Skip to main content

Influences of Flow Parameters on Pressure Drop in a Patient Specific Right Coronary Artery with Two Stenoses

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2017 (ICCSA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10404))

Included in the following conference series:

Abstract

Blood pressure loss along the coronary arterial length and the local magnitude of the spatial wall pressure gradient (WPG) are important factors for atherosclerosis initiation and intimal hyperplasia development. The pressure drop coefficient (CDP) is defined as the ratio of mean trans-stenotic pressure drop to proximal dynamic pressure. It is a unique non-dimensional flow resistance parameter useful in clinical practice for evaluating hemodynamic impact of coronary stenosis. It is expected that patients with the same stenosis severity may be at different risk level due to their blood pressure situations. The aim of this study is to numerically examine the dependence of CDP and WPG on flow rate and blood viscosity using a patient-specific atherosclerotic right coronary artery model with two stenoses. Our simulation results indicate that the coronary model with a lower flow rate yields a greater CDP across a stenosis, while the model with a higher flow rate yields a greater pressure drop and a greater WPG. Increased blood viscosity results in a greater CDP. Quantitatively, CDP for each stenosis appears to be a linear function of blood viscosity and a decreasing quadratic function of flow rate. Simulations with varying size and location of the distal stenosis show that the influence of the distal stenosis on the CDP across the proximal stenosis is insignificant. In a right coronary artery segment with two moderate stenoses of the same size, the distal stenosis causes a larger drop of CPD than the proximal stenosis does. A distal stenosis located in a further downstream position causes a larger drop in the CDP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Friedman, M.H., Hutchins, G.M., Bargeron, C.B., Deters, O.J., Mark, F.F.: Correlation between intimal thickness and fluid shear in human arteries. Atherosclerosis 39, 425–436 (1981)

    Article  Google Scholar 

  2. Glagov, S., Zarins, C.K., Giddens, D.P., Ku, D.N.: Mechanical factors in the pathogenesis, localization and evolution of atherosclerotic plaques. In: Camilleri, J.-P., Berry, C.L., Fiessinger, J.-N., Bariéty, J. (eds.) Diseases of the Arterial wall. Springer, Heideberg (1989). doi:10.1007/978-1-4471-1464-2_15

    Google Scholar 

  3. Salzar, R.S., Thubrikart, M.J., Eppink, R.T.: Pressure-induced mechanical stress in the carotid artery bifurcation: a possible correlation to atherosclerosis. J. Biomech. 28, 1333–1340 (1995)

    Article  Google Scholar 

  4. Samady, H., Eshtehardi, P., McDaniel, M.C., Suo, J., Dhawan, S.S., Maynard, C., Timmins, L.H., Quyyumi, A.A., Giddens, D.P.: Coronary artery wall shear stress is associated with progression and transformation of atherosclerotic plaque and arterial remodeling in patients with coronary artery disease. Circulation 124, 779–788 (2011)

    Article  Google Scholar 

  5. Liu, B., Zheng, J., Bach, R., Tang, D.: Correlations of coronary plaque wall thickness with wall pressure and wall pressure gradient: a representative case study. BioMed. Eng. OnLine 11(43), 1–12 (2012)

    Google Scholar 

  6. Giannoglou, G.D., Soulis, J.V., Farmakis, T.M., Giannakoulas, G.A., Parcharidis, G.E., Louridas, G.E.: Wall pressure gradient in normal left coronary artery tree. Med. Eng. Phys. 27, 455–464 (2005)

    Article  Google Scholar 

  7. Young, D.F., Cholvin, N.R., Kirkeeide, R.L., Roth, A.C.: Hemodynamics of arterial stenosis at elevated flow rates. Circ. Res. 411, 99–107 (1977)

    Article  Google Scholar 

  8. Pijls, N.H.J., van Son, J.A., Kirkeeide, R.L., de Bruyne, B., Gould, K.L.: Experimental basis of determining maximum coronary, myocardial, and collateral blood flow by pressure measurements for assessing functional stenosis severity before and after percutaneous transluminal coronary angioplasty. Circulation 87, 1354–1367 (1993)

    Article  Google Scholar 

  9. Pijls, N.H.J., De Bruyne, B., Bech, G.J.W., Liistro, F., Heyndrickx, G.R., Bonnier, H.J.R.M., Koolen, J.J.: Coronary pressure measurement to assess the hemodynamic significance of serial stenoses within one coronary artery: validation in humans. Circulation 102, 2371–2377 (2000)

    Article  Google Scholar 

  10. Park, S.J., Ahn, J.M., Pijls, N.H.J., et al.: Validation of functional state of coronary tandem lesions using computational flow dynamics. Am. J. Cardiol. 110, 1578–1584 (2012)

    Article  Google Scholar 

  11. van de Hoef, T.P., Nolte, F., Rolandi, M.C., Piek, J.J., van den Wijngaard, J.P.H.M., Spaan, J.A.E., Siebes, M.: Coronary pressure-flow relations as basis for the understanding of coronary physiology. J. Mol. Cell. Cardiol. 52, 786–793 (2012)

    Article  Google Scholar 

  12. Brosh, D., Higano, S.T., Slepian, M.J., Miller, H.I., et al.: Pulse transmission coefficient: a novel nonhyperemic parameter for assessing the physiological significance of coronary artery stenoses. J. Am. Coll. Cardiol. 39, 1012–1019 (2002)

    Article  Google Scholar 

  13. Banerjee, R.K., Ashtekar, K.D., Effat, M.A., Helmy, T.A., Kim, E., Schneeberger, E.W., et al.: Concurrent assessment of epicardial coronary artery stenosis and microvascular dysfunction using diagnostic endpoints derived from fundamental fluid dynamics principles. J. Invasive Cardiol. 21, 511–517 (2009)

    Google Scholar 

  14. Perktold, K., Peter, R.O., Resch, M.: Pulsatile non-Newtonian blood flow simulation through a bifurcation with an aneurysm. Biorheology 26, 1011–1030 (1989)

    Google Scholar 

  15. Cho, Y.I., Kensey, K.R.: Effects of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel. Part 1: steady flows. Biorheology 28, 241–262 (1991)

    Google Scholar 

  16. Shibeshi, S.S., Collins, W.E.: The rheology of blood flow in a branched arterial system. Appl. Rheol. 15, 398–405 (2005)

    Google Scholar 

  17. Liu, B., Zheng, J., Bach, R., Tang, D.: Influence of model boundary conditions on blood flow patterns in a patient specific stenotic right coronary artery. BioMed. Eng. Online, 14(1), S6, 1–17 (2015)

    Google Scholar 

  18. Tang, D., Yang, C., Zheng, J., Bach, R., Wang, L., Muccigrosso, D., Billiar, K., Zhu, J., Ma, G., Maehara, A., Mintz, G.S., Fan, R.: Human coronary plaque wall thickness correlated positively with flow shear stress and negatively with plaque wall stress: an IVUS-based fluid-structure interaction multi-patient study. BioMed. Eng. OnLine 13, 32 (2014)

    Article  Google Scholar 

  19. Banerjee, R.K., Back, L.H., Back, M.R., Cho, Y.I.: Physiological flow simulation in residual human stenoses after coronary angioplasty. J. Biomech. Eng. 122(4), 310–320 (2000)

    Article  Google Scholar 

  20. Banerjee, R.K., Ashtekar, K.D., Helmy, T.A., Effat, M.A., Back, L.H., Khoury, S.F.: Hemodynamic diagnostics of epicardial coronary stenoses: in-vitro experimental and computational study. Biomed. Eng. Online 7, 24 (2008)

    Article  Google Scholar 

  21. Young, D.F., Cholvin, N.R., Roth, A.C.: Pressure drop across artificially induced stenoses in the femoral arteries of dogs. Circ. Res. 36, 735–743 (1975)

    Article  Google Scholar 

  22. Gould, K.L.: Pressure-flow characteristics of coronary stenoses in unsedated dogs at rest and during coronary vasodilation. Circ. Res. 43, 242–253 (1978)

    Article  Google Scholar 

  23. Serruys, P.W., di Mario, C., Meneveau, N., et al.: Intracoronary pressure and flow velocity with sensor-tip guidewires: a new methodologic approach for assessment of coronary hemodynamics before and after coronary interventions. Am. J. Cardiol. 71, 41D–53D (1993)

    Article  Google Scholar 

  24. di Mario, C., Gil, R., de Feyter, P.J., Schuurbiers, J.C., Serruys, P.W.: Utilization of translesional hemodynamics: comparison of pressure and flow methods in stenosis assessment in patients with coronary artery disease. Cathet. Cardiovasc. Diagn. 38, 189–201 (1996)

    Article  Google Scholar 

  25. Takeda, S., Rimington, H., Chambers, J.: The relation between transaortic pressure difference and flow during dobutamine stress echocardiography in patients with aortic stenosis. Heart 82, 11–14 (1999)

    Article  Google Scholar 

  26. Takeda, S., Rimington, H., Chambers, J.: Prediction of symptom-onset in aortic stenosis: a comparison of pressure drop/flow slope and haemodynamic measures at rest. Int. J. Cardiol. 81, 131–137 (2001)

    Article  Google Scholar 

  27. Marques, K.M., Spruijt, H.J., Boer, C., Westerhof, N., Visser, C.A., Visser, F.C.: The diastolic flow-pressure gradient relation in coronary stenoses in humans. J. Am. Coll. Cardiol. 39, 1630–1636 (2002)

    Article  Google Scholar 

  28. Bernad, E.S., Bernad, S.I., Craina, M.L.: Hemodynamic parameters measurements to assess severity of serial lesions in patient specific right coronary artery. Bio-Med. Mater. Eng. 24(1), 323–334 (2014)

    Google Scholar 

  29. Bernad, S.I., Bernad, E.S., Totorean, A.F., Craina, M.L., Sargan, I.: Clinical important hemodynamic characteristics for serial stenosed coronary artery. Int. J. Des. Nat. Ecodyn. 10, 97–113 (2015)

    Article  Google Scholar 

  30. D’Souza, G.A., Peelukhana, S.V., Banerjee, R.K.: Diagnostic uncertainties during assessment of serial coronary stenoses: an in vitro study. J. Biomech. Eng. 136, 021026 (2014)

    Article  Google Scholar 

  31. Roy, A.S., Back, L.H., Banerjee, R.K.: Guidewire flow obstruction effect on pressure drop-flow relationship in moderate coronary artery stenosis. J. Biomech. 39, 853–864 (2006)

    Article  Google Scholar 

  32. Mates, R.E., Gupta, R.L., Bell, A.C., Klocke, F.J.: Fluid dynamics of coronary artery stenosis. Circ. Res. 42, 152–162 (1978)

    Article  Google Scholar 

  33. Rim, S.J., Leong-Poi, H., Lindner, J.R., Wei, K., Fisher, N.G., Kaul, S.: Decrease in coronary blood flow reserve during hyperlipidemia is secondary to an increase in blood viscosity. Circulation 104, 2704–2709 (2001)

    Article  Google Scholar 

  34. Indrianto, A.F., Samsuria, I.K., Kurniawan, K.D.: Blood viscosity increases the degree of coronary stenosis in coronary heart disease. Universa Medicina 34, 168–176 (2015)

    Article  Google Scholar 

  35. Giannoglou, G.D., Soulis, J.V., Farmakis, T.M., Farmakis, D.M., Louridas, G.E.: Haemodynamic factors and the important role of local low static pressure in coronary wall thickening. Int. J. Cardiol. 86, 27–40 (2002)

    Article  Google Scholar 

  36. Talukder, N., Karayannacos, P.E., Nerem, R.M., Vasko, J.S.: An experimental study of the fluid dynamics of multiple noncritical stenoses. J. Biomech. Eng. 99, 74–82 (1977)

    Article  Google Scholar 

  37. Lee, T.S., Liao, W., Low, H.T.: Numerical simulation of turbulent _ow through series stenoses. Int. J. Numer. Meth. Fluids 42, 717–740 (2003)

    Article  MATH  Google Scholar 

  38. Bertolotti, C., Qin, Z., Lamontagne, B., Durand, L.-G., Soulez, G., Cloutier, G.: Influence of multiple stenoses on echo-Doppler functional diagnosis of peripheral arterial disease: a numerical and experimental study. Ann. Biomed. Eng. 34, 564–574 (2006)

    Article  Google Scholar 

Download references

Acknowledgement

This work is partially supported by a grant from the Simons Foundation (#210082 to Biyue Liu), a sabbatical grant from Monmouth University, NIH grant NIH/NIBIB R01 EB004759, and a Jiangsu Province Science and Technology Agency grant BE2016785.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biyue Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Liu, B., Zheng, J., Bach, R., Tang, D. (2017). Influences of Flow Parameters on Pressure Drop in a Patient Specific Right Coronary Artery with Two Stenoses. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2017. ICCSA 2017. Lecture Notes in Computer Science(), vol 10404. Springer, Cham. https://doi.org/10.1007/978-3-319-62392-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62392-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62391-7

  • Online ISBN: 978-3-319-62392-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics