structural analysis of N- and O-glycans released from glycoproteins. Nat Protocols 7:1299–1310

    Article  CAS  Google Scholar 

  49. Rudd PM et al (1997) Oligosaccharide sequencing technology. Nature 388:205–207

    Article  CAS  Google Scholar 

  50. Morelle W, Michalski J-C (2007) Analysis of protein glycosylation by mass spectrometry. Nat Protocols 2:1585–1602

    Article  CAS  Google Scholar 

  51. Domon B, Costello CE (1988) A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconjugate J 5:397–409

    Article  CAS  Google Scholar 

  52. Kebarle P, Verkerk UH (2009) Electrospray: from ions in solution to ions in the gas phase, what we know now. Mass Spectrom Rev 28:898–917

    Article  CAS  Google Scholar 

  53. Ruotolo BT, Benesch JLP, Sandercock AM, Hyung SJ, Robinson CV (2008) Ion mobility-mass spectrometry analysis of large protein complexes. Nat Protoc 3:1139–1152

    Article  CAS  Google Scholar 

  54. Hall Z, Politis A, Bush MF, Smith LJ, Robinson CV (2012) Charge-state dependent compaction and dissociation of protein complexes: insights from ion mobility and molecular dynamics. J Am Chem Soc 134:3429–3438

    Article  CAS  Google Scholar 

  55. Mann M, Hendrickson RC, Pandey A (2001) Analysis of proteins and proteomes by mass spectrometry. Annu Rev Biochem 70:437–473

    Article  CAS  Google Scholar 

  56. Konermann L, Ahadi E, Rodriguez AD, Vahidi S (2013) Unraveling the mechanism of electrospray ionization. Anal Chem 85:2–9

    Article  CAS  Google Scholar 

  57. Liuni P, Wilson DJ (2011) Understanding and optimizing electrospray ionization techniques for proteomic analysis. Expert Rev Proteomics 8:197–209

    Article  CAS  Google Scholar 

  58. Watson JT, Sparkman OD (2007) Introduction to mass spectrometry: instrumentation, applications and strategies for data interpretation. Wiley, New Jersey, 2007

    Google Scholar 

  59. Iribarne JV, Thomson BA (1976) Evaporation of small ions from charged droplets. J Chem Phys 64:2287–2294

    Article  CAS  Google Scholar 

  60. Fernandez de la Mora J (2000) Electrospray ionization of large multiply charged species proceeds via Dole’s charged residue mechanism. Anal Chim Acta 406:93–104

    Google Scholar 

  61. Yue XF, Vahidi S, Konermann L (2014) Insights into the mechanism of protein electrospray ionization from salt adduction measurements. J Am Soc Mass Spectrom 25:1322–1331

    Article  CAS  Google Scholar 

  62. Chung JK, Consta S (2012) Release mechanisms of poly(ethylene glycol) macroions from aqueous charged nanodroplets. J Phys Chem B 116:5777–5785

    Article  CAS  Google Scholar 

  63. Simpson RJ (2003) Proteins and proteomics: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  64. Karas M, Gluckmann M, Schafer J (2000) Ionization in matrix-assisted laser desorption/ionization: singly charged molecular ions are the lucky survivors. J Mass Spectrom 35:1–12

    Article  CAS  Google Scholar 

  65. Yates JR (1998) Mass spectrometry and the age of the proteome. J Mass Spectrom 33:1–19

    Article  CAS  Google Scholar 

  66. El-Aneed A, Cohen A, Banoub J (2009) Mass Spectrometry, review of the basics: electrospray, MALDI, and commonly used mass analyzers. Appl Spectrosc Rev 44:210–230

    Article  CAS  Google Scholar 

  67. Lewis JK, Wei J, Siuzdak G (2006) Encyclopedia of analytical chemistry. Wiley, New Jersey

    Google Scholar 

  68. Knochenmuss R (2013) MALDI ionization mechanisms: the coupled photophysical and chemical dynamics model correctly predicts ‘temperature’-selected spectra. J Mass Spectrom 48:998–1004

    Article  CAS  Google Scholar 

  69. Awad H, Khamis MM, El-Aneed A (2015) Mass spectrometry, review of the basics: ionization. Appl Spectrosc Rev 50:158–175

    Article  CAS  Google Scholar 

  70. Knochenmuss R (2006) Ion formation mechanisms in UV-MALDI. Analyst 131:966–986

    Article  CAS  Google Scholar 

  71. Karas M, Kruger R (2003) Ion formation in MALDI: the cluster ionization mechanism. Chem Rev 103:427–439

    Article  CAS  Google Scholar 

  72. Ehring H, Karas M, Hillenkamp F (1992) Role of photoionization and photochemistry in ionization processes of organic-molecules and relevance for matrix-assisted lader desorption ionization mass-spectrometry. Org Mass Spectrom 27:472–480

    Article  CAS  Google Scholar 

  73. Jaskolla TW, Karas M (2011) Compelling evidence for lucky survivor and gas phase protonation: the unified MALDI analyte protonation mechanism. J Am Soc Mass Spectrom 22:976–988

    Article  CAS  Google Scholar 

  74. Batoy S, Akhmetova E, Miladinovic S, Smeal J, Wilkins CL (2008) Developments in MALDI mass spectrometry: the quest for the perfect matrix. Appl Spectrosc Rev 43:485–550

    Article  CAS  Google Scholar 

  75. Miller PE, Denton MB (1986) The quadrupole mass filter—basic operating concepts. J Chem Educ 63:617–622

    Article  CAS  Google Scholar 

  76. Shaw LM, Kwong TC (2001) The clinical toxicology laboratory: contemporary practice of poisoning evaluation. American Association for Clinical Chemistry, Incorporated, USA

