Skip to main content

Management of Periprosthetic Joint Infection

  • Chapter
  • First Online:
Prosthetic Joint Infections

Abstract

The management of periprosthetic joint infections is a challenging issue, needing a combined medical and surgical approach. The presence of antibiotic-tolerant biofilm-embedded bacteria will demand a sophisticated antimicrobial treatment, influenced by the surgical treatment chosen. In this regard, the main surgical alternatives are curative attempt with prosthesis retention, curative attempt with prosthesis removal and palliative treatment with prosthesis retention. The choice for one of these depends on the patient’s baseline condition, the aetiology of the infection and the clinical presentation. Acute cases with periprosthetic soft tissue in good condition, a soundly fixed prosthesis, and caused by microorganisms susceptible to antibiotics with a good anti-biofilm profile, can be managed by debridement and prosthesis retention. Chronic cases or episodes not meeting these conditions should be managed with prosthesis removal and submitted to a one- or two-step exchange procedure or to joint arthrodesis. Alternatively, patients with significant comorbidities precluding aggressive surgical approaches and with stable and free-pain prosthesis could be managed with long-term suppressive antibiotics. For staphylocococci, rifampin plus levofloxacin is the treatment of choice. Other alternative rifampin-based combinations may be also suitable for treating these infections. In the case of Gram-negative bacilli, ciprofloxacin is recommended as the first-line treatment. For enterococci and streptococci, β-lactams are the preferred treatment, and some evidence suggests the benefits of adding rifampin. Further research is needed to find alternative treatments when these are not available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AUC:

Area under the curve

CNS:

Coagulase-negative staphylococci

CRP:

C-reactive protein

DAIR:

Debridement, antibiotics and implant retention

ESBL:

Extended-spectrum β-lactamase

ID:

Infectious disease (physician)

IDSA:

Infectious Diseases Society of America

MBC:

Minimal bactericidal concentration

MBCstat :

Minimal bactericidal concentration for bacteria in a stationary state of growth

MBEC:

Minimal biofilm eradication concentration

MBIC:

Minimal biofilm inhibitory concentration

MIC:

Minimal inhibitory concentration

MRSA:

Methicillin-resistant Staphylococcus aureus

MSSA:

Methicillin-susceptible Staphylococcus aureus

PJI:

Periprosthetic joint infection

SAT:

Suppressive antimicrobial treatment

References

  1. Cobo J, Del Pozo JL. Prosthetic joint infection: diagnosis and management. Expert Rev Anti-Infect Ther. 2011;9(9):787–802.

    Article  PubMed  Google Scholar 

  2. Zimmerli W, Trampuz A, Ochsner PE. Prosthetic-joint infections. New Engl J Med. 2004;351(16):1645–54.

    Article  CAS  PubMed  Google Scholar 

  3. Tsukayama DT, Estrada R, Gustilo RB. Infection after total hip arthroplasty. A study of the treatment of one hundred and six infections. J Bone Joint Surg Am. 1996;78(4):512–23.

    Article  CAS  PubMed  Google Scholar 

  4. Fisman DN, Reilly DT, Karchmer AW, Goldie SJ. Clinical effectiveness and cost-effectiveness of 2 management strategies for infected total hip arthroplasty in the elderly. Clin Infect Dis. 2001;32(3):419–30.

    Article  CAS  PubMed  Google Scholar 

  5. Achermann Y, Stasch P, Preiss S, Lucke K, Vogt M. Characteristics and treatment outcomes of 69 cases with early prosthetic joint infections of the hip and knee. Infection. 2014;42(3):511–9.

    Article  CAS  PubMed  Google Scholar 

  6. Senneville E, Joulie D, Legout L, Valette M, Dezeque H, Beltrand E, et al. Outcome and predictors of treatment failure in total hip/knee prosthetic joint infections due to Staphylococcus aureus. Clin Infect Dis. 2011;53(4):334–40.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sherrell JC, Fehring TK, Odum S, Hansen E, Zmistowski B, Dennos A, et al. The Chitranjan Ranawat Award: fate of two-stage reimplantation after failed irrigation and debridement for periprosthetic knee infection. Clin Orthop Relat Res. 2011;469(1):18–25.

    Article  PubMed  Google Scholar 

  8. Osmon DR, Berbari EF, Berendt AR, Lew D, Zimmerli W, Steckelberg JM, et al. Diagnosis and management of prosthetic joint infection: clinical practice guidelines by the Infectious Diseases Society of America. Clin Infect Dis. 2013;56(1):e1–e25.

    Article  PubMed  Google Scholar 

  9. Laffer RR, Graber P, Ochsner PE, Zimmerli W. Outcome of prosthetic knee-associated infection: evaluation of 40 consecutive episodes at a single centre. Clin Microbiol Infect. 2006;12(5):433–9.

    Article  CAS  PubMed  Google Scholar 

  10. Sendi P, Christensson B, Uckay I, Trampuz A, Achermann Y, Boggian K, et al. Group B streptococcus in prosthetic hip and knee joint-associated infections. J Hosp Infect. 2011;79(1):64–9.

    Article  CAS  PubMed  Google Scholar 

  11. Tschudin-Sutter S, Frei R, Dangel M, Jakob M, Balmelli C, Schaefer DJ, et al. Validation of a treatment algorithm for orthopaedic implant-related infections with device-retention-results from a prospective observational cohort study. Clin Microbiol Infect. 2016;22(5):457.e1–9.

    Article  CAS  Google Scholar 

  12. Bejon P, Berendt A, Atkins BL, Green N, Parry H, Masters S, et al. Two-stage revision for prosthetic joint infection: predictors of outcome and the role of reimplantation microbiology. J Antimicrob Chemother. 2010;65(3):569–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tande AJ, Patel R. Prosthetic joint infection. Clin Microbiol Rev. 2014;27(2):302–45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Landersdorfer CB, Bulitta JB, Kinzig M, Holzgrabe U, Sorgel F. Penetration of antibacterials into bone: pharmacokinetic, pharmacodynamic and bioanalytical considerations. Clin Pharmacokinet. 2009;48(2):89–124.

    Article  CAS  PubMed  Google Scholar 

  15. Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999;284(5418):1318–22.

    Article  CAS  PubMed  Google Scholar 

  16. Stewart PS, Costerton JW. Antibiotic resistance of bacteria in biofilms. Lancet. 2001;358(9276):135–8.

    Article  CAS  PubMed  Google Scholar 

  17. Ceri H, Olson ME, Stremick C, Read RR, Morck D, Buret A. The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol. 1999;37(6):1771–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Widmer AF, Frei R, Rajacic Z, Zimmerli W. Correlation between in vivo and in vitro efficacy of antimicrobial agents against foreign body infections. J Infect Dis. 1990;162(1):96–102.

    Article  CAS  PubMed  Google Scholar 

  19. Chuard C, Herrmann M, Vaudaux P, Waldvogel FA, Lew DP. Successful therapy of experimental chronic foreign-body infection due to methicillin-resistant Staphylococcus aureus by antimicrobial combinations. Antimicrob Agents Chemother. 1991;35(12):2611–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Murillo O, Pachon ME, Euba G, Verdaguer R, Carreras M, Cabellos C, et al. Intracellular antimicrobial activity appearing as a relevant factor in antibiotic efficacy against an experimental foreign-body infection caused by Staphylococcus aureus. J Antimicrob Chemother. 2009;64(5):1062–6.

    Article  CAS  PubMed  Google Scholar 

  21. Sendi P, Rohrbach M, Graber P, Frei R, Ochsner PE, Zimmerli W. Staphylococcus aureus small colony variants in prosthetic joint infection. Clin Infect Dis. 2006;43(8):961–7.

    Article  PubMed  Google Scholar 

  22. Maurin M, Raoult D. Intracellular organisms. Int J Antimicrob Agents. 1997;9(1):61–70.

    Article  CAS  PubMed  Google Scholar 

  23. Proctor RA, Peters G. Small colony variants in staphylococcal infections: diagnostic and therapeutic implications. Clin Infect Dis. 1998;27(3):419–22.

    Article  CAS  PubMed  Google Scholar 

  24. Burger RR, Basch T, Hopson CN. Implant salvage in infected total knee arthroplasty. Clin Orthop Relat Res. 1991;273:105–12.

    Google Scholar 

  25. Aboltins CA, Page MA, Buising KL, Jenney AW, Daffy JR, Choong PF, et al. Treatment of staphylococcal prosthetic joint infections with debridement, prosthesis retention and oral rifampicin and fusidic acid. Clin Microbiol Infect. 2007;13(6):586–91.

    Article  CAS  PubMed  Google Scholar 

  26. Byren I, Bejon P, Atkins BL, Angus B, Masters S, McLardy-Smith P, et al. One hundred and twelve infected arthroplasties treated with ‘DAIR’ (debridement, antibiotics and implant retention): antibiotic duration and outcome. J Antimicrob Chemother. 2009;63(6):1264–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lora-Tamayo J, Murillo O, Iribarren JA, Soriano A, Sanchez-Somolinos M, Baraia-Etxaburu JM, et al. A large multicenter study of methicillin-susceptible and methicillin-resistant Staphylococcus aureus prosthetic joint infections managed with implant retention. Clin Infect Dis. 2013;56(2):182–94.

    Article  PubMed  Google Scholar 

  28. Rodriguez-Pardo D, Pigrau C, Lora-Tamayo J, Soriano A, del Toro MD, Cobo J, et al. Gram-negative prosthetic joint infection: outcome of a debridement, antibiotics and implant retention approach. A large multicentre study. Clin Microbiol Infect. 2014;20(11):O911–9.

    Article  CAS  PubMed  Google Scholar 

  29. Martinez-Pastor JC, Munoz-Mahamud E, Vilchez F, Garcia-Ramiro S, Bori G, Sierra J, et al. Outcome of acute prosthetic joint infections due to gram-negative bacilli treated with open debridement and retention of the prosthesis. Antimicrob Agents Chemother. 2009;53(11):4772–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sendi P, Banderet F, Graber P, Zimmerli W. Clinical comparison between exogenous and haematogenous periprosthetic joint infections caused by Staphylococcus aureus. Clin Microbiol Infect. 2011;17(7):1098–100.

    Article  CAS  PubMed  Google Scholar 

  31. Vilchez F, Martinez-Pastor JC, Garcia-Ramiro S, Bori G, Macule F, Sierra J, et al. Outcome and predictors of treatment failure in early post-surgical prosthetic joint infections due to Staphylococcus aureus treated with debridement. Clin Microbiol Infect. 2011;17(3):439–44.

    Article  CAS  PubMed  Google Scholar 

  32. Zimmerli W, Widmer AF, Blatter M, Frei R, Ochsner PE. Role of rifampin for treatment of orthopedic implant-related staphylococcal infections: a randomized controlled trial. Foreign-Body Infection (FBI) Study Group. JAMA. 1998;279(19):1537–41.

    Article  CAS  PubMed  Google Scholar 

  33. Brandt CM, Sistrunk WW, Duffy MC, Hanssen AD, Steckelberg JM, Ilstrup DM, et al. Staphylococcus aureus prosthetic joint infection treated with debridement and prosthesis retention. Clin Infect Dis. 1997;24(5):914–9.

    Article  CAS  PubMed  Google Scholar 

  34. Lora-Tamayo J, Senneville É, Ribera A, Berard L, Dupon M, Zeller V, et al. The not-so-good prognosis of streptococcal periprosthetic joint infection managed by implant retention: the results of a large multicenter study. Clin Infect Dis. 2017; 64(12): 1742–52.

    Google Scholar 

  35. Barberan J, Aguilar L, Carroquino G, Gimenez MJ, Sanchez B, Martinez D, et al. Conservative treatment of staphylococcal prosthetic joint infections in elderly patients. Am J Med. 2006;119(11):993.e7–10.

    Article  Google Scholar 

  36. Geurts JA, Janssen DM, Kessels AG, Walenkamp GH. Good results in postoperative and hematogenous deep infections of 89 stable total hip and knee replacements with retention of prosthesis and local antibiotics. Acta Orthop. 2013;84(6):509–16.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hsieh PH, Lee MS, Hsu KY, Chang YH, Shih HN, Ueng SW. Gram-negative prosthetic joint infections: risk factors and outcome of treatment. Clin Infect Dis. 2009;49(7):1036–43.

    Article  PubMed  Google Scholar 

  38. Marculescu CE, Berbari EF, Hanssen AD, Steckelberg JM, Harmsen SW, Mandrekar JN, et al. Outcome of prosthetic joint infections treated with debridement and retention of components. Clin Infect Dis. 2006;42(4):471–8.

    Article  CAS  PubMed  Google Scholar 

  39. Schoifet SD, Morrey BF. Treatment of infection after total knee arthroplasty by debridement with retention of the components. J Bone Joint Surg Am. 1990;72(9):1383–90.

    Article  CAS  PubMed  Google Scholar 

  40. Tattevin P, Cremieux AC, Pottier P, Huten D, Carbon C. Prosthetic joint infection: when can prosthesis salvage be considered? Clin Infect Dis. 1999;29(2):292–5.

    Article  CAS  PubMed  Google Scholar 

  41. Haasper C, Buttaro M, Hozack W, Aboltins CA, Borens O, Callaghan JJ, et al. Irrigation and debridement. J Orthop Res. 2014;32(Suppl 1):S130–5.

    PubMed  Google Scholar 

  42. Choi HR, von Knoch F, Zurakowski D, Nelson SB, Malchau H. Can implant retention be recommended for treatment of infected TKA? Clin Orthop Relat Res. 2011;469(4):961–9.

    Article  PubMed  Google Scholar 

  43. Chung JY, Ha CW, Park YB, Song YJ, Yu KS. Arthroscopic debridement for acutely infected prosthetic knee: any role for infection control and prosthesis salvage? Arthroscopy. 2014;30(5):599–606.

    Article  PubMed  Google Scholar 

  44. Dixon P, Parish EN, Cross MJ. Arthroscopic debridement in the treatment of the infected total knee replacement. J Bone Joint Surg (Br). 2004;86(1):39–42.

    CAS  Google Scholar 

  45. Sendi P, Zimmerli W. Antimicrobial treatment concepts for orthopaedic device-related infection. Clin Microbiol Infect. 2012;18(12):1176–84.

    Article  CAS  PubMed  Google Scholar 

  46. Bernard L, Legout L, Zurcher-Pfund L, Stern R, Rohner P, Peter R, et al. Six weeks of antibiotic treatment is sufficient following surgery for septic arthroplasty. J Infect. 2010;61(2):125–32.

    Article  PubMed  Google Scholar 

  47. Puhto AP, Puhto T, Syrjala H. Short-course antibiotics for prosthetic joint infections treated with prosthesis retention. Clin Microbiol Infect. 2012;18(11):1143–8.

    Article  CAS  PubMed  Google Scholar 

  48. Soriano A, Garcia S, Bori G, Almela M, Gallart X, Macule F, et al. Treatment of acute post-surgical infection of joint arthroplasty. Clin Microbiol Infect. 2006;12(9):930–3.

    Article  CAS  PubMed  Google Scholar 

  49. Piso RJ, Elke R. Antibiotic treatment can be safely stopped in asymptomatic patients with prosthetic joint infections despite persistent elevated C-reactive protein values. Infection. 2010;38(4):293–6.

    Article  CAS  PubMed  Google Scholar 

  50. Lora-Tamayo J, Euba G, Cobo J, Horcajada JP, Soriano A, Sandoval E, et al. Short- versus long-duration levofloxacin plus rifampicin for acute staphylococcal prosthetic joint infection managed with implant retention: a randomised clinical trial. Int J Antimicrob Agents. 2016;48(3):310–6.

    Article  CAS  PubMed  Google Scholar 

  51. Tornero E, Morata L, Martinez-Pastor JC, Bori G, Mensa J, Soriano A. Prosthetic joint infections due to methicillin-resistant and methicillin-susceptible staphylococci treated with open debridement and retention of the prosthesis. Rev Esp Quimioter. 2013;26(4):353–9.

    PubMed  Google Scholar 

  52. Chuard C, Lucet JC, Rohner P, Herrmann M, Auckenthaler R, Waldvogel FA, et al. Resistance of Staphylococcus aureus recovered from infected foreign body in vivo to killing by antimicrobials. J Infect Dis. 1991;163(6):1369–73.

    Article  CAS  PubMed  Google Scholar 

  53. Zimmerli W, Lew PD, Waldvogel FA. Pathogenesis of foreign body infection. Evidence for a local granulocyte defect. J Clin Invest. 1984;73(4):1191–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zimmerli W, Waldvogel FA, Vaudaux P, Nydegger UE. Pathogenesis of foreign body infection: description and characteristics of an animal model. J Infect Dis. 1982;146(4):487–97.

    Article  CAS  PubMed  Google Scholar 

  55. Coenye T, Nelis HJ. In vitro and in vivo model systems to study microbial biofilm formation. J Microbiol Methods. 2010;83(2):89–105.

    Article  CAS  PubMed  Google Scholar 

  56. Zak O, Sande MA. Handbook of animal models of infection. experimental models in antimicrobial chemotherapy. London: Academic; 1999.

    Google Scholar 

  57. Del Pozo JL, Rouse MS, Euba G, Kang CI, Mandrekar JN, Steckelberg JM, et al. The electricidal effect is active in an experimental model of Staphylococcus epidermidis chronic foreign body osteomyelitis. Antimicrob Agents Chemother. 2009;53(10):4064–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Saleh-Mghir A, Muller-Serieys C, Dinh A, Massias L, Cremieux AC. Adjunctive rifampin is crucial to optimizing daptomycin efficacy against rabbit prosthetic joint infection due to methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2011;55(10):4589–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lucet JC, Herrmann M, Rohner P, Auckenthaler R, Waldvogel FA, Lew DP. Treatment of experimental foreign body infection caused by methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 1990;34(12):2312–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Murillo O, Domenech A, Garcia A, Tubau F, Cabellos C, Gudiol F, et al. Efficacy of high doses of levofloxacin in experimental foreign-body infection by methicillin-susceptible Staphylococcus aureus. Antimicrob Agents Chemother. 2006;50(12):4011–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Schaad HJ, Chuard C, Vaudaux P, Waldvogel FA, Lew DP. Teicoplanin alone or combined with rifampin compared with vancomycin for prophylaxis and treatment of experimental foreign body infection by methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 1994;38(8):1703–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Schaad HJ, Chuard C, Vaudaux P, Rohner P, Waldvogel FA, Lew DP. Comparative efficacies of imipenem, oxacillin and vancomycin for therapy of chronic foreign body infection due to methicillin-susceptible and -resistant Staphylococcus aureus. J Antimicrob Chemother. 1994;33(6):1191–200.

    Article  CAS  PubMed  Google Scholar 

  63. Blaser J, Vergeres P, Widmer AF, Zimmerli W. In vivo verification of in vitro model of antibiotic treatment of device-related infection. Antimicrob Agents Chemother. 1995;39(5):1134–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cagni A, Chuard C, Vaudaux PE, Schrenzel J, Lew DP. Comparison of sparfloxacin, temafloxacin, and ciprofloxacin for prophylaxis and treatment of experimental foreign-body infection by methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 1995;39(8):1655–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Vaudaux P, Francois P, Bisognano C, Schrenzel J, Lew DP. Comparison of levofloxacin, alatrofloxacin, and vancomycin for prophylaxis and treatment of experimental foreign-body-associated infection by methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2002;46(5):1503–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Vaudaux P, Francois P, Bisognano C, Li D, Lew DP, Schrenzel J. Comparative efficacy of daptomycin and vancomycin in the therapy of experimental foreign body infection due to Staphylococcus aureus. J Antimicrob Chemother. 2003;52(1):89–95.

    Article  CAS  PubMed  Google Scholar 

  67. Vaudaux P, Gjinovci A, Bento M, Li D, Schrenzel J, Lew DP. Intensive therapy with ceftobiprole medocaril of experimental foreign-body infection by methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2005;49(9):3789–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Schaad HJ, Bento M, Lew DP, Vaudaux P. Evaluation of high-dose daptomycin for therapy of experimental Staphylococcus aureus foreign body infection. BMC Infect Dis. 2006;6:74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Murillo O, Pachon ME, Euba G, Verdaguer R, Tubau F, Cabellos C, et al. Antagonistic effect of rifampin on the efficacy of high-dose levofloxacin in staphylococcal experimental foreign-body infection. Antimicrob Agents Chemother. 2008;52(10):3681–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Murillo O, Domenech A, Euba G, Verdaguer R, Tubau F, Cabo J, et al. Efficacy of linezolid alone and in combination with rifampin in staphylococcal experimental foreign-body infection. J Infect. 2008;57(3):229–35.

    Article  PubMed  Google Scholar 

  71. Vaudaux P, Fleury B, Gjinovci A, Huggler E, Tangomo-Bento M, Lew DP. Comparison of tigecycline and vancomycin for treatment of experimental foreign-body infection due to methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2009;53(7):3150–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Murillo O, Pachon ME, Euba G, Verdaguer R, Tubau F, Cabellos C, et al. High doses of levofloxacin vs moxifloxacin against staphylococcal experimental foreign-body infection: the effect of higher MIC-related pharmacokinetic parameters on efficacy. J Infect. 2009;58(3):220–6.

    Article  PubMed  Google Scholar 

  73. Murillo O, Garrigós C, Pachón ME, Euba G, Verdaguer R, Cabellos C, et al. Efficacy of high doses of daptomycin versus alternative therapies against experimental foreign-body infection by methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2009;53(10):4252–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. John AK, Baldoni D, Haschke M, Rentsch K, Schaerli P, Zimmerli W, et al. Efficacy of daptomycin in implant-associated infection due to methicillin-resistant Staphylococcus aureus: importance of combination with rifampin. Antimicrob Agents Chemother. 2009;53(7):2719–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Garrigos C, Murillo O, Euba G, Verdaguer R, Tubau F, Cabellos C, et al. Efficacy of usual and high doses of daptomycin in combination with rifampin versus alternative therapies in experimental foreign-body infection by methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2010;54(12):5251–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Garrigos C, Murillo O, Euba G, Verdaguer R, Tubau F, Cabellos C, et al. Efficacy of tigecycline alone and with rifampin in foreign-body infection by methicillin-resistant Staphylococcus aureus. J Infect. 2011;63(3):229–35.

    Article  CAS  PubMed  Google Scholar 

  77. Garrigos C, Murillo O, Lora-Tamayo J, Verdaguer R, Tubau F, Cabellos C, et al. Efficacy of daptomycin-cloxacillin combination in experimental foreign-body infection due to methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2012;56(7):3806–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Garrigos C, Murillo O, Lora-Tamayo J, Verdaguer R, Tubau F, Cabellos C, et al. Fosfomycin-daptomycin and other fosfomycin combinations as alternative therapies in experimental foreign-body infection by methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2013;57(1):606–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. El Haj C, Murillo O, Ribera A, Vivas M, Garcia-Somoza D, Tubau F, et al. Comparative efficacies of cloxacillin-daptomycin and the standard cloxacillin-rifampin therapies against an experimental foreign-body infection by methicillin-susceptible Staphylococcus aureus. Antimicrob Agents Chemother. 2014;58(9):5576–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. El Haj C, Murillo O, Ribera A, Vivas M, Garcia-Somoza D, Tubau F, et al. Daptomycin combinations as alternative therapies in experimental foreign-body infection caused by meticillin-susceptible Staphylococcus aureus. Int J Antimicrob Agents. 2015;46(2):189–95.

    Article  PubMed  CAS  Google Scholar 

  81. El Haj C, Murillo O, Ribera A, Garcia-Somoza D, Tubau F, Cabellos C, et al. The anti-biofilm effect of macrolides in a rat model of S. aureus foreign-body infection: Might it be of clinical relevance? Med Microbiol Immunol. 2016;206(1):31–9. [Epub ahead of print].

    Article  PubMed  Google Scholar 

  82. Dhand A, Bayer AS, Pogliano J, Yang SJ, Bolaris M, Nizet V, et al. Use of antistaphylococcal beta-lactams to increase daptomycin activity in eradicating persistent bacteremia due to methicillin-resistant Staphylococcus aureus: role of enhanced daptomycin binding. Clin Infect Dis. 2011;53(2):158–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Mehta S, Singh C, Plata KB, Chanda PK, Paul A, Riosa S, et al. beta-Lactams increase the antibacterial activity of daptomycin against clinical methicillin-resistant Staphylococcus aureus strains and prevent selection of daptomycin-resistant derivatives. Antimicrob Agents Chemother. 2012;56(12):6192–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Widmer AF, Gaechter A, Ochsner PE, Zimmerli W. Antimicrobial treatment of orthopedic implant-related infections with rifampin combinations. Clin Infect Dis. 1992;14(6):1251–3.

    Article  CAS  PubMed  Google Scholar 

  85. Drancourt M, Stein A, Argenson JN, Zannier A, Curvale G, Raoult D. Oral rifampin plus ofloxacin for treatment of Staphylococcus-infected orthopedic implants. Antimicrob Agents Chemother. 1993;37(6):1214–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. van Ingen J, Aarnoutse RE, Donald PR, Diacon AH, Dawson R, Plemper van Balen G, et al. Why do we use 600 mg of rifampicin in tuberculosis treatment? Clin Infect Dis. 2011;52(9):e194–9.

    Article  PubMed  CAS  Google Scholar 

  87. Kenny MT, Strates B. Metabolism and pharmacokinetics of the antibiotic rifampin. Drug Metab Rev. 1981;12(1):159–218.

    Article  CAS  PubMed  Google Scholar 

  88. Lora-Tamayo J, Murillo O, Ariza J. Reply to Krause et al. Clin Infect Dis. 2013;56(12):1843–4.

    Article  PubMed  Google Scholar 

  89. Nguyen S, Robineau O, Titecat M, Blondiaux N, Valette M, Loiez C, et al. Influence of daily dosage and frequency of administration of rifampicin-levofloxacin therapy on tolerance and effectiveness in 154 patients treated for prosthetic joint infections. Eur J Clin Microbiol Infect Dis. 2015;34(8):1675–82.

    Article  CAS  PubMed  Google Scholar 

  90. Hooper DC. Quinolones. In: Mandell GL, Bennett JE, Dolin R, editors. Principles & practice of infectious diseases, vol. 1. 6th ed. Philadelphia, PA: Elsevier Churchill Livingstone; 2005. p. 451–73.

    Google Scholar 

  91. Zhao X, Drlica K. Restricting the selection of antibiotic-resistant mutants: a general strategy derived from fluoroquinolone studies. Clin Infect Dis. 2001;33(Suppl 3):S147–56.

    Article  CAS  PubMed  Google Scholar 

  92. San Juan R, Garcia-Reyne A, Caba P, Chaves F, Resines C, Llanos F, et al. Safety and efficacy of moxifloxacin monotherapy for treatment of orthopedic implant-related staphylococcal infections. Antimicrob Agents Chemother. 2010;54(12):5161–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Nijland HM, Ruslami R, Suroto AJ, Burger DM, Alisjahbana B, van Crevel R, et al. Rifampicin reduces plasma concentrations of moxifloxacin in patients with tuberculosis. Clin Infect Dis. 2007;45(8):1001–7.

    Article  CAS  PubMed  Google Scholar 

  94. Lora-Tamayo J, Parra-Ruiz J, Rodriguez-Pardo D, Barberan J, Ribera A, Tornero E, et al. High doses of daptomycin (10 mg/kg/d) plus rifampin for the treatment of staphylococcal prosthetic joint infection managed with implant retention: a comparative study. Diagn Micorbiol Infect Dis. 2014;80(1):66–71.

    Article  CAS  Google Scholar 

  95. Morata L, Senneville E, Bernard L, Nguyen S, Buzele R, Druon J, et al. A retrospective review of the clinical experience of linezolid with or without rifampicin in prosthetic joint infections treated with debridement and implant retention. Infect Dis Ther. 2014;3(2):235–43.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Soriano A, Gomez J, Gomez L, Azanza JR, Perez R, Romero F, et al. Efficacy and tolerability of prolonged linezolid therapy in the treatment of orthopedic implant infections. Eur J Clin Microbiol Infect Dis. 2007;26(5):353–6.

    Article  CAS  PubMed  Google Scholar 

  97. Nguyen S, Pasquet A, Legout L, Beltrand E, Dubreuil L, Migaud H, et al. Efficacy and tolerance of rifampicin-linezolid compared with rifampicin-cotrimoxazole combinations in prolonged oral therapy for bone and joint infections. Clin Microbiol Infect. 2009;15(12):1163–9.

    Article  CAS  PubMed  Google Scholar 

  98. Drancourt M, Stein A, Argenson JN, Roiron R, Groulier P, Raoult D. Oral treatment of Staphylococcus spp. infected orthopaedic implants with fusidic acid or ofloxacin in combination with rifampicin. J Antimicrob Chemother. 1997;39(2):235–40.

    Article  CAS  PubMed  Google Scholar 

  99. Peel TN, Buising KL, Dowsey MM, Aboltins CA, Daffy JR, Stanley PA, et al. Outcome of debridement and retention in prosthetic joint infections by methicillin-resistant staphylococci, with special reference to rifampin and fusidic acid combination therapy. Antimicrob Agents Chemother. 2013;57(1):350–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Czekaj J, Dinh A, Moldovan A, Vaudaux P, Gras G, Hoffmeyer P, et al. Efficacy of a combined oral clindamycin? Rifampicin regimen for therapy of staphylococcal osteoarticular infections. Scand J Infect Dis. 2011;43(11–12):962–7.

    Article  CAS  PubMed  Google Scholar 

  101. Pavoni GL, Giannella M, Falcone M, Scorzolini L, Liberatore M, Carlesimo B, et al. Conservative medical therapy of prosthetic joint infections: retrospective analysis of an 8-year experience. Clin Microbiol Infect. 2004;10(9):831–7.

    Article  CAS  PubMed  Google Scholar 

  102. Calfee DP. Rifamycins. In: Mandell GL, Bennett JE, Dolin R, editors. Principles and practice of infectious diseases. Philadelphia, PA: Elsevier Churchill Livingstone; 2005. p. 374–88.

    Google Scholar 

  103. Parra-Ruiz J, Bravo-Molina A, Pena-Monje A, Hernandez-Quero J. Activity of linezolid and high-dose daptomycin, alone or in combination, in an in vitro model of Staphylococcus aureus biofilm. J Antimicrob Chemother. 2012;67(11):2682–5.

    Article  CAS  PubMed  Google Scholar 

  104. Steed ME, Werth BJ, Ireland CE, Rybak MJ. Evaluation of the novel combination of high-dose daptomycin plus trimethoprim-sulfamethoxazole against daptomycin-nonsusceptible methicillin-resistant Staphylococcus aureus using an in vitro pharmacokinetic/pharmacodynamic model of simulated endocardial vegetations. Antimicrob Agents Chemother. 2012;56(11):5709–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Aboltins CA, Dowsey MM, Buising KL, Peel TN, Daffy JR, Choong PF, et al. Gram-negative prosthetic joint infection treated with debridement, prosthesis retention and antibiotic regimens including a fluoroquinolone. Clin Microbiol Infect. 2011;17(6):862–7.

    Article  CAS  PubMed  Google Scholar 

  106. Brouqui P, Rousseau MC, Stein A, Drancourt M, Raoult D. Treatment of Pseudomonas aeruginosa-infected orthopedic prostheses with ceftazidime-ciprofloxacin antibiotic combination. Antimicrob Agents Chemother. 1995;39(11):2423–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Widmer AF, Wiestner A, Frei R, Zimmerli W. Killing of nongrowing and adherent Escherichia coli determines drug efficacy in device-related infections. Antimicrob Agents Chemother. 1991;35(4):741–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Haagensen JA, Klausen M, Ernst RK, Miller SI, Folkesson A, Tolker-Nielsen T, et al. Differentiation and distribution of colistin- and sodium dodecyl sulfate-tolerant cells in Pseudomonas aeruginosa biofilms. J Bacteriol. 2007;189(1):28–37.

    Article  CAS  PubMed  Google Scholar 

  109. Pamp SJ, Gjermansen M, Johansen HK, Tolker-Nielsen T. Tolerance to the antimicrobial peptide colistin in Pseudomonas aeruginosa biofilms is linked to metabolically active cells, and depends on the pmr and mexAB-oprM genes. Mol Microbiol. 2008;68(1):223–40.

    Article  CAS  PubMed  Google Scholar 

  110. Corvec S, Furustrand Tafin U, Betrisey B, Borens O, Trampuz A. Activities of fosfomycin, tigecycline, colistin, and gentamicin against extended-spectrum-beta-lactamase-producing Escherichia coli in a foreign-body infection model. Antimicrob Agents Chemother. 2013;57(3):1421–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Lora-Tamayo J, Murillo O, Bergen PJ, Nation RL, Poudyal A, Luo X, et al. Activity of colistin combined with doripenem at clinically relevant concentrations against multidrug-resistant Pseudomonas aeruginosa in an in vitro dynamic biofilm model. J Antimicrob Chemother. 2014;69(9):2434–42.

    Article  CAS  PubMed  Google Scholar 

  112. Ribera A, Benavent E, Lora-Tamayo J, Tubau F, Pedrero S, Cabo X, et al. Osteoarticular infection caused by MDR Pseudomonas aeruginosa: the benefits of combination therapy with colistin plus beta-lactams. J Antimicrob Chemother. 2015;70(12):3357–65.

    CAS  PubMed  Google Scholar 

  113. Olson ME, Ceri H, Morck DW, Buret AG, Read RR. Biofilm bacteria: formation and comparative susceptibility to antibiotics. Can J Vet Res. 2002;66(2):86–92.

    PubMed  PubMed Central  Google Scholar 

  114. Betz M, Abrassart S, Vaudaux P, Gjika E, Schindler M, Billieres J, et al. Increased risk of joint failure in hip prostheses infected with Staphylococcus aureus treated with debridement, antibiotics and implant retention compared to Streptococcus. Int Orthop. 2015;39(3):397–401.

    Article  PubMed  Google Scholar 

  115. Everts RJ, Chambers ST, Murdoch DR, Rothwell AG, McKie J. Successful antimicrobial therapy and implant retention for streptococcal infection of prosthetic joints. ANZ J Surg. 2004;74(4):210–4.

    Article  PubMed  Google Scholar 

  116. Meehan AM, Osmon DR, Duffy MC, Hanssen AD, Keating MR. Outcome of penicillin-susceptible streptococcal prosthetic joint infection treated with debridement and retention of the prosthesis. Clin Infect Dis. 2003;36(7):845–9.

    Article  CAS  PubMed  Google Scholar 

  117. Duggan JM, Georgiadis G, VanGorp C, Kleshinski J. Group B streptococcal prosthetic joint infections. J South Orthop Assoc. 2001;10(4):209–14. discussion 14.

    CAS  PubMed  Google Scholar 

  118. Zeller V, Lavigne M, Biau D, Leclerc P, Ziza JM, Mamoudy P, et al. Outcome of group B streptococcal prosthetic hip infections compared to that of other bacterial infections. Joint Bone Spine. 2009;76(5):491–6.

    Article  PubMed  Google Scholar 

  119. Fiaux E, Titecat M, Robineau O, Lora-Tamayo J, El Samad Y, Etienne M, et al. Outcome of patients with streptococcal prosthetic joint infections with special reference to rifampicin combinations. BMC Infect Dis. 2016;16(1):568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. El Helou OC, Berbari EF, Marculescu CE, El Atrouni WI, Razonable RR, Steckelberg JM, et al. Outcome of enterococcal prosthetic joint infection: is combination systemic therapy superior to monotherapy? Clin Infect Dis. 2008;47(7):903–9.

    Article  PubMed  Google Scholar 

  121. Euba G, Lora-Tamayo J, Murillo O, Pedrero S, Cabo J, Verdaguer R, et al. Pilot study of ampicillin-ceftriaxone combination for treatment of orthopedic infections due to Enterococcus faecalis. Antimicrob Agents Chemother. 2009;53(10):4305–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Mainardi JL, Gutmann L, Acar JF, Goldstein FW. Synergistic effect of amoxicillin and cefotaxime against Enterococcus faecalis. Antimicrob Agents Chemother. 1995;39(9):1984–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Tornero E, Senneville E, Euba G, Petersdorf S, Rodriguez-Pardo D, Lakatos B, et al. Characteristics of prosthetic joint infections due to Enterococcus sp. and predictors of failure: a multi-national study. Clin Microbiol Infect. 2014;20(11):1219–24.

    Article  CAS  PubMed  Google Scholar 

  124. Schmit JL. Efficacy of teicoplanin for enterococcal infections: 63 cases and review. Clin Infect Dis. 1992;15(2):302–6.

    Article  CAS  PubMed  Google Scholar 

  125. Graninger W, Wenisch C, Wiesinger E, Menschik M, Karimi J, Presterl E. Experience with outpatient intravenous teicoplanin therapy for chronic osteomyelitis. Eur J Clin Microbiol Infect Dis. 1995;14(7):643–7.

    Article  CAS  PubMed  Google Scholar 

  126. Falagas ME, Siempos II, Papagelopoulos PJ, Vardakas KZ. Linezolid for the treatment of adults with bone and joint infections. Int J Antimicrob Agents. 2007;29(3):233–9.

    Article  CAS  PubMed  Google Scholar 

  127. Yuste JR, Quesada M, Diaz-Rada P, Del Pozo JL. Daptomycin in the treatment of prosthetic joint infection by Enterococcus faecalis: safety and efficacy of high-dose and prolonged therapy. Int J Infect Dis. 2014;27:65–6.

    Article  PubMed  Google Scholar 

  128. Marculescu CE, Berbari EF, Cockerill FR 3rd, Osmon DR. Fungi, mycobacteria, zoonotic and other organisms in prosthetic joint infection. Clin Orthop Relat Res. 2006;451:64–72.

    Article  PubMed  Google Scholar 

  129. Phelan DM, Osmon DR, Keating MR, Hanssen AD. Delayed reimplantation arthroplasty for candidal prosthetic joint infection: a report of 4 cases and review of the literature. Clin Infect Dis. 2002;34(7):930–8.

    Article  PubMed  Google Scholar 

  130. Kuhn DM, George T, Chandra J, Mukherjee PK, Ghannoum MA. Antifungal susceptibility of Candida biofilms: unique efficacy of amphotericin B lipid formulations and echinocandins. Antimicrob Agents Chemother. 2002;46(6):1773–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Brooks DH, Pupparo F. Successful salvage of a primary total knee arthroplasty infected with Candida parapsilosis. J Arthroplast. 1998;13(6):707–12.

    Article  CAS  Google Scholar 

  132. Kuiper JW, van den Bekerom MP, van der Stappen J, Nolte PA, Colen S. 2-stage revision recommended for treatment of fungal hip and knee prosthetic joint infections. Acta Orthop. 2013;84(6):517–23.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Berbari EF, Marculescu C, Sia I, Lahr BD, Hanssen AD, Steckelberg JM, et al. Culture-negative prosthetic joint infection. Clin Infect Dis. 2007;45(9):1113–9.

    Article  PubMed  Google Scholar 

  134. Malekzadeh D, Osmon DR, Lahr BD, Hanssen AD, Berbari EF. Prior use of antimicrobial therapy is a risk factor for culture-negative prosthetic joint infection. Clin Orthop Relat Res. 2010;468(8):2039–45.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Azzam K, McHale K, Austin M, Purtill JJ, Parvizi J. Outcome of a second two-stage reimplantation for periprosthetic knee infection. Clin Orthop Relat Res. 2009;467(7):1706–14.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Kubista B, Hartzler RU, Wood CM, Osmon DR, Hanssen AD, Lewallen DG. Reinfection after two-stage revision for periprosthetic infection of total knee arthroplasty. Int Orthop. 2012;36(1):65–71.

    Article  PubMed  Google Scholar 

  137. Mont MA, Waldman BJ, Hungerford DS. Evaluation of preoperative cultures before second-stage reimplantation of a total knee prosthesis complicated by infection. A comparison-group study. J Bone Joint Surg Am. 2000;82-A(11):1552–7.

    Article  CAS  PubMed  Google Scholar 

  138. Lange J, Troelsen A, Thomsen RW, Soballe K. Chronic infections in hip arthroplasties: comparing risk of reinfection following one-stage and two-stage revision: a systematic review and meta-analysis. Clin Epidemiol. 2012;4:57–73.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Puhto AP, Puhto TM, Niinimaki TT, Leppilahti JI, Syrjala HP. Two-stage revision for prosthetic joint infection: outcome and role of reimplantation microbiology in 107 cases. J Arthroplast. 2014;29(6):1101–4.

    Article  Google Scholar 

  140. Jamsen E, Stogiannidis I, Malmivaara A, Pajamaki J, Puolakka T, Konttinen YT. Outcome of prosthesis exchange for infected knee arthroplasty: the effect of treatment approach. Acta Orthop. 2009;80(1):67–77.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Mahmud T, Lyons MC, Naudie DD, Macdonald SJ, McCalden RW. Assessing the gold standard: a review of 253 two-stage revisions for infected TKA. Clin Orthop Relat Res. 2012;470(10):2730–6.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Hoad-Reddick DA, Evans CR, Norman P, Stockley I. Is there a role for extended antibiotic therapy in a two-stage revision of the infected knee arthroplasty? J Bone Joint Surg (Br). 2005;87(2):171–4.

    Article  CAS  Google Scholar 

  143. Hsieh PH, Huang KC, Lee PC, Lee MS. Two-stage revision of infected hip arthroplasty using an antibiotic-loaded spacer: retrospective comparison between short-term and prolonged antibiotic therapy. J Antimicrob Chemother. 2009;64(2):392–7.

    Article  CAS  PubMed  Google Scholar 

  144. Whittaker JP, Warren RE, Jones RS, Gregson PA. Is prolonged systemic antibiotic treatment essential in two-stage revision hip replacement for chronic Gram-positive infection? J Bone Joint Surg (Br). 2009;91(1):44–51.

    Article  CAS  Google Scholar 

  145. Cobo J, Lora-Tamayo J, Euba G, Jover-Saenz A, Palomino J, del Toro MD, et al. Linezolid in late-chronic prosthetic joint infection caused by gram-positive bacteria. Diagn Micorbiol Infect Dis. 2013;76(1):93–8.

    Article  CAS  Google Scholar 

  146. Parvizi J, Gehrke T, Musculoskeletal Infection Society. Proceedings of the International Consensus on Periprosthetic Joint Infection. 2013. http://www.msis-na.org/wp-content/themes/msis-temp/pdf/ism-periprosthetic-joint-information.pdf. Accessed 1 Jan 2017.

  147. Pitto RP, Spika IA. Antibiotic-loaded bone cement spacers in two-stage management of infected total knee arthroplasty. Int Orthop. 2004;28(3):129–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Cui Q, Mihalko WM, Shields JS, Ries M, Saleh KJ. Antibiotic-impregnated cement spacers for the treatment of infection associated with total hip or knee arthroplasty. J Bone Joint Surg Am. 2007;89(4):871–82.

    PubMed  Google Scholar 

  149. Fink B, Vogt S, Reinsch M, Buchner H. Sufficient release of antibiotic by a spacer 6 weeks after implantation in two-stage revision of infected hip prostheses. Clin Orthop Relat Res. 2011;469(11):3141–7.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Galvez-Lopez R, Pena-Monje A, Antelo-Lorenzo R, Guardia-Olmedo J, Moliz J, Hernandez-Quero J, et al. Elution kinetics, antimicrobial activity, and mechanical properties of 11 different antibiotic loaded acrylic bone cement. Diagn Micorbiol Infect Dis. 2014;78(1):70–4.

    Article  CAS  Google Scholar 

  151. Regis D, Sandri A, Samaila E, Benini A, Bondi M, Magnan B. Release of gentamicin and vancomycin from preformed spacers in infected total hip arthroplasties: measurement of concentrations and inhibitory activity in patients’ drainage fluids and serum. Sci World J. 2013;2013:752184.

    Article  CAS  Google Scholar 

  152. Cabo J, Euba G, Saborido A, Gonzalez-Panisello M, Dominguez MA, Agullo JL, et al. Clinical outcome and microbiological findings using antibiotic-loaded spacers in two-stage revision of prosthetic joint infections. J Infect. 2011;63(1):23–31.

    Article  PubMed  Google Scholar 

  153. Kendall RW, Duncan CP, Smith JA, Ngui-Yen JH. Persistence of bacteria on antibiotic loaded acrylic depots. A reason for caution. Clin Orthop Relat Res. 1996;329:273–80.

    Article  Google Scholar 

  154. Hanssen AD, Rand JA, Osmon DR. Treatment of the infected total knee arthroplasty with insertion of another prosthesis. The effect of antibiotic-impregnated bone cement. Clin Orthop Relat Res. 1994;309:44–55.

    Google Scholar 

  155. Westrich GH, Walcott-Sapp S, Bornstein LJ, Bostrom MP, Windsor RE, Brause BD. Modern treatment of infected total knee arthroplasty with a 2-stage reimplantation protocol. J Arthroplast. 2010;25(7):1015–21. 21 e1-2.

    Article  Google Scholar 

  156. Lonner JH, Siliski JM, Della Valle C, DiCesare P, Lotke PA. Role of knee aspiration after resection of the infected total knee arthroplasty. Am J Orthop (Belle Mead NJ). 2001;30(4):305–9.

    CAS  Google Scholar 

  157. Atkins BL, Athanasou N, Deeks JJ, Crook DW, Simpson H, Peto TE, et al. Prospective evaluation of criteria for microbiological diagnosis of prosthetic-joint infection at revision arthroplasty. The OSIRIS Collaborative Study Group. J Clin Microbiol. 1998;36(10):2932–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Murillo O, Euba G, Calatayud L, Dominguez MA, Verdaguer R, Perez A, et al. The role of intraoperative cultures at the time of reimplantation in the management of infected total joint arthroplasty. Eur J Clin Microbiol Infect Dis. 2008;27(9):805–11.

    Article  CAS  PubMed  Google Scholar 

  159. Spangehl MJ, Masri BA, O’Connell JX, Duncan CP. Prospective analysis of preoperative and intraoperative investigations for the diagnosis of infection at the sites of two hundred and two revision total hip arthroplasties. J Bone Joint Surg Am. 1999;81(5):672–83.

    Article  CAS  PubMed  Google Scholar 

  160. Jenny JY, Lengert R, Diesinger Y, Gaudias J, Boeri C, Kempf JF. Routine one-stage exchange for chronic infection after total hip replacement. Int Orthop. 2014;38(12):2477–81.

    Article  PubMed  Google Scholar 

  161. Singer J, Merz A, Frommelt L, Fink B. High rate of infection control with one-stage revision of septic knee prostheses excluding MRSA and MRSE. Clin Orthop Relat Res. 2012;470(5):1461–71.

    Article  PubMed  Google Scholar 

  162. Tibrewal S, Malagelada F, Jeyaseelan L, Posch F, Scott G. Single-stage revision for the infected total knee replacement: results from a single centre. Bone Joint J. 2014;96-B(6):759–64.

    Article  CAS  PubMed  Google Scholar 

  163. Winkler H, Stoiber A, Kaudela K, Winter F, Menschik F. One stage uncemented revision of infected total hip replacement using cancellous allograft bone impregnated with antibiotics. J Bone Joint Surg (Br). 2008;90(12):1580–4.

    Article  CAS  Google Scholar 

  164. Zeller V, Lhotellier L, Marmor S, Leclerc P, Krain A, Graff W, et al. One-stage exchange arthroplasty for chronic periprosthetic hip infection: results of a large prospective cohort study. J Bone Joint Surg Am. 2014;96(1):e1.

    Article  PubMed  Google Scholar 

  165. Rudelli S, Uip D, Honda E, Lima AL. One-stage revision of infected total hip arthroplasty with bone graft. J Arthroplast. 2008;23(8):1165–77.

    Article  Google Scholar 

  166. Castellanos J, Flores X, Llusa M, Chiriboga C, Navarro A. The Girdlestone pseudarthrosis in the treatment of infected hip replacements. Int Orthop. 1998;22(3):178–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Corona PS, Hernandez A, Reverte-Vinaixa MM, Amat C, Flores X. Outcome after knee arthrodesis for failed septic total knee replacement using a monolateral external fixator. J Orthop Surg (Hong Kong). 2013;21(3):275–80.

    Article  Google Scholar 

  168. Mabry TM, Jacofsky DJ, Haidukewych GJ, Hanssen AD. Comparison of intramedullary nailing and external fixation knee arthrodesis for the infected knee replacement. Clin Orthop Relat Res. 2007;464:11–5.

    PubMed  Google Scholar 

  169. Haddad S, Corona PS, Reverte MM, Amat C, Flores X. Antibiotic-impregnated cement spacer as a definitive treatment for post-arthroscopy shoulder destructive osteomyelitis: case report and review of literature. Strateg Trauma Limb Reconstr. 2013;8(3):199–205.

    Article  Google Scholar 

  170. Prendki V, Zeller V, Passeron D, Desplaces N, Mamoudy P, Stirnemann J, et al. Outcome of patients over 80 years of age on prolonged suppressive antibiotic therapy for at least 6 months for prosthetic joint infection. Int J Infect Dis. 2014;29:184–9.

    Article  PubMed  Google Scholar 

  171. Segreti J, Nelson JA, Trenholme GM. Prolonged suppressive antibiotic therapy for infected orthopedic prostheses. Clin Infect Dis. 1998;27(4):711–3.

    Article  CAS  PubMed  Google Scholar 

  172. Rao N, Crossett LS, Sinha RK, Le Frock JL. Long-term suppression of infection in total joint arthroplasty. Clin Orthop Relat Res. 2003;414:55–60.

    Article  Google Scholar 

  173. Tsukayama DT, Wicklund B, Gustilo RB. Suppressive antibiotic therapy in chronic prosthetic joint infections. Orthopedics. 1991;14(8):841–4.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Michael Maudsley (Universidad de Barcelona) for reviewing the English manuscript. J. L-T is supported by a clinical research contract “Sara Borrell” (Instituto de Salud Carlos III, Ministerio de Economía y Competitividad, CD14/00176).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime Lora-Tamayo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Lora-Tamayo, J., Murillo, O. (2018). Management of Periprosthetic Joint Infection. In: Peel, T. (eds) Prosthetic Joint Infections. Springer, Cham. https://doi.org/10.1007/978-3-319-65250-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65250-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65249-8

  • Online ISBN: 978-3-319-65250-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics