Skip to main content
Log in

Influence of Multiple Stenoses on Echo-Doppler Functional Diagnosis of Peripheral Arterial Disease: A Numerical and Experimental Study

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

The objective of this paper was to evaluate the ability of the peak systolic velocity ratio (PSVR) and pressure drop (ΔP) to detect and grade multiple stenoses in lower limb mimicking arteries. Numerical simulations and experiments in vascular phantoms allowing ultrasound duplex scanning and pressure measurements were used to investigate simple and double stenotic arterial segments. Inter-stenotic distance, severity of the distal stenosis, flow rate and flow profile (steady or pulsatile) were the tested parameters. The three-dimensional simulations considered the turbulent two-equation Wilcox model. Agreements were observed between the experimental and numerical results for ΔP and PSVR. The maximum PSVR along the artery was shown to be mainly influenced by the severity of the most important stenosis. However, mutual interactions of both stenoses on hemodynamics were noted. By using the clinical PSVR threshold used to diagnose critical lesions (PSVR ≥ 2), its longitudinal evolution along the artery poorly reflected the length of the lesion or the impact of surrounding stenoses. This investigation confirms the interaction between adjacent stenoses on hemodynamics and its impact on the Doppler ultrasound index PSVR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1.
FIGURE 2.
FIGURE 3.
FIGURE 4.
FIGURE 5.
FIGURE 6.
FIGURE 7.
FIGURE 8.
FIGURE 9.
FIGURE 10.
FIGURE 11.
FIGURE 12.

Similar content being viewed by others

REFERENCES

  1. Ahmed, S. A., and D. P. Giddens. Pulsatile flow studies with laser Doppler anemometry. J. Biomech. 17:695–705, 1984.

    Article  PubMed  CAS  Google Scholar 

  2. Allard, L., G. Cloutier, L. G. Durand, et al. Limitations of ultrasonic duplex scanning for diagnosing lower limb arterial stenoses in the presence of adjacent segment disease. J. Vasc. Surg. 19(4):650–657, 1994.

    PubMed  CAS  Google Scholar 

  3. Allard, L., G. Cloutier, and L. G. Durand. Doppler velocity ratio measurements evaluated in a phantom model of multiple arterial disease. Ultrasound Med. Biol. 21(4):471–480, 1995.

    Article  PubMed  CAS  Google Scholar 

  4. Allard, L., G. Cloutier, Z. Guo, et al. Review of the assessment of single level and multilevel arterial occlusive disease in lower limbs by duplex ultrasound. Ultrasound Med. Biol. 25(4):495–502, 1999.

    Article  PubMed  CAS  Google Scholar 

  5. Aly, S., M. P. Jenkins, F. H. Zaidi, et al. Duplex scanning and effect of multisegmental arterial disease on its accuracy in lower limb arteries. Eur. J. Vasc. Endovasc. Surg. 16:345–349, 1998.

    Article  PubMed  CAS  Google Scholar 

  6. Ang, K. C., and J. Mazumdar. Mathematical modelling of triple arterial stenoses. Australas. Phys. Eng. Sci. Med. 18(2):89–94, 1995.

    PubMed  CAS  Google Scholar 

  7. Back, M. R., A. N. Bowser, D. C. Schmacht, et al. Duplex selection facilitates single point-of-service endovascular and surgical management of aortoiliac occlusive disease. Ann. Vasc. Surg. 16(5):566–574, 2002.

    Article  PubMed  Google Scholar 

  8. Bergamini, T. M., C. M. Tatum Jr, C. Marshall, et al. Effect of multilevel sequential stenosis on lower extremity arterial duplex scanning. Am. J. Surg. 169(6):564–566, 1995.

    Article  PubMed  CAS  Google Scholar 

  9. Cloutier, G., G. Soulez, S. D. Qanadli, et al. A multimodality vascular imaging phantom with fiducial markers visible in DSA, CTA, MRA and ultrasound. Med. Phys. 31(6):1424–1433, 2004.

    Article  PubMed  Google Scholar 

  10. De Smet, A. A., E. J. Ermers, and P. J. Kitslaar. Duplex velocity characteristics of aortoiliac stenoses. J. Vasc. Surg. 23(4):628–636, 1996.

    Article  PubMed  CAS  Google Scholar 

  11. Ghalichi, F., X. Deng, A. De Champlain, et al. Low Reynolds number turbulence modeling of blood flow in arterial stenoses. Biorheology 35:281–294, 1998.

    Article  PubMed  CAS  Google Scholar 

  12. Hoskins, P. R.. A comparison of single- and dual-beam methods for maximum velocity estimation. Ultrasound Med. Biol. 4:583–592, 1999.

    Article  Google Scholar 

  13. Idu, M. M., J. D. Blankenstein, P. De Gier, et al. Impact of color-flow duplex surveillance program on infrainguinal vein graft patency: A five-year experience. J. Vasc. Surg. 17:42–52, 1993.

    Article  PubMed  CAS  Google Scholar 

  14. Jager, K. A., D. J. Phillips, R. L. Martin, et al. Noninvasive mapping of lower limb arterial lesions. Ultrasound Med. Biol. 11(3):515–521, 1985.

    Article  PubMed  CAS  Google Scholar 

  15. Jones, S.A.. Fundamental sources of error and spectral broadening in Doppler ultrasound signals. Crit. Rev. Biomed. Eng. 21(5):399–483, 1993.

    PubMed  CAS  Google Scholar 

  16. Latornell, D. J., A. Pollard. Some observations on the evolution of shear layer instabilities in laminar flow through axisymmetric sudden expansion. Phys. Fluids 29(9):677–681, 1986.

    Article  Google Scholar 

  17. Lee, T. S. Steady laminar fluid flow through variable constrictions in vascular tube. J. Fluids Eng. 116:66–71, 1994.

    Article  Google Scholar 

  18. Leng, G. C., M. R. Whyman, P. T. Donnan, et al. Accuracy and reproducibility of duplex ultrasonography in grading femoropopliteal stenoses. J. Vasc. Surg. 17(3):510–517, 1993.

    Article  PubMed  CAS  Google Scholar 

  19. Matignon, Y. Échographie-Doppler dans l’artériopathie oblitérante des membres inférieurs. ©Agence Nationale d'Accréditation et d'Évaluation en Santé. Juin 2002. Available at: http://www.anaes.fr/anaes/Publications.nsf/nPDFFile/RA_LILF-5EHJD7/$File/echodoppler.rap.pdf. Accessed on October, 2003.

  20. Moneta, G. L., R. A. Yeager, R. Antonovic, et al. Accuracy of lower extremity arterial duplex mapping. J. Vasc. Surg. 15(2):275–284, 1992.

    Article  PubMed  CAS  Google Scholar 

  21. Ojha, M., R. S. C. Cobbold, K. W. Johnston, et al. Pulsatile flow through constricted tube: An experimental investigation using photochromic methods. J. Fluid Mech. 203:173–197, 1989.

    Article  CAS  Google Scholar 

  22. Pincombe, B., J. Mazumdar, I. Hamilton-Craig. Effects of multiple stenoses and post-stenotic dilatation on non-Newtonian blood flow in small arteries. Med. Biol. Eng. Comput. 37(5):595–599, 1999.

    Article  PubMed  CAS  Google Scholar 

  23. Ramaswami, G., A. Al-Kutoubi, A. N. Nicolaides, et al. The role of duplex scanning in the diagnosis of lower limb arterial disease. Ann. Vasc. Surg. 13(5):494–500, 1999.

    Article  PubMed  CAS  Google Scholar 

  24. Ranke, C., A. Creutzig, and K. Alexander. Duplex scanning of the peripheral arteries: correlation of the peak velocity ratio with angiographic diameter reduction. Ultrasound Med. Biol. 18(5):433–440, 1992.

    Article  PubMed  CAS  Google Scholar 

  25. Rickey, D. W., P. A. Picot, D. A. Christopher, et al. A wall-less vessel phantom for Doppler ultrasound studies. Ultrasound Med. Biol. 21(9):1163–1176, 1995.

    Article  PubMed  CAS  Google Scholar 

  26. Sacks, D., M. L. Robinson, D. L. Marinelli, et al. Peripheral arterial Doppler ultrasonography: diagnostic criteria. J. Ultrasound Med. 11(3):95–103, 1992.

    PubMed  CAS  Google Scholar 

  27. Seeley, B. D., and D. F. Young. Effect of geometry on pressure losses across models of arterial stenoses. J. Biomech. 9:439–448, 1976.

    Article  PubMed  CAS  Google Scholar 

  28. Sensier, Y., T. Hartshorne, A. Thrush, et al. The effect of adjacent segment disease on the accuracy of colour duplex scanning for the diagnosis of lower limb arterial disease. Eur. J. Vasc. Endovasc. Surg. 12(2):238–242, 1996.

    Article  PubMed  CAS  Google Scholar 

  29. Siouffi, M., V. Deplano, and R. Pélissier. Experimental analysis of unsteady flows through a stenosis. J. Biomech. 31(1):11–19, 1997.

    Article  Google Scholar 

  30. Steinman, A. H., J. Tavakkoli, J. G. Myers, et al. Sources of errors in maximum velocity estimation using linear-array doppler systems with steady flow. Ultrasound Med. Biol. 5:655–664, 2001.

    Article  Google Scholar 

  31. Ubbink, D. T., M. Fidler, and D. A. Legemate. Interobserver variability in aortoiliac and femoropopliteal duplex scanning. J. Vasc. Surg. 33:540–545, 2001.

    Article  PubMed  CAS  Google Scholar 

  32. van Dreumel, S. C., and G. D. C. Kuiken. Steady flow through a double converging-diverging tube model for mild stenoses. J. Biomech. Eng. 111:212–221, 1989.

    Article  PubMed  CAS  Google Scholar 

  33. Varghese, S. S., and S. H. Frankel. Numerical modeling of pulsatile turbulent flow in stenotic vessels. J. Biomech. Eng. 125:445–460, 2003.

    Article  PubMed  Google Scholar 

  34. Wilcox, D. C. Turbulence Modeling for CFD. DCW Industries Inc., 1993.

  35. Young, D., and F. Tsai. Flow characteristics in models of arterial stenoses—II. Unsteady flow. J. Biomech. 6:547–559, 1973.

    Article  PubMed  CAS  Google Scholar 

  36. Young, D., N. Cholvin, R. Kirkeeide, and A. Roth. Hemodynamics of arterial stenoses at elevated flow rates. Circ. Res. 41(1):99–107, 1977.

    PubMed  CAS  Google Scholar 

  37. Youngchareon, W., and D. Young. Initiation of turbulence in models of arterial stenoses. J. Biomech. 12:185–196, 1979.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by a merit fellowship for post-doctoral research of the Quebec Ministry of Education (to C.B.), a studentship from the Natural Sciences and Engineering Research Council of Canada (to. B.L.), and a grant from the Canadian Institutes of Health Research (#MOP-53244 to G.C., L.G.D., G.S.). Drs. Soulez and Cloutier are respectively recipient of a clinical research scholarship award and of a national scientist award from the Fonds de la Recherche en Santé du Québec. Dr. Bertolotti performed this work at the Institut de Recherches Cliniques of Montreal, and then with the Équipe Biomécanique Cardiovasculaire, EGIM, at the C.N.R.S. (I.R.P.H.E.) UMR 6594, Marseille, France. The authors acknowledge Philips Medical System (Dr. Helen Routh) for the loan of the ultrasound system used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy Cloutier Eng., Ph.D..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertolotti, C., Qin, Z., Lamontagne, B. et al. Influence of Multiple Stenoses on Echo-Doppler Functional Diagnosis of Peripheral Arterial Disease: A Numerical and Experimental Study. Ann Biomed Eng 34, 564–574 (2006). https://doi.org/10.1007/s10439-005-9071-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-9071-7

Keywords

Navigation