    Google Scholar 

  77. Barner-Kowollik C, Gruendling T, Falkenhagen J, Weidner S (2012) Mass spectrometry in polymer chemistry. Wiley, New Jersey

    Google Scholar 

  78. March RE (1997) An introduction to quadrupole ion trap mass spectrometry. J Mass Spectrom 32:351–369

    Article  CAS  Google Scholar 

  79. Jonscher KR, Yates Iii JR (1997) The quadrupole ion trap mass spectrometer—a small solution to a big challenge. Anal. Biochem. 244:1–15

    Google Scholar 

  80. Payne AH, Glish GL (2005) In: Methods in enzymology, vol 402, Academic Press, pp 109–148

    Google Scholar 

  81. Douglas DJ, Frank AJ, Mao DM (2005) Linear ion traps in mass spectrometry. Mass Spectrom Rev 24:1–29

    Article  CAS  Google Scholar 

  82. Wiley WC, McLaren IH (1955) Time-of-flight mass spectrometer with improved resolution. Rev Sci Instrum 26:1150–1157

    Article  CAS  Google Scholar 

  83. Roepstorff P, Fohlman J (1984) Proposal for a common nomenclature for sequence ions in mass-spectra of peptides. Biomedical Mass Spectrometry 11:601–601

    Google Scholar 

  84. Dodds ED (2012) Gas-phase dissociation of glycosylated peptide ions. Mass Spectrom Rev 31:666–682

    Article  CAS  Google Scholar 

  85. Dongré AR, Jones JL, Somogyi Á, Wysocki VH (1996) Influence of peptide composition, gas-phase basicity, and chemical modification on fragmentation efficiency: evidence for the mobile proton model. J Am Chem Soc 118:8365–8374

    Article  Google Scholar 

  86. Burlet O, Orkiszewski RS, Ballard KD, Gaskell SJ (1992) Charge promotion of low-energy fragmentations of peptide ions. Rapid Commun Mass Spectrom 6:658–662

    Article  CAS  Google Scholar 

  87. Paizs B, Suhai S (2005) Fragmentation pathways of protonated peptides. Mass Spectrom Rev 24:508–548

    Article  CAS  Google Scholar 

  88. Chen XY, Flynn GC (2009) Gas-phase oligosaccharide nonreducing end (GONE) sequencing and structural analysis by reversed phase hplc/mass spectrometry with polarity switching. J Am Soc Mass Spectrom 20:1821–1833

    Article  CAS  Google Scholar 

  89. Domann P, Spencer DIR, Harvey DJ (2012) Production and fragmentation of negative ions from neutral N-linked carbohydrates ionized by matrix-assisted laser desorption/ionization. Rapid Commun Mass Spectrom 26:469–479

    Article  CAS  Google Scholar 

  90. Zaia J, Miller MJC, Seymour JL, Costello CE (2007) The role of mobile protons in negative ion CID of oligosaccharides. J Am Soc Mass Spectrom 18:952–960

    Article  CAS  Google Scholar 

  91. Harvey DJ (2005) Ionization and fragmentation of N-linked glycans as silver adducts by electrospray mass spectrometry. Rapid Commun Mass Spectrom 19:484–492

    Article  CAS  Google Scholar 

  92. Zhu F, Glover M, Shi H, Trinidad J, Clemmer D (2015) Populations of metal-glycan structures influence MS fragmentation patterns. J Am Soc Mass Spectrom 26:25–35

    Article  CAS  Google Scholar 

  93. Cancilla MT, Penn SG, Carroll JA, Lebrilla CB (1996) Coordination of alkali metals to oligosaccharides dictates fragmentation behavior in matrix assisted laser desorption ionization/Fourier transform mass spectrometry. J Am Chem Soc 118:6736–6745

    Article  CAS  Google Scholar 

  94. Cancilla MT, Wang AW, Voss LR, Lebrilla CB (1999) Fragmentation reactions in the mass spectrometry analysis of neutral oligosaccharides. Anal Chem 71:3206–3218

    Article  CAS  Google Scholar 

  95. Zaia J (2004) Mass spectrometry of oligosaccharides. Mass Spectrom Rev 23:161–227

    Article  CAS  Google Scholar 

  96. Deguchi K et al (2006) Complementary structural information of positive- and negative-ion MSn spectra of glycopeptides with neutral and sialylated N-glycans. Rapid Commun Mass Spectrom 20:741–746

    Article  CAS  Google Scholar 

  97. Domon B, Mueller DR, Richter WJ (1994) Tandem mass-spectrometric analysis of fixed-charge derivatized oligosaccharides. Org Mass Spectrom 29:713–719

    Article  CAS  Google Scholar 

  98. Azenha CSR, Coimbra MA, Moreira ASP, Domingues P, Domingues MRM (2013) Differentiation of isomeric β-(1–4) hexose disaccharides by positive electrospray tandem mass spectrometry. J Mass Spectrom 48:548–552

    Article  CAS  Google Scholar 

  99. Brown DJ et al (2011) Direct evidence for the ring opening of monosaccharide anions in the gas phase: photodissociation of aldohexoses and aldohexoses derived from disaccharides using variable-wavelength infrared irradiation in the carbonyl stretch region. Carbohydr Res 346:2469–2481

    Article  CAS  Google Scholar 

  100. Polfer NC, Bohrer BC, Plasencia MD, Paizs B, Clemmer DE (2008) On the dynamics of fragment isomerization in collision-induced dissociation of peptides. J Phys Chem A 112:1286–1293

    Article  CAS  Google Scholar 

  101. Riba-Garcia I, Giles K, Bateman RH, Gaskell SJ (2008) Evidence for structural variants of a- and b-type peptide fragment ions using combined ion mobility/mass spectrometry. J Am Soc Mass Spectrom 19:609–613

    Article  CAS  Google Scholar 

  102. Darula Z, Chalkley RJ, Baker P, Burlingame AL, Medzihradszky KF (2010) Mass spectrometric analysis, automated identification and complete annotation of O-linked glycopeptides. Eur J Mass Spectrom 16:421–428

    Article  CAS  Google Scholar 

  103. Zaia J (2010) Mass Spectrometry and Glycomics. Omics 14:401–418

    CAS  Google Scholar 

  104. Franz AH, Lebrilla CB (2002) Evidence for long-range glycosyl transfer reactions in the gas phase. J Am Soc Mass Spectrom 13:325–337

    Article  CAS  Google Scholar 

  105. Harvey DJ et al (2002) “Internal residue loss”: Rearrangements occurring during the fragmentation of carbohydrates derivatized at the reducing terminus. Anal Chem 74:734–740

    Article  CAS  Google Scholar 

  106. Wuhrer M, Koeleman CAM, Hokke CH, Deelder AM (2006) Mass spectrometry of proton adducts of fucosylated N-glycans: fucose transfer between antennae gives rise to misleading fragments. Rapid Commun Mass Spectrom 20:1747–1754

    Article  CAS  Google Scholar 

  107. Wuhrer M, Koeleman CAM, Deelder AM (2009) Hexose rearrangements upon fragmentation of N-glycopeptides and reductively aminated N-glycans. Anal Chem 81:4422–4432

    Article  CAS  Google Scholar 

  108. Kenny DT, Issa SMA, Karlsson NG (2011) Sulfate migration in oligosaccharides induced by negative ion mode ion trap collision-induced dissociation. Rapid Commun Mass Spectrom 25:2611–2618

    Article  CAS  Google Scholar 

  109. Wuhrer M, Deelder AM, van der Burgt YEM (2011) Mass spectrometric glycan rearrangements. Mass Spectrom Rev 30:664–680

    Article  CAS  Google Scholar 

  110. Brull LP et al (1997) Loss of internal 1-> 6 substituted monosaccharide residues from underivatized and per-O-methylated trisaccharides. J Am Soc Mass Spectrom 8:43–49

    Article  CAS  Google Scholar 

  111. Brüll LP, Kovácik V, Thomas-Oates JE, Heerma W, Haverkamp J (1998) Sodium-cationized oligosaccharides do not appear to undergo ‘internal residue loss’ rearrangement processes on tandem mass spectrometry. Rapid Commun Mass Spectrom 12:1520–1532

    Article  Google Scholar 

  112. Chi A et al (2007) Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiae by electron transfer dissociation (ETD) mass spectrometry. Proc. Natl. Acad. Sci. USA. 104:2193–2198

    Article  CAS  Google Scholar 

  113. Syka JEP, Coon JJ, Schroeder MJ, Shabanowitz J, Hunt DF (2004) Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc. Natl. Acad. Sci. USA. 101:9528–9533

    Article  CAS  Google Scholar 

  114. Molina H, Horn DM, Tang N, Mathivanan S, Pandey A (2007) Global proteomic profiling of phosphopeptides using electron transfer dissociation tandem mass spectrometry. Proc. Natl. Acad. Sci. USA 104:2199–2204

    Article  CAS  Google Scholar 

  115. Han L, Costello C (2011) Electron transfer dissociation of milk oligosaccharides. J Am Soc Mass Spectrom 22:997–1013

    Article  CAS  Google Scholar 

  116. Leach FE III et al (2012) Hexuronic Acid stereochemistry determination in chondroitin sulfate glycosaminoglycan oligosaccharides by electron detachment dissociation. J Am Soc Mass Spectrom 23:1488–1497

    Article  CAS  Google Scholar 

  117. Leach FE III et al (2011) Negative electron transfer dissociation Fourier transform mass spectrometry of glycosaminoglycan carbohydrates. Eur J Mass Spectrom 17:167–176

    Article  CAS  Google Scholar 

  118. Wolff JJ et al (2010) Negative electron transfer dissociation of glycosaminoglycans. Anal Chem 82:3460–3466

    Article  CAS  Google Scholar 

  119. Wolff JJ, Chi L, Linhardt RJ, Amster IJ (2007) Distinguishing glucuronic from iduronic acid in glycosaminoglycan tetrasaccharides by using electron detachment dissociation. Anal Chem 79:2015–2022

    Article  CAS  Google Scholar 

  120. Woodin RL, Bomse DS, Beauchamp JL (1978) Multi-photon dissociation of molecules with low-power continuous wave infrared-laser radiation. J Am Chem Soc 100:3248–3250

    Article  CAS  Google Scholar 

  121. Polfer NC et al (2006) Differentiation of isomers by wavelength-tunable infrared multiple-photon dissociation-mass spectrometry: application to glucose-containing disaccharides. Anal Chem 78:670–679

    Article  CAS  Google Scholar 

  122. Stefan SE, Eyler JR (2010) Differentiation of glucose-containing disaccharides by infrared multiple photon dissociation with a tunable CO2 laser and Fourier transform ion cyclotron resonance mass spectrometry. Int J Mass Spectrom 297:96–101

    Article  CAS  Google Scholar 

  123. Polfer NC (2011) Infrared multiple photon dissociation spectroscopy of trapped ions. Chem Soc Rev 40:2211–2221

    Article  CAS  Google Scholar 

  124. Schindler B et al (2014) Distinguishing isobaric phosphated and sulfated carbohydrates by coupling of mass spectrometry with gas phase vibrational spectroscopy. Phys Chem Chem Phys 16:22131–22138

    Article  CAS  Google Scholar 

  125. Barnes L et al (2015) Anharmonic simulations of the vibrational spectrum of sulfated compounds: application to the glycosaminoglycan fragment glucosamine 6-sulfate. Phys. Chem. Chem, Phys

    Google Scholar 

  126. Tan Y, Polfer N (2015) Linkage and anomeric differentiation in trisaccharides by sequential fragmentation and variable-wavelength infrared photodissociation. J Am Soc Mass Spectrom 26:359–368

    Article  CAS  Google Scholar 

  127. Oepts D, van der Meer AFG, van Amersfoort PW (1995) The free-electron-laser user facility FELIX. Infrared Phys Technol 36:297–308

    Article  CAS  Google Scholar 

  128. Wang H et al (2014) Multiplex profiling of glycoproteins using a novel bead-based lectin array. Proteomics 14:78–86

    Article  CAS  Google Scholar 

  129. Pičmanová M et al (2015) A recycling pathway for cyanogenic glycosides evidenced by the comparative metabolic profiling in three cyanogenic plant species. Biochem J 469:375–389

    Article  CAS  Google Scholar 

  130. Gonzalez J et al (1992) A method for determination of N-glycosylation sites in glycoproteins by collision-induced dissociation analysis in fast atom bombardment mass spectrometry: Identification of the positions of carbohydrate-linked asparagine in recombinant α-amylase by treatment with peptide-N-glycosidase F in 18O-labeled water. Anal Biochem 205:151–158

    Article  CAS  Google Scholar 

  131. Duk M, Ugorski M, Lisowska E (1997) β-Elimination of O-glycans from glycoproteins transferred to immobilon P membranes: method and some applications. Anal Biochem 253:98–102

    Article  CAS  Google Scholar 

  132. Stalnaker SH et al (2010) Site mapping and characterization of O-glycan structures on α-dystroglycan Isolated from rabbit skeletal muscle. J Biol Chem 285:24882–24891

    Article  CAS  Google Scholar 

  133. Patel T et al (1993) Use of hydrazine to release in intact and unreduced form both N-linked and O-linked oligosaccharides from glycoproteins. Biochemistry 32:679–693

    Article  CAS  Google Scholar 

  134. Kozak RP, Royle L, Gardner RA, Fernandes DL, Wuhrer M (2012) Suppression of peeling during the release of O-glycans by hydrazinolysis. Anal Biochem 423:119–128

    Article  CAS  Google Scholar 

  135. Merry AH et al (2002) Recovery of Intact 2-aminobenzamide-labeled O-glycans released from glycoproteins by hydrazinolysis. Anal Biochem 304:91–99

    Article  CAS  Google Scholar 

  136. Choi E, Loo D, Dennis JW, O’Leary CA, Hill MM (2011) High-throughput lectin magnetic bead array-coupled tandem mass spectrometry for glycoprotein biomarker discovery. Electrophoresis 32:3564–3575

    Article  CAS  Google Scholar 

  137. Angeloni S et al (2005) Glycoprofiling with micro-arrays of glycoconjugates and lectins. Glycobiology 15:31–41

    Article  CAS  Google Scholar 

  138. Kuno A et al (2005) Evanescent-field fluorescence-assisted lectin microarray: a new strategy for glycan profiling. Nat Methods 2:851–856

    Article  CAS  Google Scholar 

  139. Packer N, Lawson M, Jardine D, Redmond J (1998) A general approach to desalting oligosaccharides released from glycoproteins. Glycoconjugate J. 15:737–747

    Article  CAS  Google Scholar 

  140. Itoh S et al (2002) Simultaneous microanalysis of N-linked oligosaccharides in a glycoprotein using microbore graphitized carbon column liquid chromatography-mass spectrometry. J Chromatogr A 968:89–100

    Article  CAS  Google Scholar 

  141. Hennion M-C (2000) Graphitized carbons for solid-phase extraction. J Chromatogr A 885:73–95

    Article  CAS  Google Scholar 

  142. Powell AK, Ahmed YA, Yates EA, Turnbull JE (2010) Generating heparan sulfate saccharide libraries for glycomics applications. Nat Protoc 5:821–833

    Article  CAS  Google Scholar 

  143. Harvey DJ (2000) Electrospray mass spectrometry and fragmentation of N-linked carbohydrates derivatized at the reducing terminus. J Am Soc Mass Spectrom 11:900–915

    Article  CAS  Google Scholar 

  144. Bigge JC et al (1995) Nonselective and efficient fluorescent labeling of glycans using 2-amino benzamide and anthranilic acid. Anal Biochem 230:229–238

    Article  CAS  Google Scholar 

  145. Guile GR, Rudd PM, Wing DR, Prime SB, Dwek RA (1996) A rapid high-resolution high-performance liquid chromatographic method for separating glycan mixtures and analyzing oligosaccharide profiles. Anal Biochem 240:210–226

    Article  CAS  Google Scholar 

  146. Takegawa Y et al (2006) Simple separation of isomeric sialylated N-glycopeptides by a zwitterionic type of hydrophilic interaction chromatography. J Sep Sci 29:2533–2540

    Article  CAS  Google Scholar 

  147. Lareau NM, May JC, McLean JA (2015) Non-derivatized glycan analysis by reverse phase liquid chromatography and ion mobility-mass spectrometry. The Analyst 140:3335–3338

    Article  CAS  Google Scholar 

  148. Alley WR, Mann BF, Novotny MV (2013) High-sensitivity analytical approaches for the structural characterization of glycoproteins. Chem Rev 113:2668–2732

    Article  CAS  Google Scholar 

  149. Stadlmann J, Pabst M, Kolarich D, Kunert R, Altmann F (2008) Analysis of immunoglobulin glycosylation by LC-ESI-MS of glycopeptides and oligosaccharides. Proteomics 8:2858–2871

    Article  CAS  Google Scholar 

  150. Lohmander LS (1986) Analysis by high-performance liquid chromatography of radioactively labeled carbohydrate components of proteoglycans. Anal Biochem 154:75–84

    Article  CAS  Google Scholar 

  151. Pettolino FA, Walsh C, Fincher GB, Bacic A (2012) Determining the polysaccharide composition of plant cell walls. Nat. Protocols 7:1590–1607

    Article  CAS  Google Scholar 

  152. Byers HL, Tarelli E, Homer KA, Beighton D (1999) Sequential deglycosylation and utilization of the N-linked, complex-type glycans of human a1-acid glycoprotein mediates growth of Streptococcus oralis. Glycobiology 9:469–479

    Article  CAS  Google Scholar 

  153. Kannicht C, Grunow D, Lucka L (2008) In: Kannicht C (ed) Post-translational modifications of proteins, Vol 446, pp 255–266. Humana Press

    Google Scholar 

  154. Distler JJ, Jourdian GW (1973) The purification and properties of β-galactosidase from bovine testes. J Biol Chem 248:6772–6780

    CAS  Google Scholar 

  155. Zahner D, Hakenbeck R (2000) The Streptococcus pneumoniae beta-galactosidase is a surface protein. J Bacteriol 182:5919–5921

    Article  CAS  Google Scholar 

  156. Clarke VA, Platt N, Butters TD (1995) Cloning and expression of the β- N-acetylglucosaminidase gene from Streptococcus pneumoniae: generation of truncated enzymes with modified aglycon specificity. J Biol Chem 270:8805–8814

    Article  CAS  Google Scholar 

  157. Camara M, Boulnois GJ, Andrew PW, Mitchell TJ (1994) A neuraminidase from Streptococcus-pneumoniae was the features of surface protein. Infect Immun 62:3688–3695

    CAS  Google Scholar 

  158. Wongmadden ST, Landry D (1995) Purification and characterization of novel glycosidases from the bacterial genus Xanthomonas. Glycobiology 5:19–28

    Article  CAS  Google Scholar 

  159. Pilobello KT, Krishnamoorthy L, Slawek D, Mahal LK (2005) Development of a lectin microarray for the rapid analysis of protein glycopatterns. ChemBioChem 6:985–989

    Article  CAS  Google Scholar 

  160. Zheng T, Peelen D, Smith LM (2005) Lectin arrays for profiling cell surface carbohydrate expression. J Am Chem Soc 127:9982–9983

    Article  CAS  Google Scholar 

  161. Hu S, Wong DT (2009) Lectin microarray. Proteom. Clin. Appl. 3:148–154

    Article  CAS  Google Scholar 

  162. Beloqui A et al (2013) Analysis of Microarrays by MALDI-TOF MS. Angew Chem Int Ed 52:7477–7481

    Article  CAS  Google Scholar 

  163. Debray H, Decout D, Strecker G, Spik G, Montreuil J (1981) Specificity of 12 lectins towards oligosaccharides and glycopeptides relted to N-glycosylproteins. Eur J Biochem 117:41–55

    Article  CAS  Google Scholar 

  164. Geisler C, Jarvis DL (2011) Letter to the Glyco-Forum: Effective glycoanalysis with Maackia amurensis lectins requires a clear understanding of their binding specificities. Glycobiology 21:988–993

    Article  CAS  Google Scholar 

  165. Porter A et al (2010) A motif-based analysis of glycan array data to determine the specificities of glycan-binding proteins. Glycobiology 20:369–380

    Article  CAS  Google Scholar 

  166. Yan LY et al (1997) Immobilized Lotus tetragonolobus agglutinin binds oligosaccharides containing the Le(x) determinant. Glycoconjugate J 14:45–55

    Article  CAS  Google Scholar 

  167. Kletter D, Singh S, Bern M, Haab BB (2013) Global Comparisons of Lectin-Glycan Interactions Using a Database of Analyzed Glycan Array Data. Mol Cell Proteomics 12:1026–1035

    Article  CAS  Google Scholar 

  168. Consortium for Functional Glycomics, http://www.functionalglycomics.org/. (2001)

  169. Akimoto Y, Kawakami H (2014) In: Hirabayashi J (ed) Lectins, Vol. 1200, pp 153–163. Springer, New York

    Google Scholar 

  170. Mannoji H, Yeger H, Becker LE (1986) A specific histochemical marker (lectin Ricinus-communis agglutinin-1) for normal human microglia, and apllication to routine histopathology. Acta Neuropathol 71:341–343

    Article  CAS  Google Scholar 

  171. Landemarre L, Cancellieri P, Duverger E (2013) Cell surface lectin array: parameters affecting cell glycan signature. Glycoconjugate J. 30:195–203

    Article  CAS  Google Scholar 

  172. Nishijima Y et al (2012) Glycan profiling of endometrial cancers using lectin microarray. Genes Cells 17:826–836

    Article  CAS  Google Scholar 

  173. Furukawa J-I et al (2008) Comprehensive Approach to Structural and Functional Glycomics Based on Chemoselective Glycoblotting and Sequential Tag Conversion. Anal Chem 80:1094–1101

    Article  CAS  Google Scholar 

  174. Blixt O et al (2004) Printed covalent glycan array for ligand profiling of diverse glycan binding proteins. Proc. Natl. Acad. Sci. U S A 101:17033–17038

    Article  CAS  Google Scholar 

  175. Blixt O et al (2008) Glycan microarrays for screening sialyltransferase specificities. Glycoconjugate J. 25:59–68

    Article  CAS  Google Scholar 

  176. Blixt O et al (2010) A high-throughput O-glycopeptide discovery platform for seromic profiling. J Proteome Res 9:5250–5261

    Article  CAS  Google Scholar 

  177. Ban L et al (2012) Discovery of glycosyltransferases using carbohydrate arrays and mass spectrometry. Nat Chem Biol 8:769–773

    Article  CAS  Google Scholar 

  178. Paulson JC, Blixt O, Collins BE (2006) Sweet spots in functional glycomics. Nat Chem Biol 2:238–248

    Article  CAS  Google Scholar 

  179. Remy-Martin F et al (2012) Surface plasmon resonance imaging in arrays coupled with mass spectrometry (SUPRA–MS): proof of concept of on-chip characterization of a potential breast cancer marker in human plasma. Anal Bioanal Chem 404:423–432

    Article  CAS  Google Scholar 

  180. Munoz FJ et al (2009) Glycan tagging to produce bioactive ligands for a surface plasmon resonance (SPR) study via immobilization on different surfaces. Bioconjugate Chem. 20:673–682

    Article  CAS  Google Scholar 

  181. Etxebarria J, Calvo J, Martin-Lomas M, Reichardt NC (2012) Lectin-array blotting: profiling protein glycosylation in complex mixtures. ACS Chem Biol 7:1729–1737

    Article  CAS  Google Scholar 

  182. Koshi Y, Nakata E, Yamane H, Hamachi I (2006) A fluorescent lectin array using supramolecular hydrogel for simple detection and pattern profiling for various glycoconjugates. J Am Chem Soc 128:10413–10422

    Article  CAS  Google Scholar 

  183. Li C et al (2009) Pancreatic cancer serum detection using a lectin/glyco-antibody array method. J Proteome Res 8:483–492

    Article  CAS  Google Scholar 

  184. Hsu K-L, Mahal LK (2006) A lectin microarray approach for the rapid analysis of bacterial glycans. Nat. Protocols 1:543–549

    Article  CAS  Google Scholar 

  185. Hsu KL, Pilobello KT, Mahal LK (2006) Analyzing the dynamic bacterial glycome with a lectin microarray approach. Nat Chem Biol 2:153–157

    Article  CAS  Google Scholar 

  186. Zhao J, Simeone DM, Heidt D, Anderson MA, Lubman DM (2006) Comparative serum glycoproteomics using lectin selected sialic acid glycoproteins with mass spectrometric analysis: application to pancreatic cancer serum. J Proteome Res 5:1792–1802

    Article  CAS  Google Scholar 

  187. Vanderschaeghe D, Festjens N, Delanghe J, Callewaert N (2010) Glycome profiling using modern glycomics technology: technical aspects and applications. Biol Chem 391:149–161

    Article  CAS  Google Scholar 

  188. Campbell MP, Royle L, Radcliffe CM, Dwek RA, Rudd PM (2008) GlycoBase and autoGU: tools for HPLC-based glycan analysis. Bioinformatics 24:1214–1216

    Article  CAS  Google Scholar 

  189. Royle L et al (2008) HPLC-based analysis of serum N-glycans on a 96-well plate platform with dedicated database software. Anal Biochem 376:1–12

    Article  CAS  Google Scholar 

  190. Harvey DJ (2011) Derivatization of carbohydrates for analysis by chromatography; electrophoresis and mass spectrometry. J Chromatogr B 879:1196–1225

    Article  CAS  Google Scholar 

  191. Chen X, Flynn GC (2007) Analysis of N-glycans from recombinant immunoglobulin G by on-line reversed-phase high-performance liquid chromatography/mass spectrometry. Anal Biochem 370:147–161

    Article  CAS  Google Scholar 

  192. Hase S (1993) Analysis of sugar chains by pyridylamination. Methods in molecular biology (Clifton, N.J.) 14, 69–80

    Google Scholar 

  193. Harvey DJ (1999) Matrix-assisted laser desorption/ionization mass spectrometry of carbohydrates. Mass Spectrom Rev 18:349–450

    Article  CAS  Google Scholar 

  194. Viseux N, de Hoffmann E, Domon B (1998) Structural assignment of permethylated oligosaccharide subunits using sequential tandem mass spectrometry. Anal Chem 70:4951–4959

    Article  CAS  Google Scholar 

  195. Higel F, Demelbauer U, Seidl A, Friess W, Sörgel F (2013) Reversed-phase liquid-chromatographic mass spectrometric N-glycan analysis of biopharmaceuticals. Anal Bioanal Chem 405:2481–2493

    Article  CAS  Google Scholar 

  196. Rocklin RD, Pohl CA (1983) Determination of carbohydrates by anion-exchange chromatography with pulsed amperometric detection. J Liq Chromatogr 6:1577–1590

    Article  CAS  Google Scholar 

  197. Hagglund P, Bunkenborg J, Elortza F, Jensen ON, Roepstorff P (2004) A new strategy for identification of N-glycosylated proteins and unambiguous assignment of their glycosylation sites using HILIC enrichment and partial deglycosylation. J Proteome Res 3:556–566

    Article  CAS  Google Scholar 

  198. Itoh S et al (2006) N-linked oligosaccharide analysis of rat brain Thy-1 by liquid chromatography with graphitized carbon column/ion trap-Fourier transform ion cyclotron resonance mass spectrometry in positive and negative ion modes. J Chromatogr A 1103:296–306

    Article  CAS  Google Scholar 

  199. Pabst M, Bondili JS, Stadlmann J, Mach L, Altmann F (2007) Mass + retention time = structure: a strategy for the analysis of N-glycans by carbon LC-ESI-MS and its application to fibrin N-glycans. Anal Chem 79:5051–5057

    Article  CAS  Google Scholar 

  200. Rohrer JS, Basumallick L, Hurum D (2013) High-performance anion-exchange chromatography with pulsed amperometric detection for carbohydrate analysis of glycoproteins. Biochem.-Moscow 78:697–709

    Google Scholar 

  201. Lee YC (1996) Carbohydrate analyses with high-performance anion-exchange chromatography. J Chromatogr A 720:137–149

    Article  CAS  Google Scholar 

  202. Buszewski B, Noga S (2012) Hydrophilic interaction liquid chromatography (HILIC)—a powerful separation technique. Anal Bioanal Chem 402:231–247

    Article  CAS  Google Scholar 

  203. Antonio C et al (2008) Hydrophilic interaction chromatography/electrospray mass spectrometry analysis of carbohydrate-related metabolites from Arabidopsis thaliana leaf tissue. Rapid Commun Mass Spectrom 22:1399–1407

    Article  CAS  Google Scholar 

  204. Melmer M, Stangler T, Premstaller A, Lindner W (2011) Comparison of hydrophilic-interaction, reversed-phase and porous graphitic carbon chromatography for glycan analysis. J Chromatogr A 1218:118–123

    Article  CAS  Google Scholar 

  205. West C, Elfakir C, Lafosse M (2010) Porous graphitic carbon: a versatile stationary phase for liquid chromatography. J Chromatogr A 1217:3201–3216

    Article  CAS  Google Scholar 

  206. Karlsson NG et al (2004) Negative ion graphitised carbon nano-liquid chromatography/mass spectrometry increases sensitivity for glycoprotein oligosaccharide analysis. Rapid Commun Mass Spectrom 18:2282–2292

    Article  CAS  Google Scholar 

  207. Heinisch S, Puy G, Barrioulet M-P, Rocca J-L (2006) Effect of temperature on the retention of ionizable compounds in reversed-phase liquid chromatography: application to method development. J Chromatogr A 1118:234–243

    Article  CAS  Google Scholar 

  208. Ortmayr K, Hann S, Koellensperger G (2015) Complementing reversed-phase selectivity with porous graphitized carbon to increase the metabolome coverage in an on-line two-dimensional LC-MS setup for metabolomics. Analyst 140:3465–3473

    Article  CAS  Google Scholar 

  209. Bajad SU et al (2006) Separation and quantitation of water soluble cellular metabolites by hydrophilic interaction chromatography-tandem mass spectrometry. J Chromatogr A 1125:76–88

    Article  CAS  Google Scholar 

  210. Castagner B and Seeberger PH (2007) In: Brase S (ed) Combinatorial chemistry on solid supports, vol 278, pp 289–309. Springer-Verlag Berlin, Berlin

    Google Scholar 

  211. Bernardes GJL, Castagner B, Seeberger PH (2009) Combined approaches to the synthesis and study of glycoproteins. ACS Chem Biol 4:703–713

    Article  CAS  Google Scholar 

  212. Hellerqvist CG (1990) In: Methods in Enzymology, vol 193, pp 554–573. Academic Press

    Google Scholar 

  213. Creese AJ, Cooper HJ (2012) Separation and identification of isomeric glycopeptides by high field asymmetric waveform ion mobility spectrometry. Anal Chem 84:2597–2601

    Article  CAS  Google Scholar 

  214. Spina E et al (2004) New fragmentation mechanisms in matrix-assisted laser desorption/ionization time-of-flight/time-of-flight tandem mass spectrometry of carbohydrates. Rapid Commun Mass Spectrom 18:392–398

    Article  CAS  Google Scholar 

  215. Konda C, Londry F, Bendiak B, Xia Y (2014) Assignment of the stereochemistry and anomeric configuration of sugars within oligosaccharides via overlapping disaccharide ladders using MSn. J Am Soc Mass Spectrom 25:1441–1450

    Article  CAS  Google Scholar 

  216. Konda C, Bendiak B, Xia Y (2014) Linkage determination of linear oligosaccharides by MSn (n > 2) Collision-induced dissociation of Z(1) ions in the negative ion mode. J Am Soc Mass Spectrom 25:248–257

    Article  CAS  Google Scholar 

  217. Merkle RK, Poppe I (1994) In: William GWH, Lennarz J (ed) Methods in enzymology, vol 230, pp 1–15, Academic Press

    Google Scholar 

  218. Xie Y, Tseng K, Lebrilla C, Hedrick J (2001) Targeted use of exoglycosidase digestion for the structural elucidation of neutral O-linked oligosaccharides. J Am Soc Mass Spectrom 12:877–884

    Article  CAS  Google Scholar 

  219. Maslen S, Sadowski P, Adam A, Lilley K, Stephens E (2006) Differentiation of isomeric N-glycan structures by normal-phase liquid chromatography—MALDI-TOF/TOF tandem mass spectrometry. Anal Chem 78:8491–8498

    Article  CAS  Google Scholar 

  220. Frolov A, Hoffmann P, Hoffmann R (2006) Fragmentation behavior of glycated peptides derived from D-glucose, D-fructose and D-ribose in tandem mass spectrometry. J Mass Spectrom 41:1459–1469

    Article  CAS  Google Scholar 

  221. Xue J et al (2004) Determination of linkage position and anomeric configuration in Hex-Fuc disaccharides using electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom 18:1947–1955

    Article  CAS  Google Scholar 

  222. El-Aneed A, Banoub J, Koen-Alonso M, Boullanger P, Lafont D (2007) Establishment of mass spectrometric fingerprints of novel synthetic cholesteryl neoglycolipids: the presence of a unique C-glycoside species during electrospray ionization and during collision-induced dissociation tandem mass spectrometry. J Am Soc Mass Spectrom 18:294–310

    Article  CAS  Google Scholar 

  223. Xue J, Laine RA, Matta KL (2015) Enhancing MSn mass spectrometry strategy for carbohydrate analysis: A b2 ion spectral library. J. Proteomics 112:224–249

    Article  CAS  Google Scholar 

  224. Ito H et al (2006) Direct structural assignment of neutral and sialylated N-glycans of glycopeptides using collision-induced dissociation MSn spectral matching. Rapid Commun Mass Spectrom 20:3557–3565

    Article  CAS  Google Scholar 

  225. Konda C, Bendiak B, Xia Y (2012) Differentiation of the stereochemistry and anomeric configuration for 1-3 linked disaccharides via tandem mass spectrometry and O-18-labeling. J Am Soc Mass Spectrom 23:347–358

    Article  CAS  Google Scholar 

  226. Toyama A et al (2012) Quantitative structural characterization of local N-glycan microheterogeneity in therapeutic antibodies by energy-resolved oxonium ion monitoring. Anal Chem 84:9655–9662

    Article  CAS  Google Scholar 

  227. Daikoku S, Widmalm G, Kanie O (2009) Analysis of a series of isomeric oligosaccharides by energy-resolved mass spectrometry: a challenge on homobranched trisaccharides. Rapid Commun Mass Spectrom 23:3713–3719

    Article  CAS  Google Scholar 

  228. Nagy G, Pohl NB (2015) Complete hexose isomer identification with mass spectrometry. J Am Soc Mass Spectrom 26:677–685

    Article  CAS  Google Scholar 

  229. Hoffmann W, Hofmann J, Pagel K (2014) Energy-resolved ion mobility-mass spectrometry—a concept to improve the separation of isomeric carbohydrates. J Am Soc Mass Spectrom 1–9

    Google Scholar 

  230. Nagy G, Pohl NLB (2015) Monosaccharide identification as a first step toward de novo carbohydrate sequencing: mass spectrometry strategy for the identification and differentiation of diastereomeric and enantiomeric pentose isomers. Anal Chem 87:4566–4571

    Article  CAS  Google Scholar 

  231. Lee S, Wyttenbach T, Bowers MT (1997) Gas phase structures of sodiated oligosaccharides by ion mobility/ion chromatography methods. Int J Mass Spectrom Ion Process 167–168:605–614

    Article  Google Scholar 

  232. Fenn LS, McLean JA (2011) Structural resolution of carbohydrate positional and structural isomers based on gas-phase ion mobility-mass spectrometry. Phys Chem Chem Phys 13:2196–2205

    Article  CAS  Google Scholar 

  233. Williams JP et al (2010) Characterization of simple isomeric oligosaccharides and the rapid separation of glycan mixtures by ion mobility mass spectrometry. Int J Mass Spectrom 298:119–127

    Article  CAS  Google Scholar 

  234. Lundborg M, Widmalm G (2011) Structural analysis of glycans by nmr chemical shift prediction. Anal Chem 83:1514–1517

    Article  CAS  Google Scholar 

  235. Barb AW, Prestegard JH (2011) NMR analysis demonstrates immunoglobulin G N-glycans are accessible and dynamic. Nat Chem Biol 7:147–153

    Article  CAS  Google Scholar 

  236. Van Calsteren M-R, Gagnon F, Nishimura J, Makino S (2015) Structure determination of the neutral exopolysaccharide produced by Lactobacillus delbrueckii subsp. bulgaricus OLL1073R-1. Carbohydr Res 413:115–122

    Article  CAS  Google Scholar 

  237. Wormald MR et al (2002) Conformational studies of oligosaccharides and glycopeptides: complementarity of NMR, X-ray crystallography, and molecular modelling. Chem Rev 102:371–386

    Article  CAS  Google Scholar 

  238. Perez S et al (1996) Crystal and molecular structure of a histo-blood group antigen involved in cell adhesion: the Lewis x trisaccharide. Glycobiology 6:537–542

    Article  CAS  Google Scholar 

  239. Rudd PM et al (1999) Roles for glycosylation of cell surface receptors involved in cellular immune recognition. J Mol Biol 293:351–366

    Article  CAS  Google Scholar 

  240. Huang CY et al (2006) Carbohydrate microarray for profiling the antibodies interacting with Globo H tumor antigen. Proc. Natl. Acad. Sci. U. S. A. 103:15–20

    Article  CAS  Google Scholar 

  241. Serna S, Yan S, Martin-Lomas M, Wilson IBH, Reichardt NC (2011) Fucosyltransferases as synthetic tools: glycan array based substrate selection and core fucosylation of synthetic N-glycans. J Am Chem Soc 133:16495–16502

    Article  CAS  Google Scholar 

  242. Sanchez-Ruiz A, Serna S, Ruiz N, Martin-Lomas M, Reichardt NC (2011) MALDI-TOF mass spectrometric analysis of enzyme activity and lectin trapping on an array of N-glycans. Angew. Chem.-Int. Edit. 50:1801–1804

    Article  CAS  Google Scholar 

  243. Bundy J, Fenselau C (1999) Lectin-based affinity capture for MALDI-MS analysis of bacteria. Anal Chem 71:1460–1463

    Article  CAS  Google Scholar 

  244. Gray CJ, Weissenborn MJ, Eyers CE, Flitsch SL (2013) Enzymatic reactions on immobilised substrates. Chem. Soc, Rev

    Google Scholar 

  245. Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 105:1103–1169

    Article  CAS  Google Scholar 

  246. Perkins DN, Pappin DJC, Creasy DM, Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567

    Article  CAS  Google Scholar 

  247. Hirabayashi J, Yamada M, Kuno A, Tateno H (2013) Lectin microarrays: concept, principle and applications. Chem Soc Rev 42:4443–4458

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine L. Flitsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gray, C., Flitsch, S.L. (2018). Methods for the High Resolution Analysis of Glycoconjugates. In: Witczak, Z., Bielski, R. (eds) Coupling and Decoupling of Diverse Molecular Units in Glycosciences. Springer, Cham. https://doi.org/10.1007/978-3-319-65587-1_11

Download citation

Publish with us

Policies and ethics