Skip to main content
Log in

Populations of Metal-Glycan Structures Influence MS Fragmentation Patterns

  • Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

The structures and collision-induced dissociation (CID) fragmentation patterns of the permethylated glycan Man5GlcNAc2 are investigated by a combination of hybrid ion mobility spectrometry (IMS), mass spectrometry (MS), and MS/MS techniques. IMS analysis of eight metal-adducted glycans ([Man5GlcNAc2 + M]2+, where M = Mn, Fe, Co, Ni, Cu, Mg, Ca, and Ba) shows distinct conformer patterns. These conformers appear to arise from individual metals binding at different sites on the glycan. Fragmentation studies suggest that these different binding sites influence the CID fragmentation patterns. This paper describes a series of separation, activation, and fragmentation studies that assess which fragments arise from each of the different gas-phase conformer states. Comparison of the glycan distributions formed under gentle ionization conditions with those obtained after activation of the gas-phase ions suggests that these conformer binding states also appear to exist in solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Scheme 1
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Helenius, A.: Intracellular functions of N-linked glycans. Science 291, 2364–2369 (2001)

    Article  CAS  Google Scholar 

  2. Dwek, R.A.: Glycobiology: toward understanding the function of sugars. Chem. Rev. 96, 683–720 (1996)

    Article  CAS  Google Scholar 

  3. Varki, A.: Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3, 97–130 (1993)

    Article  CAS  Google Scholar 

  4. Thu, B., Skjåk-Bræk, G., Micali, F., Vittur, F., Rizzo, R.: The spatial distribution of calcium in alginate gel beads analysed by synchrotron-radiation induced X-ray Emission (SRIXE). Carbohydr. Res. 297, 101–105 (1997)

    Article  CAS  Google Scholar 

  5. Müthing, J., Maurer, U., Weber-Schürholz, S.: Glycosphingolipids of skeletal muscle: II. Modulation of Ca2+-flux in triad membranes by gangliosides. Carbohydr. Res. 307, 147–157 (1998)

    Article  Google Scholar 

  6. Hartinger, C.G., Nazarov, A.A., Ashraf, S.M., Dyson, P.J., Keppler, B.K.: Carbohydrate–metal complexes and their potential as anticancer agents. Curr. Med. Chem. 15, 2574–2591 (2008)

    Article  CAS  Google Scholar 

  7. Gyurcsik, B., Nagy, L.: Carbohydrates as ligands: coordination equilibria and structure of the metal complexes. Coord. Chem. Rev. 203, 81–149 (2000)

    Article  CAS  Google Scholar 

  8. Fenn, J.B., Mann, M., Meng, C.K., Wong, S.F., Whitehouse, C.M.: Electrospray ionization for mass spectrometry of large biomolecules. Science 246, 64–71 (1989)

    Article  CAS  Google Scholar 

  9. Han, L., Costello, C.: Mass spectrometry of glycans. Biochem. Mosc. 78, 710–720 (2013)

    Article  CAS  Google Scholar 

  10. Zaia, J.: Mass spectrometry of oligosaccharides. Mass Spectrom. Rev. 23, 161–227 (2004)

    Article  CAS  Google Scholar 

  11. Stumpo, K.A., Reinhold, V.N.: The N-Glycome of Human Plasma. J. Proteome Res. 9, 4823–4830 (2010)

    Article  CAS  Google Scholar 

  12. Harvey, D.J.: Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2007–2008. Mass Spectrom. Rev. 31, 183–311 (2012)

    Article  CAS  Google Scholar 

  13. Medzihradszky, K.F., Gillece-Castro, B.L., Townsend, R.R., Burlingame, A.L., Hardy, M.R.: Structural elucidation of O-linked glycopeptides by high energy collision-induced dissociation. J. Am. Soc. Mass Spectrom. 7, 319–328 (1996)

    Article  CAS  Google Scholar 

  14. Prien, J.M., Ashline, D.J., Lapadula, A.J., Zhang, H., Reinhold, V.N.: The high mannose glycans from bovine ribonuclease B isomer characterization by ion trap MS. J. Am. Soc. Mass Spectrom. 20, 539–556 (2009)

    Article  CAS  Google Scholar 

  15. Costello, C.E., Contado-Miller, J.M., Cipollo, J.F.: A glycomics platform for the analysis of permethylated oligosaccharide alditols. J. Am. Soc. Mass Spectrom. 18, 1799–1812 (2007)

    Article  CAS  Google Scholar 

  16. Harvey, D.J.: Collision-induced fragmentation of underivatized N-linked carbohydrates ionized by electrospray. J. Mass Spectrom. 35, 1178–1190 (2000)

    Article  CAS  Google Scholar 

  17. Harvey, D.J.: Ionization and collision-induced fragmentation of N-linked and related carbohydrates using divalent cations. J. Am. Soc. Mass Spectrom. 12, 926–937 (2001)

    Article  CAS  Google Scholar 

  18. Cancilla, M.T., Penn, S.G., Carroll, J.A., Lebrilla, C.B.: Coordination of alkali metals to oligosaccharides dictates fragmentation behavior in matrix assisted laser desorption ionization/Fourier transform mass spectrometry. J. Am. Chem. Soc. 118, 6736–6745 (1996)

    Article  CAS  Google Scholar 

  19. Sible, E.M., Brimmer, S.P., Leary, J.A.: Interaction of first row transition metals with α1–3, α1–6 mannotriose and conserved trimannosyl core oligosaccharides: a comparative electrospray ionization study of doubly and singly charged complexes. J. Am. Soc. Mass Spectrom. 8, 32–42 (1997)

    Article  CAS  Google Scholar 

  20. Yu, X., Huang, Y., Lin, C., Costello, C.E.: Energy-dependent electron activated dissociation of metal-adducted permethylated oligosaccharides. Anal. Chem. 84, 7487–7494 (2012)

    Article  CAS  Google Scholar 

  21. Bohrer, B.C., Merenbloom, S.I., Koeniger, S.L., Hilderbrand, A.E., Clemmer, D.E.: Biomolecule analysis by ion mobility spectrometry. Annu. Rev. Anal. Chem. 1, 293–327 (2008)

    Article  CAS  Google Scholar 

  22. Tang, K., Li, F., Shvartsburg, A.A., Strittmatter, E.F., Smith, R.D.: Two-dimensional gas-phase separations coupled to mass spectrometry for analysis of complex mixtures. Anal. Chem. 77, 6381–6388 (2005)

    Article  CAS  Google Scholar 

  23. Kanu, A.B.., Dwivedi, P., Tam, M., Matz, L., Hill, H.H.: Ion mobility-mass spectrometry. J. Mass Spectrom. 43, 1–22 (2008)

    Article  CAS  Google Scholar 

  24. Shvartsburg, A.A., Li, F., Tang, K., Smith, R.D.: Characterizing the structures and folding of free proteins using 2-D gas-phase separations: observation of multiple unfolded conformers. Anal. Chem. 78, 3304–3315 (2006)

    Article  CAS  Google Scholar 

  25. Ruotolo, B.T., Verbeck, G.F., Thomson, L.M., Gillig, K.J., Russell, D.H.: Observation of conserved solution-phase secondary structure in gas-phase tryptic peptides. J. Am. Chem. Soc. 124, 4214–4215 (2002)

    Article  CAS  Google Scholar 

  26. Williams, J.P., Grabenauer, M., Holland, R.J., Carpenter, C.J., Wormald, M.R., Giles, K., Harvey, D.J., Bateman, R.H., Scrivens, J.H., Bowers, M.T.: Characterization of simple isomeric oligosaccharides and the rapid separation of glycan mixtures by ion mobility mass spectrometry. Int. J. Mass Spectrom. 298, 119–127 (2010)

    Article  CAS  Google Scholar 

  27. Harvey, D.J., Scarff, C.A., Edgeworth, M., Crispin, M., Scanlan, C.N., Sobott, F., Allman, S., Baruah, K., Pritchard, L., Scrivens, J.H.: Traveling wave ion mobility and negative ion fragmentation for the structural determination of N-linked glycans. Electrophoresis 34, 2368–2378 (2013)

    Article  CAS  Google Scholar 

  28. Zhu, M., Bendiak, B., Clowers, B., Hill, H.H.: Ion mobility mass spectrometry analysis of isomeric carbohydrate precursor ions. Anal. Bioanal. Chem. 394, 1853–1867 (2009)

    Article  CAS  Google Scholar 

  29. Dwivedi, P., Bendiak, B., Clowers, B.H., Hill, H.H.: Rapid resolution of carbohydrate isomers by electrospray ionization ambient pressure ion mobility spectrometry-time-of-flight mass spectrometry (ESI-APIMS-TOFMS). J. Am. Soc. Mass Spectrom. 18, 1163–1175 (2007)

    Article  CAS  Google Scholar 

  30. Both, P., Green, A., Gray, C., Šardzík, R., Voglmeir, J., Fontana, C., Austeri, M., Rejzek, M., Richardson, D., Field, R., Widmalm, G., Flitsch, S.L., Eyers, C.E.: Discrimination of epimeric glycans and glycopeptides using IM-MS and its potential for carbohydrate sequencing. Nat. Chem. 6, 65–74 (2014)

    Article  CAS  Google Scholar 

  31. In, L., Barran, P.E., Deakin, J.A., Lyon, M., Uhrin, D.: Conformation of glycosaminoglycans by ion mobility mass spectrometry and molecular modelling. Phys. Chem. Chem. Phys. 7, 3464–3471 (2005)

    Article  Google Scholar 

  32. Olivova, P., Chen, W., Chakraborty, A.B.., Gebler, J.C.: Determination of N-glycosylation sites and site heterogeneity in a monoclonal antibody by electrospray quadrupole ion-mobility time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 22, 29–40 (2008)

    Article  CAS  Google Scholar 

  33. Vakhrushev, S.Y., Langridge, J., Campuzano, I., Hughes, C., Peter-Katalinić, J.: Ion mobility mass spectrometry analysis of human glycourinome. Anal. Chem. 80, 2506–2513 (2008)

    Article  CAS  Google Scholar 

  34. Seo, Y., Andaya, A., Leary, J.A.: Preparation, separation, and conformational analysis of differentially sulfated heparin octasaccharide isomers using ion mobility mass spectrometry. Anal. Chem. 84, 2416–2423 (2012)

    Article  CAS  Google Scholar 

  35. Kailemia, M., Park, M., Kaplan, D., Venot, A., Boons, G.-J., Li, L., Linhardt, R., Amster, I.J.: High-field asymmetric-waveform ion mobility spectrometry and electron detachment dissociation of isobaric mixtures of glycosaminoglycans. J. Am. Soc. Mass Spectrom. 25, 258–268 (2014)

    Article  CAS  Google Scholar 

  36. Huang, Y., Dodds, E.D.: Ion mobility studies of carbohydrates as group I adducts: isomer-specific collisional cross section dependence on metal ion radius. Anal. Chem. 85, 9728–9735 (2013)

    Article  CAS  Google Scholar 

  37. Fenn, L.S., McLean, J.A.: Structural resolution of carbohydrate positional and structural isomers based on gas-phase ion mobility mass spectrometry. Phys. Chem. Chem. Phys. 13, 2196–2205 (2011)

    Article  CAS  Google Scholar 

  38. Hoffmann, W., Hofmann, J., Pagel, K.: Energy-resolved ion mobility-mass spectrometry—a concept to improve the separation of isomeric carbohydrates. J. Am. Soc. Mass Spectrom. 25, 471–479 (2014)

    Article  CAS  Google Scholar 

  39. Lee, S., Valentine, S.J., Reilly, J.P., Clemmer, D.E.: Analyzing a mixture of disaccharides by IMS-VUVPD-MS. Int. J. Mass Spectrom. 309, 161–167 (2012)

    CAS  Google Scholar 

  40. Zhu, F., Lee, S., Valentine, S., Reilly, J., Clemmer, D.: Mannose7 glycan isomer characterization by IMS-MS/MS analysis. J. Am. Soc. Mass Spectrom. 23, 2158–2166 (2012)

    Article  CAS  Google Scholar 

  41. Plasencia, M.D., Merenbloom, S.I., Mechref, Y., Clemmer, D.E.: Resolving and assigning N-Linked glycan structural isomers from ovalbumin by IMS-MS. J. Am. Soc. Mass Spectrom. 19, 1706–1715 (2008)

    Article  CAS  Google Scholar 

  42. Koeniger, S.L., Merenbloom, S.I., Valentine, S.J., Jarrold, M.F., Udseth, H.R., Smith, R.D., Clemmer, D.E.: An IMS-IMS analogue of MS-MS. Anal. Chem. 78, 4161–4174 (2006)

    Article  CAS  Google Scholar 

  43. Pierson, N.A., Valentine, S.J., Clemmer, D.E.: Evidence for a quasi-equilibrium distribution of states for bradykinin M+3H (3+) ions in the gas phase. J. Phys. Chem. B 114, 7777–7783 (2010)

    Article  CAS  Google Scholar 

  44. Pierson, N.A., Clemmer, D.E.: An IMS-IMS threshold method for semi-quantitative determination of activation barriers: interconversion of proline Cis↔Trans forms in triply protonated bradykinin. Int. J. Mass Spectrom. (2014). doi:10.1016/j.ijms.2014.07.012

  45. Glover, M.S., Dilger, J.M., Zhu, F., Clemmer, D.E.: The Binding of Ca2+, Co2+, Ni2+, Cu2+, and Zn2+ cations to angiotensin I determined by mass spectrometry-based techniques. Int. J. Mass Spectrom. 354–355, 318–325 (2013)

    Article  Google Scholar 

  46. Liang, C.J., Yamashita, K., Kobota, A.: Structure study of carbohydrate moiety from bovine pancreas ribonuclease B. J. Biochem. 88, 51–58 (1980)

    CAS  Google Scholar 

  47. Fu, D.T., Chen, L., Oneill, R.A.: A detailed structure characterization of ribonuclease B oligosacchrides by H1NMR sepctroscopy and mass spectrometry. Carbohydr. Res. 261, 173–186 (1994)

    Article  CAS  Google Scholar 

  48. Revercomb, H.E., Mason, E.A.: Theory of plasma chromatography/gaseous electrophoresis. Review. Anal. Chem. 47, 970–983 (1975)

    Article  CAS  Google Scholar 

  49. Mesleh, M.F., Hunter, J.M., Shvartsburg, A.A., Schatz, G.C., Jarrold, M.F.: Structural information from ion mobility measurements: effects of the long-range potential. J. Phys. Chem. 100, 16082–16086 (1996)

    Article  CAS  Google Scholar 

  50. Shvartsburg, A.A., Jarrold, M.F.: An exact hard-spheres scattering model for the mobilities of polyatomic ions. Chem. Phys. Lett. 261, 86–91 (1996)

    Article  CAS  Google Scholar 

  51. St. Louis, R.H., Hill, H.H., Eiceman, G.A.: Ion mobility spectrometry in analytical chemistry. Crit. Rev. Anal. Chem. 21, 321–355 (1990)

    Article  CAS  Google Scholar 

  52. Hoaglund-Hyzer, C.S., Counterman, A.E., Clemmer, D.E.: Anhydrous protein ions. Chem. Rev. 99, 3037–3080 (1999)

    Article  CAS  Google Scholar 

  53. von Helden, G., Wyttenbach, T., Bowers, M.T.: Conformation of macromolecules in the gas phase: use of matrix-assisted laser desorption methods in ion chromatography. Science 267, 1483–1485 (1995)

    Article  Google Scholar 

  54. Hoaglund, C.S., Valentine, S.J., Sporleder, C.R., Reilly, J.P., Clemmer, D.E.: Three-dimensional ion mobility TOFMS analysis of electrosprayed biomolecules. Anal. Chem. 70, 2236–2242 (1998)

    Article  CAS  Google Scholar 

  55. Clemmer, D.E., Jarrold, M.: Ion mobility measurements and their applications to clusters and biomolecules. J. Mass Spectrom. 32, 577–592 (1997)

    Article  CAS  Google Scholar 

  56. Isailovic, D., Plasencia, M.D., Gaye, M.M., Stokes, S.T., Kurulugama, R.T., Pungpapong, V., Zhang, M., Kyselova, Z., Goldman, R., Mechref, Y., Novotny, M.V., Clemmer, D.E.: Delineating diseases by IMS-MS profiling of serum N-linked glycans. J. Proteome Res. 11, 576–585 (2012)

    Article  CAS  Google Scholar 

  57. Shi, H.L., Pierson, N.A., Valentine, S.J., Clemmer, D.E.: Conformation types of ubiquitin M+8H (8+) ions from water: methanol solutions: evidence for the N and A states in aqueous solution. J. Phys. Chem. B 116, 3344–3352 (2012)

    Article  CAS  Google Scholar 

  58. Merenbloom, S.I., Koeniger, S.L., Valentine, S.J., Plasencia, M.D., Clemmer, D.E.: IMS-IMS and IMS-IMS-IMS/MS for separating peptide and protein fragment ions. Anal. Chem. 78, 802–2809 (2006)

    Article  Google Scholar 

  59. Tang, K., Shvartsburg, A.A., Lee, H.-N., Prior, D.C., Buschbach, M.A., Li, F., Tolmachev, A.V., Anderson, G.A., Smith, R.D.: High-sensitivity ion mobility spectrometry/mass spectrometry using electrodynamic ion funnel interfaces. Anal. Chem. 77, 3330–3339 (2005)

    Article  CAS  Google Scholar 

  60. Mirza, U.A., Chait, B.T.: Do proteins denature during droplet evolution in electrospray ionization? Int. J. Mass Spectrom. Ion Process. 162, 173–181 (1997)

    Article  CAS  Google Scholar 

  61. Loo, R.R.O., Smith, R.D.: Investigation of the gas-phase structure of electrosprayed proteins using ion-molecule reactions. J. Am. Soc. Mass Spectrom. 5, 207–220 (1994)

    Article  CAS  Google Scholar 

  62. Covey, T., Douglas, D.J.: Collision cross sections for protein ions. J. Am. Soc. Mass Spectrom. 4, 616–623 (1993)

    Article  CAS  Google Scholar 

  63. Li, J., Taraszka, J.A., Counterman, A.E., Clemmer, D.E.: Influence of solvent composition and capillary temperature on the conformations of electrosprayed ions: unfolding of compact ubiquitin conformers from pseudonative and denatured solutions. Int. J. Mass Spectrom. 185–187, 37–47 (1999)

    Article  Google Scholar 

  64. Suckau, D., Shi, Y., Beu, S.C., Senko, M.W., Quinn, J.P., Wampler, F.M., McLafferty, F.W.: Coexisting stable conformations of gaseous protein pons. Proc. Natl. Acad. Sci. U. S. A. 90, 790–793 (1993)

    Article  CAS  Google Scholar 

  65. Hudgins, R.R., Woenckhaus, J., Jarrold, M.F.: High resolution ion mobility measurements for gas phase proteins: correlation between solution phase and gas phase conformations. Int. J. Mass Spectrom. Ion Process. 165/166, 497–507 (1997)

    Article  CAS  Google Scholar 

  66. Loo, J.A., Loo, R.R.O., Udseth, H.R., Edmonds, C.G., Smith, R.D.: Solvent-induced conformational changes of polypeptides probed by electrospray-ionization mass spectrometry. Rapid Commun. Mass Spectrom. 5, 101–105 (1991)

    Article  CAS  Google Scholar 

  67. Katta, V., Chait, B.T.: Observation of the heme–globin complex in native myoglobin by electrospray-ionization mass spectrometry. J. Am. Chem. Soc. 113, 8534–8535 (1991)

    Article  CAS  Google Scholar 

  68. Pierson, N.A., Chen, L., Valentine, S.J., Russell, D.H., Clemmer, D.E.: Number of solution states of bradykinin from ion mobility and mass spectrometry measurements. J. Am. Chem. Soc. 133, 13810–13813 (2011)

    Article  CAS  Google Scholar 

  69. Zucker, S.M., Lee, S., Webber, N., Valentine, S.J., Reilly, J.P., Clemmer, D.E.: An ion mobility/ion trap/photodissociation instrument for characterization of ion structure. J. Am. Soc. Mass Spectrom. 22, 1477–1485 (2011)

    Article  CAS  Google Scholar 

  70. Lee, S., Li, Z.Y., Valentine, S.J., Zucker, S.M., Webber, N., Reilly, J.P., Clemmer, D.E.: Extracted fragment ion mobility distributions: a new method for complex mixture analysis. Int. J. Mass Spectrom. 309, 154–160 (2012)

    CAS  Google Scholar 

  71. Kang, P., Mechref, Y., Klouckova, I., Novotny, M.V.: Solid-phase permethylation of glycans for mass spectrometric analysis. Rapid Commun. Mass Spectrom. 19, 3421–3428 (2005)

    Article  CAS  Google Scholar 

  72. Ceroni, A., Maass, K., Geyer, H., Geyer, R., Dell, A., Haslam, S.M.: GlycoWorkbench: a tool for the computer-assisted annotation of mass spectra of glycans. J. Proteome Res. 7, 1650–1659 (2008)

    Article  CAS  Google Scholar 

  73. Domon, B., Costello, C.E.: A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconj. J. 5, 397–409 (1988)

    Article  CAS  Google Scholar 

  74. Williams, J.P., Brown, J.M., Campuzano, I., Sadler, P.J.: Identifying drug metallation sites on peptides using electron transfer dissociation (ETD), collision induced dissociation (CID), and ion mobility-mass spectrometry (IM-MS). Chem. Commum. 46, 5458–5460 (2010)

    Article  CAS  Google Scholar 

  75. Robinson, E.W., Leib, R.D., Williams, E.R.: The role of conformation on electron capture dissociation of ubiquitin. J. Am. Soc. Mass Spectrom. 17, 1470–1480 (2006)

    Article  Google Scholar 

  76. Devakumar, A., Thompson, M.S., Reilly, J.P.: Fragmentation of oligosaccharide ions with 157 nm vacuum ultraviolet light. Rapid Commun. Mass Spectrom. 19, 2313–2320 (2005)

    Article  CAS  Google Scholar 

  77. Stephens, E., Maslen, S.L., Green, L.G., Williams, D.H.: Fragmentation characteristics of neutral N-linked glycans using a MALDI-TOF/TOF tandem mass spectrometer. Anal. Chem. 76, 2343–2354 (2004)

    Article  CAS  Google Scholar 

  78. Harvey, D.J., Bateman, R.H., Green, M.R.: High-energy collision-induced fragmentation of complex oligosaccharides ionized by matrix-assisted laser desorption/ionization mass spectrometry. J. Mass Spectrom. 32, 167–187 (1997)

    Article  CAS  Google Scholar 

  79. Chen, X., Fung, Y.M.E., Chan, W.Y.K., Wong, P.S., Yeung, H.S., Chan, T.-W.D.: Transition metal ions: charge carriers that mediate the electron capture dissociation pathways of peptides. J. Am. Soc. Mass Spectrom. 22, 2232–2245 (2011)

    Article  CAS  Google Scholar 

  80. Grese, R.P., Cerny, R.L., Gross, M.L.: Metal ion-peptide interactions in the gas phase: a tandem mass spectrometry study of alkali metal cationized peptides. J. Am. Chem. Soc. 111, 2835–2842 (1989)

    Article  CAS  Google Scholar 

  81. Isailovic, D., Kurulugama, R.T., Plasencia, M.D., Stokes, S.T., Kyselova, Z., Goldman, R., Mechref, Y., Novotny, M.V., Clemmer, D.E.: Profiling of human serum glycans associated with liver cancer and cirrhosis by IMS-MS. J. Proteome Res. 7, 1109–1117 (2008)

    Article  CAS  Google Scholar 

  82. McLuckey, S.A.: Principles of collisional activation in analytical mass spectrometry. J. Am. Soc. Mass Spectrom. 3, 599–614 (1992)

    Article  CAS  Google Scholar 

  83. McLuckey, S.A., Goeringer, D.E.: Special feature: tutorial slow heating methods in tandem mass spectrometry. J. Mass Spectrom. 32, 461–474 (1997)

    Article  CAS  Google Scholar 

  84. Wells, J.M., McLuckey, S.A.: Collision-Induced Dissociation (CID) of Peptides and Proteins. In: Burlingame, A.L. (ed.) Methods in Enzymology, p. 148. Academic Press, Waltham (2005)

    Google Scholar 

  85. Wyttenbach, T., Pierson, N.A., Clemmer, D.E., Bowers, M.T.: Ion mobility analysis of molecular dynamics. Annu. Rev. Phys. Chem. 65, 175–196 (2014)

    Article  CAS  Google Scholar 

  86. Shi, H., Atlasevich, N., Merenbloom, S., Clemmer, D.: Solution dependence of the collisional activation of ubiquitin [M + 7H]7+ ions. J. Am. Soc. Mass Spectrom. (2014) doi:10.1007/s13361-014-0834-y

Download references

Acknowledgments

The authors acknowledge partial support of this research by grants from the National Institutes of Health (1RC1GM090797-02 and 5R01GM93322).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David E. Clemmer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 75.2 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, F., Glover, M.S., Shi, H. et al. Populations of Metal-Glycan Structures Influence MS Fragmentation Patterns. J. Am. Soc. Mass Spectrom. 26, 25–35 (2015). https://doi.org/10.1007/s13361-014-1000-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-014-1000-2

Keywords

Navigation