Skip to main content

Unified Principles of Thalamocortical Network Dynamics: A Framework for Typical/Atypical Functional Connectivity

  • Living reference work entry
  • First Online:
Magnetoencephalography

Abstract

In more recent years, there has been increased interest in understanding the brain’s functional connectivity within local and long-range networks. The structure and functional dynamics connectivity at the cortical level has received considerable attention, the structural and functional dynamics of thalamocortical interactions are as yet insufficiently integrated with our knowledge of large-scale connectivity and regional function. An important question, yet to be answered in detail, is how typical cognitive functions and their alterations in neuropsychiatric pathologies are temporally generated across the entire brain space (thalamocortical, corticocortical, corticothalamic) based on intact or altered brain structure, function, and neurochemistry.

We are reviewing MEG and related EEG research in the context of multimodal imaging findings, focusing on thalamocortical dynamics and their role in functional connectivity across corticocortical, and corticothalamic circuits, including oscillatory synchronization within and across the various frequency bands underlying cognition. We then further explore the cognitive consequences of various disruptions of thalamocortical and corticocortical dynamics, including slowing and selective loss of functional network dynamics in particular brain networks related to disabilities or neuropsychiatric pathologies.

We are presenting an overview of current findings and their conceptual implications for how brain imaging technologies can further contribute to a better understanding of the unified principles of the brain’s structural, functional, and temporal connectivity dynamics and their relationship to typical and atypical sensory-motor processing, cognition including consciousness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alkire MT, Hudetz AG, Tononi G (2008) Consciousness and anesthesia. Science 322:876–880

    Article  Google Scholar 

  • Babloyantz A (1991) Self-organization, emerging properties and learning. Plenum Press, New York

    Book  Google Scholar 

  • Banerjee S, Snyder AC, Molholm S, Foxe JJ (2011) Oscillatory alpha-band mechanisms and the deployment of spatial attention to anticipated auditory and visual target locations: supramodal or sensory-specific control mechanisms? J Neurosci 31:9923–9932

    Article  Google Scholar 

  • Barth DS, MacDonald KD (1996) Thalamic modulation of high-frequency oscillating potentials in auditory cortex. Nature 383:78–81

    Article  Google Scholar 

  • Benasich AA, Fitch RH (2012) Developmental dyslexia. Paul H Brooks Publishing Co, Baltimore

    Google Scholar 

  • Benasich AA, Tallal P (2002) Infant discrimination of rapid auditory cues predicts later language impairment. Behav Brain Res 136:31–49

    Article  Google Scholar 

  • Boly M, Garrido MI, Gosseries O, Bruno MA, Boveroux P, Schnakers C et al.(2011) Preserved feedforward but impaired top-down processes in the vegetative state. Science 332:858–862

    Article  Google Scholar 

  • Burgess AP (2012) Towards a unified understanding of event-related changes in the EEG: the firefly model of synchronization through cross frequency phase modulation. PLoS One 7(9):e45630. https://doi.org/10.1371/journal.pone.0045630

    Article  Google Scholar 

  • Canolty RT, Edwards E, Dalal SS, Soltani M, Nagarajan SS, Kirsch HE, Berger MS, Barbaro NM, Knight RT (2006) High gamma power is phase-locked to theta oscillations in human neocortex. Science 13(5793):1626–1628

    Article  Google Scholar 

  • Canolty RT, Ganguly K, Kennerly SW, Cadieu CF, Koepsell K, Wallis JD, Carmena JM (2010) Oscillatory phase coupling coordinates anatomically dispersed functional cell assemblies. Proc Natl Acad Sci U S A 107:17356

    Article  Google Scholar 

  • Castaigne P, Lhermitte F, Buge A, Escourolle P, Derouisne C, Der Agopian P et al.(1980) Paramedian thalamic and midbrain infarcts: clinical and neuropathological study. Ann Neurol 10:127–214

    Article  Google Scholar 

  • Crick F, Koch C (1990) Some reflections on visual awareness. Cold Spring Harb Symp Quant Biol 55:953–962

    Article  Google Scholar 

  • De Ridder D, Vanneste S, Langguth B, Llinas R (2015) Thalamocortical dysrhythmia: a theoretical update in tinnitus. Front Neurol 6:124

    Article  Google Scholar 

  • DeVolder AG, Goffinet AM, Bol A, Michel C, de Barsy T, Laterre C (1990) Brain glucose metabolism in postanoxic stroke. Arch Neurol 47:197–204

    Article  Google Scholar 

  • Doesburg SM, Roggeveen AB, Kitajo K, Ward LM (2008) Large-scale gamma-band phase synchronization and selective attention. Cereb Cortex 18:386–396

    Article  Google Scholar 

  • Doesburg SM, Green JJ, McDonald JJ, Ward LM (2009) Rhythms of consciousness: binocular rivalry reveals large-scale oscillatory network dynamics mediating visual perception. PLoS One 4:e6142

    Article  Google Scholar 

  • Doesburg SM, Herdman AT, Ribary U, Cheung T, Moiseev A, Weinberg H, Liotti M, Weeks D, Grunau RE (2010) Long-range synchronization and local desynchronization of alpha oscillations during visual short-term memory retention in children. Exp Brain Res 4:719–727

    Article  Google Scholar 

  • Doesburg SM, Ribary U, Herdman AT, Miller SP, Poskitt KJ, Moiseev A, Whitfield MF, Synnes A, Grunau RE (2011a) Altered long-range alpha-band synchronization during visual short-term memory retention in children born very preterm. NeuroImage 54:2330–2339

    Article  Google Scholar 

  • Doesburg S, Ribary U, Herdman AT, Moiseev A, Cheung T, Miller SP, Poskitt KJ, Weinberg H, Whitfield MF, Synnes A, Grunau RE (2011b) Magnetoencephalography reveals slowing of resting peak oscillatory frequency in children born very preterm. J Paediatr Res 70:171–176

    Article  Google Scholar 

  • Doesburg SM, Green JJ, McDonald JJ, Ward LM (2012) Theta modulation of inter-regional gamma synchronization during auditory attention control. Brain Res 1431:77–85

    Article  Google Scholar 

  • Doesburg SM, Moiseev A, Herdman AT, Ribary U, Grunau RE (2013) Region-specific slowing of alpha oscillations is associated with visual-perceptual abilities in children born very preterm. Front Hum Neurosci 7:791

    Google Scholar 

  • Façon E, Steriade M, Wertheim N (1958) Hypersomnie prolongée engendrée par les lésions bilatérales du système activateur médial. Le syndrome thrombotique de la bifurcation du tronc basilaire. Rev Neurol (Paris) 98:117–133

    Google Scholar 

  • Fair DA, Bathula D, Mills KL, Costa Dias TG, Blythe MS, Zhang D et al.(2010) Maturing thalamocortical functional connectivity across development. Front Syst Neurosci 4:1–10

    Google Scholar 

  • Fell J et al.(2002) Suppression of EEG gamma activity may cause the attentional blink. Conscious Cogn 11:114–122

    Article  Google Scholar 

  • Florin E, Baillet S (2015) The brain’s resting-state activity is shaped by synchronized cross-frequency coupling of neural oscillations. NeuroImage 88:26–35

    Article  Google Scholar 

  • Fries P (2005) A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn Sci 9:474–480

    Article  Google Scholar 

  • Fries P (2009) Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annu Rev Neurosci 32:209–224

    Article  Google Scholar 

  • Fries P, Reynolds JH, Rorie AE, Desimone R (2001) Modulation of oscillatory neuronal synchronization by selective visual attention. Science 291:1506–1507

    Article  Google Scholar 

  • Gabrieli JDE (2009) Dyslexia: a new synergy between education and cognitive neuroscience. Science 325:280–283

    Article  Google Scholar 

  • Giacino JT, Fins JJ, Laureys S, Schiff ND (2014) Disorders of consciousness after acquired brain injury: the state of the science. Nat Rev Neurol 10:99–114

    Article  Google Scholar 

  • Gray CM (1999) The temporal correlation hypothesis of visual feature integration: Still alive and well. Neuron 24:31–47

    Article  Google Scholar 

  • Gray CM, Singer W (1989) Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc Natl Acad Sci U S A 86:1698–1702

    Article  Google Scholar 

  • Green JJ, Doesburg SM, Ward LM, McDonald JJ (2011) Electrical neuroimaging of voluntary audiospatial attention: evidence for a supramodal attention control network. J Neurosci 31:3560–3564

    Article  Google Scholar 

  • Griesmayr B, Gruber WR, Klimesch W, Sauseng P (2010) Human frontal midline theta and its synchronization to gamma during a verbal delayed match to sample task. Neurobiol Learn Mem 93:208–215

    Article  Google Scholar 

  • Guillery RW, Sherman SM (2002) The thalamus as a monitor of motor outputs. Phil Trans R Soc London 357:1809–1821

    Article  Google Scholar 

  • Hanslmayer S, Gross J, Klimesch W, Shapiro KL (2011) The role of alpha oscillations in temporal attention. Brain Res Rev 67:331–343

    Article  Google Scholar 

  • Hari R, Salmelin R (1997) Human cortical oscillations: a neuromagnetic view through the skull. Trends Neurosci 20:44–49

    Article  Google Scholar 

  • Heim S, Eulitz C, Kaufmann J, Fuchter I, Pantev C, Lamprecht-Dinnesen A et al.(2000) Atypical organisation of the auditory cortex in dyslexia as revealed by MEG. Neuropsychologia 38:1749–1759

    Article  Google Scholar 

  • Helenius P, Uutela K, Hari R (1999) Auditory stream segregation in dyslexic adults. Brain 122:907–913

    Article  Google Scholar 

  • Huang MX, Nichols S, Robb A, Angeles A, Drake A, Holland M, Asmussen S, D’Andrea J, Chun W, Levy M, Cui L, Song T, Baker DG, Hammer P, McLay R, Theilmann RJ, Coimbra R, Diwakar M, Boyd C, Neff J, Liu TT, Webb-Murphy J, Farinpour R, Cheung C, Harrington DL, Heister D, Lee RR (2012) An automatic MEG low-frequency source imaging approach for detecting injuries in mild and moderate TBI patients with blast and non-blast causes. NeuroImage 61:1067

    Article  Google Scholar 

  • Ibrahim GM, Anderson RA, Akiyama T, Ochi A, Otsubo H, Singh-Cadieux G, Donner E, Rutka JT, Snead OC, Doesburg SM (2013) Neocortical pathological high-frequency oscillations are associated with frequency-dependent alterations in functional network topology. J Neurophysiol 110(10):2475–2483

    Article  Google Scholar 

  • Ibrahim GM, Wong SM, Anderson RA, Singh-Cadieux G, Akiyama T, Ochi A, Otsubo H, Okanishi T, Vailiante TA, Donner E, Rutka JT, Snead OC, Doesburg SM (2014) Dynamic modulation of epileptic high frequency oscillations by the phase of slower cortical rhythms. Exp Neurol 251:30–38

    Article  Google Scholar 

  • Jahnsen H, Llinás RR (1984) Electro-physiological properties of guinea-pig thalamic neurones: an in vitro study. J Physiol 349:205–226

    Article  Google Scholar 

  • Jeanmonod D, Magnin M, Morel A (1996) Low-threshold calcium spike bursts in the human thalamus: common physiopathology for sensory, motor and limbic positive symptoms. Brain 119:363–375

    Article  Google Scholar 

  • Jeanmonod D, Magnin M, Morel A, Siegemund M, Cancro R, Lanz M, Llinás R, Ribary U, Kronberg E, Schulman JJ, Zonenshayn M (2001) Thalamocortical dysrhythmia II: clinical and surgical aspects. Thalamus Relat Syst 1:245–254

    Google Scholar 

  • Jensen O, Mazaheri A (2010) Shaping functional architecture by oscillatory alpha activity: gating by inhibition. Front Hum Neurosci 4:1–8

    Article  Google Scholar 

  • Jensen O, Vanni S (2002) A new method to identify multiple sources of oscillatory activity. NeuroImage 15:568–574

    Article  Google Scholar 

  • Jensen O, Kaiser J, Lachaux JP (2007) Human gamma-frequency oscillations associated with attention and memory. Trends Neurosci 30:317–324

    Article  Google Scholar 

  • Jensen O, Gips B, Bergmann TO, Bonnefond M (2014) Temporal coding organized by coupled alpha and gamma oscillations prioritize visual processing. Trends Neurosci 37:357–369

    Article  Google Scholar 

  • Jerbi K, Ossandón T, Hamamé CM, Senova S, Dalal SS et al.(2009) Task-related gamma-band dynamics from an intracerebral perspective: review and implications for surface EEG and MEG. Hum Brain Mapp 30:1758–1771

    Article  Google Scholar 

  • John ER, Prichep LS, Friedman J, Easton P (1988) Neurometrics: computer assisted differential diagnosis of brain dysfunctions. Science 293:162–169

    Article  Google Scholar 

  • Joliot M, Ribary U, Llinás R (1994) Human oscillatory brain activity near 40 Hz coexists with cognitive temporal binding. Proc Natl Acad Sci U S A 91:11748–11751

    Article  Google Scholar 

  • Jones EG (2001) The thalamic matrix and thalamocortical synchrony. Trends Neurosci 24:595–601

    Article  Google Scholar 

  • Jones EG (2002) Thalamic circuitry and thalamocortical synchrony. Phil Trans R Soc London 357:1659–1673

    Article  Google Scholar 

  • Jones EG (2009) Synchrony in the interconnected circuitry of the thalamus and cerebral cortex. In: Schiff ND, Laureys S (eds) Disorders of consciousness, Annals of the New York Academy of Sciences (En ligne), vol 1157. New York Academy of Sciences, Boston, pp 10–23

    Google Scholar 

  • Kahana MJ, Seelig D, Madsen JR (2001) Theta returns. Curr Opin Neurobiol 11:739–744

    Article  Google Scholar 

  • Kirschner A, Kam JWY, Handy TC, Ward LM (2012) Differential synchronization in default and task-specific networks of the human brain. Front Hum Neurosci 6:139

    Article  Google Scholar 

  • Klimesch W, Sauseng P, Hanslmayr S (2007) EEG alpha oscillations: the inhibition timing hypothesis. Brain Res Rev 53:63–88

    Article  Google Scholar 

  • Laureys S (2005) Death, unconsciousness and the brain. Nat Rev Neurosci 6:899–909

    Article  Google Scholar 

  • Laureys S, Goldman S, Phillips C, Van Bogaert P, Aerts J, Luxen A et al.(1999) Impaired effective cortical connectivity in vegetative state: preliminary investigation using PET. NeuroImage 9:377–382

    Article  Google Scholar 

  • Laureys S, Owen AM, Schiff N (2004) Brain function in coma, vegetative state, and related disorders. Lancet Neurol 3:537–546

    Article  Google Scholar 

  • Laureys S, Gosseries O, Tononi G (2015) The neurology of consciousness: cognitive neuroscience and neuropathology. Academic, San Diego

    Google Scholar 

  • Lee G, Byram AC, Owen AM, Ribary U, Stoessl J, Townson A, Stables C, Illes J (2015) Canadian perspectives on the clinical actionability of neuroimaging in disorders of consciousness. Can J Neurol Sci 42:96–105

    Google Scholar 

  • Levy DE, Sidtis JJ, Rottenberg DA, Jarden JO, Strother SC, Dhawan V et al. (1987) Differences in cerebral blood flow and glucose utilization in vegetative versus locked-in patients. Ann Neurol 22:673–682

    Article  Google Scholar 

  • Llinás R (1993) Is dyslexia a dyschronia? Ann N Y Acad Sci 682:48–56

    Article  Google Scholar 

  • Llinás R, Ribary U (1993) Coherent 40-Hz oscillation characterizes dream state in humans. Proc Natl Acad Sci U S A 90:2078–2081

    Article  Google Scholar 

  • Llinás R, Grace AA, Yarom Y (1991) In vitro neurons in mammalian cortical layer 4 exhibit intrinsic activity in the 10 to 50Hz frequency range. Proc Natl Acad Sci U S A 88:897–901

    Article  Google Scholar 

  • Llinás R, Ribary U, Joliot M, Wang XJ (1994) Content and context in temporal thalamocortical binding. In: Buzsaki G, Llinás R, Singer W, Berthoz A, Christen Y (eds) Temporal coding in the brain. Springer, Heidelberg, pp 251–272

    Chapter  Google Scholar 

  • Llinás R, Ribary U, Tallal P (1998a) Dyschronic language-based learning disability. In: Von Euler C, Lundberg I, Llinás R (eds) Basic mechanisms in cognition and language. Elsevier Science, New York, pp 101–108

    Google Scholar 

  • Llinás R, Ribary U, Contreras D, Pedroarena C (1998b) The neuronal basis for consciousness. Phil Trans R Soc London 353:1841–1849

    Article  Google Scholar 

  • Llinás R, Ribary U, Jeanmonod D, Kronberg E, Mitra PP (1999) Thalamo-cortical dysrhythmia: a neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proc Natl Acad Sci U S A 96:15222–15227

    Article  Google Scholar 

  • Llinás R, Ribary U, Jeanmonod D, Cancro R, Kronberg E, Schulman JJ, Zonenshayn M, Magnin M, Morel A, Siegemund M (2001) Thalamocortical dysrhythmia I: functional and imaging aspects. Thalamus Relat Syst 1:237–244

    Article  Google Scholar 

  • Llinás RR, Leznik E, Urbano FJ (2002) Temporal binding via cortical coincidence detection of specific and nonspecific thalamocortical inputs: a voltage-dependent dye-imaging study in mouse brain slices. Proc Natl Acad Sci U S A 99:449–454

    Article  Google Scholar 

  • Lou HC, Joensson M, Biermann-Ruben K, Schnitzler A, Ostergaard L, Kjaer TW, Gross J (2011) Recurrent activity in higher order, modality non-specific brain regions: a granger causality analysis of autobiographic memory retrieval. PLoS One 6:e22286

    Article  Google Scholar 

  • Madler C, Keller I, Schwender D, Poeppel E (1991) Sensory information processing during general anaesthesia: effect of isoflurane on auditory evoked neuronal oscillations. Br J Anaesth 66:81–87

    Article  Google Scholar 

  • Mazaheri A, Picton TW (2005) EEG spectral dynamics during discrimination of auditory and visual targets. Cogn Brain Res 24:81–96

    Article  Google Scholar 

  • Merzenich MM, Jenkins WM, Johnston P, Schreiner C, Miller SL, Tallal P (1996) Temporal processing deficits of language-learning impaired children ameliorated by training. Science 271:77–81

    Article  Google Scholar 

  • Miller G (2010) Neuroscientists grapple with their field’s big questions. Science 330:164

    Article  Google Scholar 

  • Moiseev A, Doesburg SM, Herdman AT, Ribary U, Grunau R (2015) Altered network oscillations and functional connectivity dynamics in children born very preterm. Brain Topogr 28:726–745

    Article  Google Scholar 

  • Mumford D (1991) On the computational architecture of the neocortex. The role of the thalamo-cortical loop. Biol Cybern 65:135–145

    Article  Google Scholar 

  • Nagarajan S, Mahncke H, Salz T, Tallal P, Roberts T, Merzenich MM (1999) Cortical auditory signal processing in poor readers. Proc Natl Acad Sci U S A 96:6483–6488

    Article  Google Scholar 

  • Osipova D, Takashima A, Oostenveld R, Fernandez G, Maris E, Jensen O (2006) Theta and gamma oscillations predict encoding and retrieval of declarative memory. J Neurosci 26:7523–7531

    Article  Google Scholar 

  • Owen AM, Hampshire A, Grahn JA, Stenton R, Dajani S, Burns AS et al.(2010) Putting brain training to the test. Nature 465:775–778

    Article  Google Scholar 

  • Palva S, Palva JM (2007) New vistas for alpha-frequency band oscillations. Trends Neurosci 30:150–158

    Article  Google Scholar 

  • Palva JM, Monto S, Kulashekhar S, Palva S (2010) Neural synchrony reveals working memory networks and predicts individual memory capacity. Proc Natl Acad Sci U S A 107:7580–7585

    Article  Google Scholar 

  • Pantev C, Makeig S, Hoke M, Galambos R, Hampson S, Gallen C (1991) Human auditory evoked gamma-band magnetic fields. Proc Natl Acad Sci U S A 88:8996–9000

    Article  Google Scholar 

  • Pfurtscheller G, Neuper C (1994) Event-related synchronization of mu rhythm in the EEG over the cortical hand area in man. Neurosci Lett 174:93–96

    Article  Google Scholar 

  • Pfurtscheller G, Schwarz G, Pfurtscheller B (1983) Computer assisted analysis of EEG, evoked potentials, EEG reactivity and heart rate variability in comatose patients. EEG EMG Z Elektroenzephalogr Elektromyogr Verwandte Geb 14:66–73

    Google Scholar 

  • Pfurtscheller G, Stancak A, Neuper C (1996) Event-related synchronization (ERS) in the alpha-band – an electrophysiological correlate of cortical idling: a review. Int J Psychophysiol 24:39–46

    Article  Google Scholar 

  • Plum F, Schiff N, Ribary U, Llinás R (1998) Coordinated expression in chronically unconscious persons. Phil Trans R Soc London 353:1929–1933

    Article  Google Scholar 

  • Proske JH, Jeanmonod D, Verschure PFMJ (2011) A computational model of thalamocortical dysrhythmia. Eur J Neurosci. https://doi.org/10.1111/j.1460-9568.2010.07588.x

  • Purpura KP, Schiff ND (1997) The thalamic intralaminar nuclei: role in visual awareness. Neuroscientist 3:8–14

    Article  Google Scholar 

  • Rennie CJ, Robinson PA, Wright JJ (2002) Unified neurophysiological model of EEG spectra and evoked potentials. Biol Cybern 86:457–471

    Article  MATH  Google Scholar 

  • Ribary U (2005) Dynamics of thalamo-cortical network oscillations and human perception. Prog Brain Res 150:127–142

    Article  Google Scholar 

  • Ribary U, Llinás R, Kluger A, Suk J, Ferris SH (1989) Neuropathological dynamics of magnetic, auditory, steady-state responses in Alzheimer’s disease. In: Williamson SJ, Hoke M, Stroink G, Kotani M (eds) Advances in biomagnetism. Plenum Press, New York, pp 311–314

    Chapter  Google Scholar 

  • Ribary U, Ioannides AA, Singh KD, Hasson R, Bolton JPR, Lado F, Mogilner A, Llinás R (1991) Magnetic Field Tomography (MFT) of coherent thalamo-cortical 40-Hz oscillations in humans. Proc Natl Acad Sci U S A 88:11037–11041

    Article  Google Scholar 

  • Ribary U, Cappell J, Mogilner A, Hund M, Kronberg E, Llinás R (1999) Functional imaging of plastic changes in the human brain. Adv Neurol 81:49–56

    Google Scholar 

  • Ribary U, Joliot M, Miller SL, Kronberg E, Cappell J, Tallal P, Llinás R (2000) Cognitive temporal binding and its relation to 40Hz activity in humans: alteration during dyslexia. In: Aine C, Okada Y, Stroink G, Swithenby S, Wood CC (eds) Biomag96. Springer, Berlin, pp 971–974

    Google Scholar 

  • Ribary U, Doesburg SM, Ward LM (2014) Thalamocortical network dynamics: a framework for typical/atypical cortical oscillations and connectivity. In: Supek S, Aine CJ (eds) Magnetoencephalography – from signals to dynamic cortical networks. Springer, Heidelberg, pp 429–450

    Google Scholar 

  • Ribary U, Doesburg SM, Ward LM (2017a) Unified principles of thalamo-cortical processing: the neuronal switch. Biomed Eng Lett 7:229–235. https://doi.org/10.1007/s13534-017-0033-4

    Article  Google Scholar 

  • Ribary U, Mackay AL, Rauscher A, Tipper CM, Giaschi D, Woodward TS, Sossi V, Doesburg SM, Ward LM, Herdman A, Hamarneh G, Booth BG, Moiseev A (2017b) Emerging neuroimaging technologies: towards future personalized diagnostics, prognosis, targeted intervention and ethical challenges. In: Illes J, Hossain S (eds) Neuroethics: anticipating the future. Oxford University Press, Oxford, pp 15–53

    Google Scholar 

  • Roux F, Uhlhaas PJ (2014) Working memory and neural oscillations: alpha–gamma versus theta–gamma codes for distinct WM information? Trends Cogn Sci 18:16–25

    Article  Google Scholar 

  • Rudolf J, Ghaemi M, Haupt WF, Szelies B, Heiss WD (1999) Cerebral glucose metabolism in acute and persistent vegetative state. J Neurosurg Anesthesiol 11:17–24

    Article  Google Scholar 

  • Salmelin R (2007) Clinical neurophysiology of language: the MEG approach. Clin Neurophysiol 118:237–254

    Article  Google Scholar 

  • Salmelin R, Service E, Kiesila P, Uutela K, Salonen O (1996) Impaired visual word processing in dyslexia revealed with magnetoencephalography. Ann Neurol 40:157–162

    Article  Google Scholar 

  • Sarnthein J, Jeanmonod D (2007) High thalamocortical coherence in patients with Parkinson’s disease. J Neurosci 27:124–131

    Article  Google Scholar 

  • Sarnthein J, Jeanmonod D (2008) High thalamocortical coherence in patients with neurogenic pain. NeuroImage 39:1910–1917

    Article  Google Scholar 

  • Sarnthein J, Morel A, von Stein A, Jeanmonod D (2003) Thalamic theta field potentials and EEG: high thalamocortical coherence in patients with neurogenic pain, epilepsy and movement disorders. Thalamus Relat Syst 2:231–238

    Article  Google Scholar 

  • Sauseng P, Klimesch W, Doppelmayr M, Hanslmayr S, Schabus M, Gruber WR (2004) Theta coupling in the human electroencephalogram during a working memory task. Neurosci Lett 354:123–126

    Article  Google Scholar 

  • Sauseng P, Klimesch W, Gruber WR, Birbaumer N (2008) Cross-frequency phase synchronization: a brain mechanism of memory matching and attention. NeuroImage 40:308–317

    Article  Google Scholar 

  • Sauseng P, Griesmayr B, Freunberger R, Klimesch W (2010) Control mechanisms in working memory: a possible function of EEG theta oscillations. Neurosci Biobehav Rev 34:739–744

    Article  Google Scholar 

  • Schiff ND, Ribary U, Plum F, Llinás R (1999) Words without mind. J Cogn Neurosci 11:650–656

    Article  Google Scholar 

  • Schiff ND, Ribary U, Moreno DR, Beattie B, Kronberg E, Blasberg R, Giacino J, McCagg C, Fins JJ, Llinas R, Plum F (2002) Residual cerebral activity and behavioural fragments can remain in the persistently vegetative brain. Brain 125:1210–1234

    Article  Google Scholar 

  • Schiff ND, Giacimo JT, Kalmar K, Victor JD, Baker K, Gerber M et al.(2007) Behavioural improvements with thalamic stimulation after severe traumatic brain injury. Nature 448:600–603

    Article  Google Scholar 

  • Schnitzler A, Gross J (2005) Normal and pathological oscillatory communication in the brain. Nat Rev Neurosci 6:285–296

    Article  Google Scholar 

  • Schulman JJ, Ramirez RR, Zonenshayn M, Ribary U, Llinás R (2005) Thalamocortical dysrhythmia syndrome: MEG imaging of neuropathic pain. Thalamus Relat Syst 3:33–39

    Article  Google Scholar 

  • Schulman JJ, Cancro R, Lowe S, Lu F, Walton KD, Llinás RR (2011) Imaging of thalamocortical dysrhythmia in neuropsychiatry. Front Hum Neurosci 5:1–11

    Article  Google Scholar 

  • Sherman SM, Guillery RW (2006) Exploring the thalamus and its role in cortical function. MIT Press, Cambridge, MA

    Google Scholar 

  • Simos PG, Breier JI, Fletcher JM, Bergman E, Papanicolaou AC (2000) Cerebral mechanisms involved in word reading in dyslexic children: a magnetic source imaging approach. Cereb Cortex 10:809–816

    Article  Google Scholar 

  • Snyder AC, Foxe JJ (2010) Anticipatory attentional suppression of visual features indexed by oscillatory alpha-band power increases: a high-density electrical mapping study. J Neurosci 30:4024–4032

    Article  Google Scholar 

  • Sporns O, Tononi G, Kötter R (2005) The human connectome: a structural description of the human brain. PLoS Comput Biol 1:e42

    Article  Google Scholar 

  • Steriade M (1993) Central core modulation of spontaneous oscillations and sensory transmission in thalamocortical systems. Curr Opin Neurobiol 3:619–625

    Article  Google Scholar 

  • Steriade M, Amzica F (1996) Intracortical and corticothalamic coherency of fast spontaneous oscillations. Proc Natl Acad Sci U S A 93:2533–2538

    Article  Google Scholar 

  • Steriade M, Llinas RR (1988) The functional states of the thalamus and the associated neuronal interplay. Physiol Rev 68:649–742

    Article  Google Scholar 

  • Steriade M, Curro Dossi R, Pare D, Oakson G (1991) Fast oscillations (20–40 Hz) in thalamocortical systems and their potentiation by mesopontine cholinergic nuclei in the cat. Proc Natl Acad Sci U S A 88:4396–4400

    Article  Google Scholar 

  • Steriade M, Curró Dossi R, Contreras D (1993a) Electrophysiological properties of intralaminar thalamocortical cells discharging rhythmic ~40 Hz spike-bursts at ~1000 Hz during waking and rapid-eye movement sleep. Neuroscience 56:1–9

    Article  Google Scholar 

  • Steriade M, McCormick DA, Sejnowski TJ (1993b) Thalamocortical oscillations in the sleeping and aroused brain. Science 262:679–685

    Article  Google Scholar 

  • Supp et al.(2007) Directed cortical information flow during human object recognition: analyzing induced EEG gamma-band responses in brain’s source space. PLoS One 2:e684

    Article  Google Scholar 

  • Tallal P (2004) Improving language and literacy is a matter of time. Nat Rev Neurosci 5:721–728

    Article  Google Scholar 

  • Tallal P, Miller S, Fitch RH (1993) Neurobiological basis of speech: a case for the preeminence of temporal processing. Ann N Y Acad Sci 682:27–47

    Article  Google Scholar 

  • Tallal P, Miller SL, Bedi G, Byma G, Wang X, Nagarajan SS, Schreiner C, Jenkins WM, Merzenich MM (1996) Language comprehension in language-learning impaired children improved with acoustically modified speech. Science 271:81–84

    Article  Google Scholar 

  • Tallon-Baudry C, Bertrand O (1999) Oscillatory gamma activity in humans and its role in object representation. Trends Cogn Sci 3:151–162

    Article  Google Scholar 

  • Tallon-Baudry C, Bertrand O, Peronnet F, Pernier J (1998) Induced γ-band activity during the delay of a visual short-term memory task in humans. J Neurosci 18:4244–4254

    Article  Google Scholar 

  • Timmermann L, Gross J, Butz M, Kircheis G, Haussinger D, Schnitzler A (2003) Mini-asterixis in hepatic encephalopathy induced by pathologic thalamo-motor-cortical coupling. Neurology 61:689–692

    Article  Google Scholar 

  • Tomassino C, Grana C, Lucignani G, Torri G, Ferrucio F (1995) Regional metabolism of comatose and vegetative state patients. J Neurosurg Anesthesiol 7:109–116

    Article  Google Scholar 

  • Varela F, Lachaux JP, Rodriguez E, Martinerie J (2001) The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci 2:229–239

    Article  Google Scholar 

  • Victor JD, Drover JD, Conte MM, Schiff ND (2011) Mean-field modeling of thalamocortical dynamics, and a model-driven approach to EEG analysis. Proc Natl Acad Sci U S A 108:15631–15638

    Article  Google Scholar 

  • Volkmann J, Joliot M, Mogilner A, Ioannides AA, Lado F, Fazzini E, Ribary U, Llinás RR (1996) Central motor loop oscillations in Parkinsonian resting tremor revealed by magnetoencephalography. Neurology 46:1359–1370

    Article  Google Scholar 

  • Wang HP, Spencer D, Fellous JM, Sejnowski TJ (2010) Synchrony of thalamocortical inputs maximizes cortical reliability. Science 328:106–109

    Article  Google Scholar 

  • Ward LM (2003) Synchronous neural oscillations and cognitive processes. Trends Cogn Sci 17:553–559

    Article  Google Scholar 

  • Ward LM (2011) The thalamic dynamic core theory of conscious experience. Conscious Cogn 20:464–486

    Article  Google Scholar 

  • Ward LM (2013) The thalamus: gateway to the mind. Wiley Interdiscip Rev Cogn Sci 4:609–622. https://doi.org/10.1002/wcs.1256

    Article  Google Scholar 

  • Wright JJ, Robinson PA, Rennie CJ, Gordon E, Bourke PD, Chapman CL et al.(2001) Toward an integrated continuum model of cerebral dynamics: the cerebral rhythms, synchronous oscillation and cortical stability. Biosystems 63:71–88

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Urs Ribary .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ribary, U., Doesburg, S., Ward, L. (2019). Unified Principles of Thalamocortical Network Dynamics: A Framework for Typical/Atypical Functional Connectivity. In: Supek, S., Aine, C. (eds) Magnetoencephalography. Springer, Cham. https://doi.org/10.1007/978-3-319-62657-4_19-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62657-4_19-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62657-4

  • Online ISBN: 978-3-319-62657-4

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics