Skip to main content

The Role of the Rhizosphere and Microbes Associated with Hyperaccumulator Plants in Metal Accumulation

  • Chapter
  • First Online:
Agromining: Farming for Metals

Part of the book series: Mineral Resource Reviews ((MIRERE))

Abstract

Phytomining can be limited by low biomass productivity by plants or limited availability of soil metals. Ongoing research attempts to overcome these potential constraints and to make phytomining a successful commercial technique in the recovery of metals from polluted or naturally metal-rich soil by (hyper)accumulating plants. Recently, the benefits of combining phytoremediation with bioremediation, which consists in the use of beneficial microorganisms such as endophytes or rhizosphere bacteria and fungi, for metal removal from soils have been demonstrated. Metal-resistant microorganisms play an important role in enhancing plant survival and growth in these soils by alleviating metal toxicity and supplying nutrients. Furthermore, these beneficial microorganisms are able to enhance the metal bioavailability in the rhizosphere of plants. An increase in plant growth and metal uptake increases the effectiveness of phytoremediation processes coupled with bioremediation. Herein, we highlight the specificity of the rhizosphere and the critical roles in soil nutrient cycling and provision of ecosystem services that can be brought by rhizosphere microorganisms. We discuss how abiotic factors, such as the presence of metals in polluted sites or in naturally rich (ultramafic) soils modulate activities of soil microbial communities. Then we introduce the concept of microbe-assisted phytomining, and underline the role of plant-associated microorganisms in metal bioavailability and uptake by host plants that has attracted a growing interest over the last decade. Finally, we present various techniques, including phenotypic, genotypic, and metagenomic approaches, which allow for characterising soil microbial community structure and diversity in polluted or naturally metal-rich soils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aboudrar W, Schwartz C, Benizri E, Morel JL, Boularbah A (2007) Microbial diversity as affected by the rhizosphere of the hyperaccumulator Thlaspi caerulescens under natural conditions. Int J Phytoremediation 9:41–52

    Article  Google Scholar 

  • Aboudrar W, Schwartz C, Morel JL, Boularbah A (2013) Effect of nickel-resistant rhizosphere bacteria on the uptake of nickel by the hyperaccumulator Noccaea caerulescens under controlled conditions. J Soils Sediments 13:501–507

    Article  Google Scholar 

  • Abou-Shanab RI, Delorme TA, Angle JS, Chaney RL, Ghanem K, Moawad H, Ghozlan HA (2003a) Phenotypic characterization of microbes in the rhizosphere of Alyssum murale. Int J Phytoremediation 5:367–379

    Article  Google Scholar 

  • Abou-Shanab RA, Angle JS, Delorme TA, Chaney RL, van Berkum P, Moawad H, Ghanem K, Ghozlan HA (2003b) Rhizobacterial effects on nickel extraction from soil and uptake by Alyssum murale. New Phytol 158:219–224

    Article  Google Scholar 

  • Abou-Shanab R, Angle J, Chaney R (2006) Bacterial inoculants affecting nickel uptake by Alyssum murale from low, moderate and high Ni soils. Soil Biol Biochem 38:2882–2889

    Article  Google Scholar 

  • Abou-Shanab RI, van Berkum P, Angle JS (2007) Heavy metal resistance and genotypic analysis of metal resistance genes in gram-positive and gram-negative bacteria present in Ni-rich serpentine soil and in the rhizosphere of Alyssum murale. Chemosphere 68:360–367

    Article  Google Scholar 

  • Aislabie J, Deslippe JR (2013) Soil microbes and their contribution to soil services. In: Dymond JR (ed) Ecosystem services in New Zealand—conditions and trends. Manaaki Whenua Press, Lincoln, New Zealand, pp 112–161

    Google Scholar 

  • Álvarez-López V, Prieto-Fernández Á, Becerra-Castro C, Monterroso C, Kidd PS (2016a) Rhizobacterial communities associated with the flora of three serpentine outcrops of the Iberian Peninsula. Plant Soil 403:233–252

    Article  Google Scholar 

  • Álvarez-López V, Prieto-Fernández Á, Janssen J, Herzig R, Vangronsveld J, Kidd PS (2016b) Inoculation methods using Rhodococcus erythropolis strain P30 affects bacterial assisted phytoextraction capacity of Nicotiana tabacum. Int J Phytoremediation 18:406–415

    Article  Google Scholar 

  • Azcón R, Medina A, Roldán A, Biró B, Vivas A (2009) Significance of treated agrowaste residue and autochthonous inoculates (arbuscular mycorrhizal fungi and Bacillus cereus) on bacterial community structure and phytoextraction to remediate soils contaminated with heavy metals. Chemosphere 75:327–334

    Article  Google Scholar 

  • Badri DV, Chaparro JM, Zhang R, Shen Q, Vivanco JM (2013) Application of natural blends of phytochemicals derived from the root exudates of Arabidopsis to the soil reveal that phenolic-related compounds predominantly modulate the soil microbiome. J Biol Chem 288:4502–4512

    Article  Google Scholar 

  • Bandick AK, Dick RP (1999) Field management effects on enzyme activities. Soil Biol Biochem 31:1471–1479

    Article  Google Scholar 

  • Bani A, Echevarria G, Sulçe S, Morel JL (2015) Improving the agronomy of Alyssum murale for extensive phytomining: a five-year field study. Int J Phytoremediation 17:117–127

    Article  Google Scholar 

  • Banowetz GM, Whittaker GW, Dierksen KP, Azevedo MD, Kennedy AC, Griffith SM, Steiner JJ (2006) Fatty acid methyl ester analysis to identify sources of soil in surface water. J Environ Qual 35:133–140

    Article  Google Scholar 

  • Barzanti R, Ozino F, Bazzicalupo M, Gabbrielli R, Galardi F, Gonnelli C, Mengoni A (2007) Isolation and characterization of endophytic bacteria from the nickel hyperaccumulator plant Alyssum bertolonii. Microb Ecol 53:306–316

    Article  Google Scholar 

  • Baudoin E, Benizri E, Guckert A (2001) Metabolic structure of bacterial communities from distinct maize rhizosphere compartments. Eur J Soil Biol 37:85–93

    Article  Google Scholar 

  • Baudoin E, Benizri E, Guckert A (2002) Impact of growth stages on bacterial community structure along maize roots by metabolic and genetic fingerprinting. Appl Soil Ecol 19:135–145

    Article  Google Scholar 

  • Baudoin E, Benizri E, Guckert A (2003) Impact of artificial root exudates on the bacterial community structure in bulk soil and maize rhizosphere. Soil Biol Biochem 35:1183–1192

    Article  Google Scholar 

  • Beattie GA (2007) Plant-associated bacteria: survey, molecular phylogeny, genomics and recent advances. In: Gnanamanickam SS (ed) Plant-associated bacteria. Springer, Dordrecht, pp 1–56

    Google Scholar 

  • Becerra-Castro C, Monterroso C, García-Lestón M, Prieto-Fernández A, Acea MJ, Kidd PS (2009) Rhizosphere microbial densities and trace metal tolerance of the nickel hyperaccumulator Alyssum serpyllifolium subsp. lusitanicum. Int J Phytoremediation 11:525–541

    Article  Google Scholar 

  • Becerra-Castro C, Monterroso C, Prieto-Fernández Á, Rodríguez-Lamas L, Loureiro-Viñas M, Acea MJ, Kidd PS (2012) Pseudometallophytes colonising Pb/Zn mine tailings: a description of the plant-microorganism-rhizosphere soil system and isolation of metal-tolerant bacteria. J Hazard Mater 217–218:350–359

    Article  Google Scholar 

  • Becerra-Castro C, Kidd P, Kuffner M, Prieto-Fernández A, Hann S, Monterroso C, Sessitsch A, Wenzel W, Puschenreiter M (2013) Bacterially induced weathering of ultramafic rock and its implications for phytoextraction. Appl Environ Microbiol 79:5094–5103

    Article  Google Scholar 

  • Belimov AA, Hontzeas N, Safronova VI, Demchinskaya SV, Piluzza G, Bullitta S, Glick BR (2005) Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.) Soil Biol Biochem 37:241–250

    Article  Google Scholar 

  • Bending GD, Turner MK, Jones JE (2002) Interaction between crop residue and organic matter quality and the functional diversity of soil microbial communities. Soil Biol Biochem 34:1073–1082

    Article  Google Scholar 

  • Benizri E, Nguyen C, Piutti S, Slezack-Deschaumes S, Philippot L (2007) Additions of maize root mucilage to soil changed the structure of the bacterial community. Soil Biol Biochem 39:1230–1233

    Article  Google Scholar 

  • Berg J, Brandt KK, Al-Soud WA, Holm PE, Hansen LH, Sørensen SJ, Nybroea O (2012) Selection for Cu-tolerant bacterial communities with altered composition, but unaltered richness, via long-term Cu exposure. Appl Environ Microbiol 78:7438–7446

    Article  Google Scholar 

  • Blom D, Fabbri C, Connor EC, Schiestl FP, Klauser DR, Boller T, Eberl L, Weisskopf L (2011) Production of plant growth modulating volatiles is widespread among rhizosphere bacteria and strongly depends on culture conditions. Environ Microbiol 13:3047–3058

    Article  Google Scholar 

  • Boominathan R, Doran P (2003) Cadmium tolerance and antioxidative defences in hairy roots of the cadmium hyperaccumulator, Thlaspi caerulescens. Biotechnol Bioeng 83:158–167

    Article  Google Scholar 

  • Bordez L, Jourand P, Ducousso M, Carriconde F, Cavaloc Y, Santini S, Claverie JM, Wantiez L, Leveau A, Amir H (2016) Distribution patterns of microbial communities in ultramafic landscape: a metagenetic approach highlights the strong relationships between diversity and environmental traits. Mol Ecol 25:2258–2272

    Article  Google Scholar 

  • Braud A, Jézéquel K, Bazot S, Lebeau T (2009) Enhanced phytoextraction of an agricultural Cr- and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria. Chemosphere 74:280–286

    Article  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (2000) Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46:237–245

    Article  Google Scholar 

  • Cabello-Conejo MI, Becerra-Castro C, Prieto-Fernández A, Monterroso C, Saavedra-Ferro A, Mench M, Kidd PS (2014) Rhizobacterial inoculants can improve nickel phytoextraction by the hyperaccumulator Alyssum pintodasilvae. Plant Soil (1–2):35–50

    Google Scholar 

  • Carrillo-Castañeda G, Juárez Muños J, Peralta-Videa J, Gomez E, Tiemannb K, Duarte-Gardea M, Gardea-Torresdey J (2002) Alfalfa growth promotion by bacteria grown under iron limiting conditions. Adv Environ Res 6:391–399

    Article  Google Scholar 

  • Chaparro J, Sheflin A, Manter D, Vivanco J (2012) Manipulating the soil microbiome to increase soil health and plant fertility. Biol Fertil Soils 48:489–499

    Article  Google Scholar 

  • Chardot-Jacques V, Calvaruso C, Simon B, Turpault MP, Echevarria G, Morel JL (2013) Chrysotile dissolution in the rhizosphere of the nickel hyperaccumulator Leptoplax emarginata (2013). Environ Sci Technol 47:2612–2620

    Article  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959

    Article  Google Scholar 

  • Crowley D, Kraemer SM (2007) Function of siderophores in the plant rhizosphere. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere: biochemistry and organic substances at the soil-plant interface. Soil-Plant Interface. CRC Press, Boca Raton, FL

    Google Scholar 

  • Daghino S, Murat C, Sizzano E, Girlanda M, Perotto S (2012) Fungal diversity is not determined by mineral and chemical differences in serpentine substrates. PLoS One 7(9):e44233

    Article  Google Scholar 

  • De Souza M, Huang C, Chee N, Terry N (1999) Rhizosphere bacteria enhance the accumulation of selenium and mercury in wetland plants. Planta 209:259–263

    Article  Google Scholar 

  • De-la-Peña C, Víctor M, Loyola-Vargas ML (2014) Biotic interactions in the rhizosphere: a diverse cooperative enterprise for plant productivity. Plant Physiol 166:701–719

    Article  Google Scholar 

  • Dell’Amico E, Cavalca L, Andreoni V (2008) Improvement of Brassica napus growth under cadmium stress by cadmium-resistant rhizobacteria. Soil Biol Biochem 40:74–84

    Article  Google Scholar 

  • DeSantis T, Brodie EL, Moberg J, Zubieta I, Piceno Y, Andersen G (2007) High-density universal 16S rRNA microarray analysis reveals broader diversity than typical clone library when sampling the environment. Microb Ecol 53:371–383

    Article  Google Scholar 

  • Dick RP (1997) Soil enzyme activities as integrative indicators of soil health. In: Pankhurst CE, Doube BM, Gupta VVSR (eds) Biological indicators of soil health. CAB International, Wallingford, pp 121–156

    Google Scholar 

  • Doelman P (1985) Resistance of soil microbial communities to heavy metals. In: Jensen V, Kjøller A, Sørensen LH (eds) Microbial communities in soils. Elsevier, London, pp 369–384

    Google Scholar 

  • Dominati E, Patterson M, MacKay A (2010) A framework for classifying and quantifying natural capital and ecosystem services of soils. Ecol Econ 69:1858–1868

    Article  Google Scholar 

  • Du Laing G, De Vos R, Vandecasteele B, Lesage E, Tack FMG, Verloo MG (2008) Effect of salinity on heavy metal mobility and availability in intertidal sediments of the Scheldt estuary. Estuar Coast Shelf Sci 77:589–602

    Article  Google Scholar 

  • Duca D, Lorv J, Patten CL, Rose D, Glick BR (2014) Indole-3-acetic acid in plant-microbe interactions. A Van Leeuw J Microb 1–41

    Google Scholar 

  • Duineveld BM, Kowalchuk GA, Keijzer A, van Elsas JD, van Veen JA (2001) Analysis of bacterial communities in the rhizosphere of Chrysanthemum via Denaturing Gradient Gel Electrophoresis of PCR-amplified 16S rRNA as well as DNA fragments coding for 16S rRNA. Appl Environ Microbiol 67:172–178

    Article  Google Scholar 

  • Duponnois R, Kisa M, Assigbetse K, Prin Y, Thioulouse J, Issartel M, Moulin P, Lepage M (2006) Fluorescent pseudomonads occuring in Macrotermes subhyalinus mound structures decrease Cd toxicity and improve its accumulation in sorghum plants. Sci Total Environ 370:391–400

    Article  Google Scholar 

  • Durand A, Piutti S, Rue M, Morel JL, Echevarria G, Benizri E (2016) Improving nickel phytoextraction by co-cropping hyperaccumulator plants inoculated by Plant Growth Promoting Rhizobacteria. Plant Soil 399:179–192

    Article  Google Scholar 

  • Egamberdieva D, Renella G, Wirth S, Islam R (2011) Enzyme activities in the rhizosphere of plants. In: Shukla G, Varma A (eds) Soil enzymology, soil biology, vol 22. Springer, Berlin, Heidelberg. doi:10.1007/978-3-642-14225-3_8

    Google Scholar 

  • Ehrlich HL, Newman DK (2009) Geomicrobiology, 5th edn. CRC Press, Taylor & Francis, Boca Raton, FL

    Google Scholar 

  • Ellis RJ, Morgan P, Weightman AJ, Fry JC (2003) Cultivation-dependent and -independent approaches for determining bacterial diversity in heavy-metal-contaminated soil. Appl Environ Microbiol 6:3223–3230

    Article  Google Scholar 

  • Epelde L, Becerril JM, Hernández-Allica J, Barrutia O, Garbisu C (2008) Functional diversity as indicator of the recovery of soil health derived from Thlaspi caerulescens growth and metal phytoextraction. Appl Soil Ecol 39:299–310

    Article  Google Scholar 

  • Epelde L, Mijangos I, Becerril JM, Garbisu C (2009) Soil microbial community as bioindicator of the recovery of soil functioning derived from metal phytoextraction with sorghum. Soil Biol Biochem 41:1788–1794

    Article  Google Scholar 

  • Farwell AJ, Vesely S, Nero V, Rodriguez H, Shah S, Dixon DG, Glick BR (2006) The use of transgenic canola (Brassica napus) and plant growth-promoting bacteria to enhance plant biomass at a nickel-contaminated field site. Plant Soil 288:309–318

    Article  Google Scholar 

  • Farwell AJ, Vesely S, Nero V, Rodriguez H, McCormack K, Shah S, Dixon DG, Glick BR (2007) Tolerance of transgenic canola plants (Brassica napus) amended with plant growth-promoting bacteria to flooding stress at a metal-contaminated field site. Environ Pollut 147:540–545

    Article  Google Scholar 

  • Fritze H, Pennanen T, Vanhala P (1997) Impact of fertilizers on the humus layer microbial community of Scots pine stands growing along a gradient of heavy metal pollution. In: Insam H, Rangger A (eds) Microbial communities. Functional versus structural aspects. Springer, Berlin, pp 68–83

    Chapter  Google Scholar 

  • Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156:609–643

    Article  Google Scholar 

  • García-Gonzalo P, Pradas del Real AE, Lobo MC, Pérez-Sanz A (2016) Different genotypes of Silene vulgaris (Moench) Garcke grown on chromium-contaminated soils influence root organic acid composition and rhizosphere bacterial communities. Environ Sci Pollut Res 1–12

    Google Scholar 

  • Garland JL, Mills AL (1991) Classification and characterisation of heterotrophic microbial communities on the basis of patterns of community-level-sole-carbon-source-utilization. Appl Environ Microbiol 57:2351–2359

    Google Scholar 

  • Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–374

    Article  Google Scholar 

  • Gołębiewski M, Deja-Sikora E, Cichosz M, Tretyn A, Wróbel B (2014) 16S rDNA pyrosequencing analysis of bacterial community in heavy metals polluted soils. Microb Ecol 67:635–647

    Article  Google Scholar 

  • Gonçalves SC, Goncalves MT, Freitas H, Martins-Loucao MA (1997) Mycorrhizae in a Portuguese serpentine community. In: Jaffré T, Reeves RD, Becquer T (eds) The ecology of ultramafic and metalliferous areas. Proceedings of the Second International Conference on Serpentine Ecology. Centre ORSTOM de Nouméa, New Caledonia, pp 87–89

    Google Scholar 

  • Grandlic CJ, Mendez MO, Chorover J, Machado B, Maier RM (2008) Plant growth promoting bacteria for phytostabilization of mine tailings. Environ Sci Technol 42:2079–2084

    Article  Google Scholar 

  • Grayston SJ, Wang S, Campbell CD, Edwards AC (1998) Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol Biochem 30:369–378

    Article  Google Scholar 

  • Gullap MK, Dasci M, Erkovan Hİ, Koc A, Turan M (2014) Plant Growth-Promoting Rhizobacteria (PGPR) and phosphorus fertilizer-assisted phytoextraction of toxic heavy metals from contaminated soils. Commun Soil Sci Plant Anal 45:2593–2606

    Article  Google Scholar 

  • Guo J, Tang S, Ju X, Ding Y, Liao S, Song N (2011) Effects of inoculation of a plant growth promoting rhizobacterium Burkholderia sp. D54 on plant growth and metal uptake by a hyperaccumulator Sedum alfredii Hance grown on multiple metal contaminated soil. World J Microbiol Biotechnol 27:2835–2844

    Article  Google Scholar 

  • Gürtler V, Stanisich VA (1996) New approaches to typing and identification of bacteria using the 16S-23S rDNA spacer region. Microbiology 142:3–16

    Article  Google Scholar 

  • Hagmann DF, Goodey NM, Mathieu C, Evans J, Aronson MFJ, Gallagher F, Krumins JA (2015) Effect of metal contamination on microbial enzymatic activity in soil. Soil Biol Biochem 91:291–297

    Article  Google Scholar 

  • Haslmayr HP, Meißner S, Langella F, Baumgarten A, Geletneky J (2014) Establishing best practice for microbially aided phytoremediation. Environ Sci Pollut Res 21:6765–6774

    Article  Google Scholar 

  • Hattori H (1989) Influence of cadmium on decomposition of sewage sludge and microbial activities in soils. Soil Sci Plant Nutr 35:289–299

    Article  Google Scholar 

  • He LY, Chen ZJ, Ren G-D, Zhang Y-F, Qian M, Sheng X-F (2009) Increased cadmium and lead uptake of a cadmium hyperaccumulator tomato by cadmium-resistant bacteria. Ecotoxicol Environ Saf 72:1343–1348

    Article  Google Scholar 

  • He LY, Zhang YF, Ma HY, LN S, Chen ZJ, Wang QY, Qian M, Sheng XF (2010a) Characterization of copper-resistant bacteria and assessment of bacterial communities in rhizosphere soils of copper-tolerant plants. Appl Soil Ecol 44:49–55

    Article  Google Scholar 

  • He CQ, Tan G, Liang X, Du W, Chen Y, Zhi G, Zhu Y (2010b) Effect of Zn-tolerant bacterial strains on growth and Zn accumulation in Orychophragmus violaceus. Appl Soil Ecol 44:1–5

    Article  Google Scholar 

  • Herrera A, Héry M, Stach JEM, Jaffré T, Normand P, Navarro E (2007) Species richness and phylogenetic diversity comparisons of soil microbial communities affected by nickel-mining and revegetation efforts in New Caledonia. Eur J Soil Biol 43:130–139

    Article  Google Scholar 

  • Héry M, Nazaret S, Jaffré T, Normand P, Navarro E (2006) Adaptation to nickel spiking of bacterial communities in neocaledonian soils. Environ Microbiol 5:3–12

    Article  Google Scholar 

  • Hiltner L (1904) Über neuer Erfahrungen und Probleme auf dem Gebiet der Bodenbakteriologie unter besonderer Nerücksichtingung der Gründüngung und Brache. Arbeiten aus dem Deutschen Landwirtschafts Geselschaft 98:59–78

    Google Scholar 

  • Hinsinger P, Plassard C, Jaillard B (2006) Rhizosphere: a new frontier for soil biogeochemistry. J Geochem Explor 88:210–213

    Article  Google Scholar 

  • Hu Q, Qi HY, Zeng JH, Zhang HX (2007) Bacterial diversity in soils around a lead and zinc mine. J Environ Sci 19:74–79

    Article  Google Scholar 

  • Huang PM, Wang MC, Wang MK (2004) Mineral–organic–microbial interactions. In: Hillel D, Rosenzweig C, Powlson DS, Scow KM, Singer MJ, Sparks DL, Hatfield J (eds) Encyclopedia of soils in the environment. Elsevier, Amsterdam, pp 486–499

    Google Scholar 

  • Hussein H (2008) Optimization of plant-bacteria complex for phytoremediation of contaminated soils. Int J Bot 4:437–443

    Article  Google Scholar 

  • Idris R, Trifonova R, Puschenreiter M, Wenzel WW, Sessitsch A (2004) Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Appl Environ Microbiol 70:2667–2677

    Article  Google Scholar 

  • Jacobs H, Boswell GP, Ritz K, Davidson FA, Gadd GM (2002) Solubilization of metal phosphates by Rhizoctonia solani. Mycol Res 106:1468–1479

    Article  Google Scholar 

  • Janssen J, Weyens N, Croes S, Beckers B, Meiresonne L, Van Peteghem P, Carleer R, Vangronsveld J (2015) Phytoremediation of metal contaminated soil using willow: exploiting plant associated bacteria to improve biomass production and metal uptake. Int J Phytoremediation 17:1123–1136

    Article  Google Scholar 

  • Jiang CY, Sheng XF, Qian M, Wang QY (2008) Isolation and characterization of a heavy metal resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Chemosphere 72:157–164

    Article  Google Scholar 

  • Kandeler E, Tscherko D, Bruce KD, Stemmer M, Hobbs PJ, Bardgett RD, Amelung W (2000) The structure and function of the soil microbial community in microhabitats of a heavy metal polluted soil. Biol Fertil Soils 32:390–400

    Article  Google Scholar 

  • Kapulnik Y, Douds D (2000) Arbuscular Mycorrhizas: physiology and function. Kluwer Academic, Dordrecht, The Netherlands, 384 pp

    Google Scholar 

  • Khan S, El-Latif Hesham A, Qiao M, Rehman S, He JZ (2010) Effects of Cd and Pb on soil microbial community structure and activities. Environ Sci Pollut Res 17:288–296

    Article  Google Scholar 

  • Kidd P, Barceló J, Bernal MP, Navari-Izzo F, Poschenrieder C, Shilev S, Clemente R, Monterroso C (2009) Trace element behaviour at the root–soil interface: implications in phytoremediation. Environ Exp Bot 67:243–259

    Article  Google Scholar 

  • Kinnersley AM (1993) The role of phytochelates in plant growth and productivity. Plant Growth Regul 12:207–218

    Article  Google Scholar 

  • Kirk JL, Beaudette LA, Hart M, Moutoglis P, Klironomos JN, Lee H, Trevors JT (2004) Methods of studying soil microbial diversity. J Microbiol Methods 58:169–188

    Article  Google Scholar 

  • Knight BP, McGrath SP, Chaudri AM (1997) Biomass carbon measurements and substrate utilization patterns of microbial populations from soils amended with cadmium, copper, or zinc. Appl Environ Microbiol 63:39–43

    Google Scholar 

  • Kohler J, Caravaca F, Azcón R, Díaz G, Roldán A (2015) The combination of compost addition and arbuscular mycorrhizal inoculation produced positive and synergistic effects on the phytomanagement of a semiarid mine tailing. Sci Total Environ 514:42–48

    Article  Google Scholar 

  • Kozdrój J, van Elsas JD (2001a) Structural diversity of microorganisms in chemically perturbed soil assessed by molecular and cytochemical approaches. J Microbiol Methods 43:197–212

    Article  Google Scholar 

  • Kozdrόj J, van Elsas JD (2001b) Structural diversity of microbial communities in arable soils of a heavily industrialised area determined by PCR-DGGE fingerprinting and FAME profiling. Appl Soil Ecol 17:31–42

    Article  Google Scholar 

  • Krumins JA, Goodey NM, Gallagher FJ (2015) Plant-soil interactions in metal contaminated soils. Soil Biol Biochem 80:224–231

    Article  Google Scholar 

  • Kuffner M, Puschenreiter M, Wieshammer G, Gorfer M, Sessitsch A (2008) Rhizosphere bacteria affect growth and metal uptake of heavy metal accumulating willows. Plant Soil 304:35–44

    Article  Google Scholar 

  • Kuffner M, De Maria S, Puschenreiter M, Fallmann K, Wieshammer G, Gorfer M, Strauss J, Rivelli AR, Sessitsch A (2010) Culturable bacteria from Zn- and Cd-accumulating Salix caprea with differential effects on plant growth and heavy metal availability. J Appl Microbiol 108:1471–1484

    Article  Google Scholar 

  • Kumar KV, Singh N, Behl H, Srivastava S (2008) Influence of plant growth promoting bacteria and its mutant on heavy metal toxicity in Brassica juncea grown in fly ash amended soil. Chemosphere 72:678–683

    Article  Google Scholar 

  • Kumar KV, Srivastava S, Singh N, Behl HM (2009) Role of metal resistant plant growth promoting bacteria in ameliorating fly ash to the growth of Brassica juncea. J Hazard Mater 170:51–57

    Article  Google Scholar 

  • Kuperman RG, Carreiro MM (1997) Soil heavy metal concentrations, microbial biomass and enzyme activities in a contaminated grassland ecosystem. Soil Biol Biochem 29:179–190

    Article  Google Scholar 

  • Kurek E, Jaroszuk-Scisel J (2003) Rye (Secale cereale) growth promotion by Pseudomonas fluorescens strains and their interactions with Fusarium culmorum under various soil conditions. Biol Control 26:48–56

    Article  Google Scholar 

  • Lebeau T, Braud A, Jezequel K (2008) Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: a review. Environ Pollut 153:497–522

    Article  Google Scholar 

  • Lemanceau P, Maurhofer M, Défago G (2007) Contribution of studies on suppressive soils to the identification of bacterial biocontrol agents and to the knowledge of their modes of action. In: Gnanamanickam SS (ed) Plant-associated bacteria. Springer, The Netherlands, pp 231–267

    Google Scholar 

  • Leung HM, Ye ZH, Wong MH (2007) Survival strategies of plants associated with arbuscular mycorrhizal fungi on toxic mine tailings. Chemosphere 66:905–915

    Article  Google Scholar 

  • Leyval C, Turnau K, Haselwandter K (1997) Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza 7:139–153

    Article  Google Scholar 

  • Li Z, Xu J, Tang C, Wu J, Muhammad A, Wan H (2006) Application of 16S rDNA-PCR amplification and DGGE fingerprinting for detection of shift in microbial community diversity in Cu-, Zn-, and Cd-contaminated paddy soils. Chemosphere 62:1374–1380

    Article  Google Scholar 

  • Li WC, Ye ZH, Wong MH (2007) Effects of bacteria on enhanced metal uptake of the Cd/ Zn-hyperaccumulating plant, Sedum alfredii. J Exp Bot 58:4173–4182

    Article  Google Scholar 

  • Lian B, Chen Y, Zhu L, Yang R (2008) Effect of microbial weathering on carbonate rocks. Earth Sci Front 15:90–99

    Article  Google Scholar 

  • Liang CN, Tabatabai MA (1978) Effects of trace elements on nitrification in soils. J Environ Qual 7:291–293

    Article  Google Scholar 

  • Lipman CB (1926) The bacterial flora of serpentine soils. J Bacteriol 12:315–318

    Google Scholar 

  • Lloyd JR (2003) Microbial reduction of metals and radionuclides. FEMS Microbiol Rev 27:411–425

    Article  Google Scholar 

  • Lodewyckx C, Mergeay M, Vangronsveld J, Clijsters H, Van der Lelie D (2002) Isolation, characterization, and identification of bacteria associated with the zinc hyperaccumulator Thlaspi caerulescens subsp. calaminaria. Int J Phytoremediation 4:101–115

    Article  Google Scholar 

  • Lucisine P, Echevarria G, Sterckeman T, Vallance J, Rey P, Benizri E (2014) Effect of hyperaccumulating plant cover composition and rhizosphere-associated bacteria on the efficiency of nickel extraction from soil. Appl Soil Ecol 81:30–36

    Article  Google Scholar 

  • Lugtenberg BJJ, Dekkers LC (1999) What makes Pseudomonas bacteria rhizosphere competent? Environ Microbiol 1:9–13

    Article  Google Scholar 

  • Ma Y, Rajkumar M, Freitas H (2009a) Improvement of plant growth and nickel uptake by nickel resistant-plant-growth promoting bacteria. J Hazard Mater 166:1154–1161

    Article  Google Scholar 

  • Ma Y, Rajkumar M, Freitas H (2009b) Isolation and characterization of Ni mobilizing PGPB from serpentine soils and their potential in promoting plant growth and Ni accumulation by Brassica. Chemosphere 75:719–725

    Article  Google Scholar 

  • Ma Y, Rajkumar M, Freitas H (2009c) Inoculation of plant growth promoting bacterium Achromobacter xylosoxidans strain Ax10 for the improvement of copper phytoextraction by Brassica juncea. J Environ Manag 90:831–837

    Article  Google Scholar 

  • Ma Y, Prasad MNV, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29:248–258

    Article  Google Scholar 

  • Ma Y, Rajkumar M, Luo Y, Freitas H (2013) Phytoextraction of heavy metal polluted soils using Sedum plumbizincicola inoculated with metal mobilizing Phyllobacterium myrsinacearum RC6b. Chemosphere 93:1386–1392

    Article  Google Scholar 

  • Maltz MR, Treseder KK (2015) Sources of inocula influence mycorrhizal colonization of plants in restoration projects: a meta-analysis. Restor Ecol 23:625–634

    Article  Google Scholar 

  • Mastretta C, Taghavi S, van der Lelie D, Mengoni A, Galardi F, Gonnelli C, Barac T, Boulet J, Weyens N, Vangronsveld J (2009) Endophytic bacteria from seeds of Nicotiana tabacum can reduce cadmium phytotoxicity. Int J Phytoremediation 11:251–267

    Article  Google Scholar 

  • Mengoni A, Barzanti R, Gonnelli C, Gabbrielli R, Bazzicalupo M (2001) Characterization of nickel-resistant bacteria isolated from serpentine soil. Environ Microbiol 3:691–698

    Article  Google Scholar 

  • Mengoni A, Grassi E, Barzanti R, Biondi EG, Gonnelli C, Kim CK, Bazzicalupo M (2004) Genetic diversity of bacterial communities of serpentine soil and of rhizosphere of the nickel-hyperaccumulator plant Alyssum bertolonii. Microb Ecol 48:209–217

    Article  Google Scholar 

  • Moreira H, Pereira SIA, Marques APGC, Rangel AOSS, Castro PML (2016) Mine land valorization through energy maize production enhanced by the application of plant growth-promoting rhizobacteria and arbuscular mycorrhizal fungi. Environ Sci Pollut Res 23:6940–6950

    Article  Google Scholar 

  • Muehe EM, Weigold P, Adaktylou IJ, Planer-Friedrich B, Kraemer U, Kappler A, Behrensa S (2015) Rhizosphere microbial community composition affects cadmium and zinc uptake by the metal-hyperaccumulating plant Arabidopsis halleri. Appl Environ Microbiol 81:2173–2181

    Article  Google Scholar 

  • Muyzer G (1999) Genetic fingerprinting of microbial communities—present status and future perspectives. Methods of microbial community analysis. Proceedings of the 8th international symposium on microbial ecology. Atlantic Canada Society for Microbial Ecology, Halifax, Canada

    Google Scholar 

  • Nannipieri P, Giagnoni L, Renella G, Puglisi E, Ceccanti B, Masciandaro G, Fornasier F, Moscatelli MC, Marinari S (2012) Soil enzymology: classical and molecular approaches. Biol Fertil Soils 48:743–762

    Article  Google Scholar 

  • Naseby DC, Lynch JM (2002) Enzymes and microbes in the rhizosphere. In: Burns RG, Dick RP (eds) Enzymes in the environment. Marcel Dekker, New York, pp 109–123

    Google Scholar 

  • Nguyen C (2003) Rhizodeposition of organic C by plants: mechanisms and controls. Agronomie 23:375–396

    Article  Google Scholar 

  • Niklinska M, Chodak M, Laskowski R (2006) Pollution-induced community tolerance of microorganisms from forest soil organic layers polluted with Zn or Cu. Appl Soil Ecol 32:265–272

    Article  Google Scholar 

  • Oline DK (2006) Phylogenetic comparisons of bacterial communities from serpentine and nonserpentine soils. Appl Environ Microbiol 72:6965–6971

    Article  Google Scholar 

  • Orłowska E, Orłowski D, Mesjasz-Przybyłowicz J, Turnau K (2011) Role of mycorrhizal colonization in plant establishment on an alkaline gold mine tailing. Int J Phytoremediation 13:185–205

    Article  Google Scholar 

  • Pal A, Dutta S, Mukherjee PK, Paul AK (2005) Occurrence of heavy metal-resistance in microflora from serpentine soil of Andaman. J Basic Microbiol 45:207–218

    Article  Google Scholar 

  • Pal A, Wauters G, Paul AK (2007) Nickel tolerance and accumulation by bacteria from rhizosphere of nickel hyperaccumulators in serpentine soil ecosystem of Andaman, India. Plant Soil 1:37–48

    Article  Google Scholar 

  • Pawlowska TE, Chaney RL, Chin M, Charvat I (2000) Effects of metal phytoextraction practices on the indigenous community of arbuscular mycorrhizal fungi at a metal contaminated landfill. Appl Environ Microbiol 66:2526–2530

    Article  Google Scholar 

  • Pereira SIA, Barbosa L, Castro PML (2015) Rhizobacteria isolated from a metal-polluted area enhance plant growth in zinc and cadmium-contaminated soil. Int J Environ Sci Technol 12:2127–2142

    Article  Google Scholar 

  • Pessoa-Filho M, Barreto CC, dos Reis Junior FB, Fragoso RR, Costa FS, Carvalho Mendes I, Rovênia Miranda de Andrade L (2015) Microbiological functioning, diversity, and structure of bacterial communities in ultramafic soils from a tropical savanna. Antonie Van Leeuwenhoek 107:935–949

    Article  Google Scholar 

  • Puschenreiter M, Schnepf A, Millán MI, Fitz WJ, Horak O, Klepp J, Schrefl T, Lombi E, Wenzel WW (2005) Changes of Ni biogeochemistry in the rhizosphere of the hyperaccumulator Thlaspi goesingense. Plant Soil 271:205–218

    Article  Google Scholar 

  • Quantin C, Becquer T, Rouiller JH, Berthelin J (2002) Redistribution of metals in a New Caledonia ferralsol after microbial weathering. Soil Sci Soc Am J 66:1797–1804

    Article  Google Scholar 

  • Raaijmakers JM, Vlami M, de Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Antonie Van Leeuwenhoek Antonie Leeuwenhoek 81:537–547

    Article  Google Scholar 

  • Rajkumar M, Freitas H (2008a) Effects of inoculation of plant-growth promoting bacteria on Ni uptake by Indian mustard. Bioresour Technol 99:3491–3498

    Article  Google Scholar 

  • Rajkumar M, Freitas H (2008b) Influence of metal resistant-plant growth-promoting bacteria on the growth of Ricinus communis in soil contaminated with heavy metals. Chemosphere 71:834–842

    Article  Google Scholar 

  • Rajkumar M, Nagendran R, Lee KJ, Lee WH, Kim SZ (2006) Influence of plant growth promoting bacteria and Cr6+ on the growth of Indian mustard. Chemosphere 62:741–748

    Article  Google Scholar 

  • Rajkumar M, Ma Y, Freitas H (2008) Characterization of metal-resistant plant-growth promoting Bacillus weihenstephanensis isolated from serpentine soil in Portugal. J Basic Microbiol 48:500–508

    Article  Google Scholar 

  • Rajkumar M, Sandhya S, Prasad MNV, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30:1562–1574

    Article  Google Scholar 

  • Ranjard L, Poly F, Nazaret S (2000) Monitoring complex bacterial communities using culture-independent molecular techniques: application to soil environment. Microbiology 151:167–177

    Google Scholar 

  • Ranjard L, Echairi A, Nowak V, Lejon DPH, Nouaïm R, Chaussod R (2006) Field and microcosm experiments to evaluate the effects of agricultural copper treatment on the density and genetic structure of microbial communities in two different soils. FEMS Microbiol Ecol 58:303–315

    Article  Google Scholar 

  • Rastogi G, Sani RK (2011) Molecular techniques to assess microbial community structure, function, and dynamics in the environment. In: Ahmad I et al (eds) Microbes and microbial technology, agricultural and environmental applications. Springer, New York, pp 29–57

    Chapter  Google Scholar 

  • Renella G, Egamberdiyeva D, Landi L, Mench M, Nannipieri P (2006) Soil microbial activity and hydrolase activity during decomposition of model root exudates released by a model root surface in Cd-contaminated soils. Soil Biol Biochem 38:702–708

    Article  Google Scholar 

  • Renella G, Zornoza R, Landi L, Mench M, Nannipieri P (2011) Arylesterase activity in trace element contaminated soils. Eur J Soil Sci 62:590–597

    Article  Google Scholar 

  • Richardson AE, Simpson RJ (2011) Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiol 156:989–996

    Article  Google Scholar 

  • Rue M, Vallance J, Echevarria G, Rey P, Benizri E (2015) Phytoextraction of nickel and rhizosphere microbial communities under mono- or multispecies hyperaccumulator plant cover in a serpentine soil. Aust J Bot 63:92–102

    Google Scholar 

  • Ryu CM, Farag MA, CH H, Reddy MS, Wei HX, Pare PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci U S A 100:4927–4932

    Article  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467

    Article  Google Scholar 

  • Schalk IJ, Hannauer M, Braud A (2011) Minireview new roles for bacterial siderophores in metal transport and tolerance. Environ Microbiol 13:2844–2854

    Article  Google Scholar 

  • Schlegel HG, Cosson JP, Baker AJM (1991) Nickel-hyperaccumulating plants provide a niche for nickel-resistant bacteria. Bot Acta 104:18–25

    Article  Google Scholar 

  • Schmidt W (1999) Mechanisms and regulation of reduction-based iron uptake in plants. New Phytol 141:1–26

    Article  Google Scholar 

  • Sessitsch A, Kuffner M, Kidd P, Vangronsveld J, Wenzel WW, Fallmann K, Puschenreiter M (2013) The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biol Biochem 60:182–194

    Article  Google Scholar 

  • Sheng XF, Xia JJ (2006) Improvement of rape (Brassica napus) plant growth and cadmium uptake by cadmium-resistant bacteria. Chemosphere 64:1036–1042

    Article  Google Scholar 

  • Sheng XF, He L, Wang Q, Ye H, Jiang C (2008a) Effects of inoculation of biosurfactant-producing Bacillus sp. J119 on plant growth and cadmium uptake in a cadmium amended soil. J Hazard Mater 155:17–22

    Article  Google Scholar 

  • Sheng XF, Xia J-J, Jiang C-Y, He L-Y, Qian M (2008b) Characterization of heavy metal resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environ Pollut 156:1164–1170

    Article  Google Scholar 

  • Shilev S, Fernández A, Benlloch M, Sancho E (2006) Sunflower growth and tolerance to arsenic is increased by the rhizospheric bacteria Pseudomonas fluorescens. In: Morel JL (ed) Phytoremediation of metal contaminated soils. Springer, The Netherlands, pp 315–326

    Chapter  Google Scholar 

  • Smith SE, Read DJ (1996) Mycorrhizal symbiosis, 2nd edn. Academic Press, 605 pp

    Google Scholar 

  • Sowerby A, Emmett B, Beier C, Tietema A, Penuelas J, Estiarte M, Van Meeteren JMM, Hughes S, Freeman C (2005) Microbial community changes in heathland soil communities along a geographical gradient: interaction with climate change manipulations. Soil Biol Biochem 37:1805–1813

    Article  Google Scholar 

  • Strasser H, Burgstaller W, Schinner F (1994) High yield production of oxalic acid for metal leaching purposes by Aspergillus niger. FEMS Microbiol Lett 119:365–370

    Article  Google Scholar 

  • Sun LN, Zhang Y-F, He L-Y, Chen Z-J, Wang Q-Y, Qian M, Sheng X-F (2010) Genetic diversity and characterization of heavy metal-resistant-endophytic bacteria from two copper-tolerant plant species on copper mine wasteland. Bioresour Technol 101:501–509

    Article  Google Scholar 

  • Tabatabai MA (1994) Soil enzymes. In: Weaver RW, Angle S, Bottomley P (eds) Methods of soil analysis. Part 2, Microbiological and biochemical properties. Soil Science Society of America, Madison, pp 775–833

    Google Scholar 

  • Tate RL (2002) Microbiology and enzymology of carbon and nitrogen cycling. In: Burns RG, Dick RP (eds) Enzymes in the environment. Marcel Dekker, New York, pp 227–248

    Google Scholar 

  • Thangavelu R, Palaniswami A, Ramakrishnan G, Doraiswamy S, Muthukrishana S, Velazhahan R (2001) Involvement of fusaric acid detoxification by Pseudomonas fluorescens strain Pf10 in the biological control of Fusarium wilt of banana caused by Fusarium oxysporum f. sp. cubense. Z. Pflanzenkr. Pflanzenschutz 108:433–445

    Google Scholar 

  • Thijs S, Sillen W, Rineau F, Weyens N, Vangronsveld J (2016) Towards an enhanced understanding of plant–microbiome interactions to improve phytoremediation: engineering the metaorganism. Front Microbiol 7:341

    Article  Google Scholar 

  • Turgay OC, Görmez A, Bilen S (2012) Isolation and characterization of metal resistant-tolerant rhizosphere bacteria from the serpentine soils in Turkey. Environ Monit Assess 184:515–526

    Article  Google Scholar 

  • Turnau K, Mesjasz-Przybylowicz J (2003) Arbuscular mycorrhiza of Berkheya coddii and other Ni-hyperaccumulating members of Asteraceae from ultramafic soils in South Africa. Mycorrhiza 13:185–190

    Article  Google Scholar 

  • Van der Heijden MGA, Sanders IR (2002) Mycorrhizal ecology. Springer, Berlin, Germany

    Google Scholar 

  • van Loon LC, Bakker HM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–383

    Article  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  Google Scholar 

  • Violante A, Huang PM, Gadd GM (eds) (2008) Biophysicochemical processes of heavy metals and metalloids in soil environments. Wiley, Chichester

    Google Scholar 

  • Visioli G, D’Egidio S, Sanangelantoni AM (2015) The bacterial rhizobiome of hyperaccumulators: future perspectives based on omics analysis and advanced microscopy. Front Plant Sci 5:1–12

    Article  Google Scholar 

  • Vogel-Mikus K, Drobne D, Regvar M (2005) Zn, Cd and Pb accumulation and arbuscular mycorrhizal colonisation of pennycress Thlaspi praecox Wulf. (Brassicaceae) from the vicinity of a lead mine and smelter in Slovenia. Environ Pollut 133:233–242

    Article  Google Scholar 

  • Wang Q, Xiong D, Zhao P, Yu X, Tu B, Wang G (2011) Effect of applying an arsenic-resistant and plant growth-promoting rhizobacterium to enhance soil arsenic phytoremediation by Populus deltoides LH05-17. J Appl Microbiol 111:1065–1074

    Article  Google Scholar 

  • Warembourg FR (1997) The “rhizosphere effect”: a plant strategy for plants to exploit and colonize nutrient-limited habitats. Bocconea 7:187–194

    Google Scholar 

  • Whiting SN, de Souza MP, Terry N (2001) Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspi caerulescens. Environ Sci Technol 35:3144–3150

    Article  Google Scholar 

  • Wu SC, Cheung KC, Luo YM, Wong MH (2006) Effects of inoculation of plant growth-promoting rhizobacteria on metal uptake by Brassica juncea. Environ Pollut 140:124–135

    Article  Google Scholar 

  • Wyszkowska J, Kucharski J, Borowik A, Boros E (2008) Response of bacteria to soil contamination with heavy metals. J Elem 13:443–453

    Google Scholar 

  • Wyszkowska J, Kucharski M, Kucharski J, Borowik A (2009) Activity of dehydrogenases, catalase and urease in copper polluted soil. J Elem 14:605–617

    Google Scholar 

  • Xiong J, He Z, Liu D, Mahmood Q, Yang X (2008) The role of bacteria in the heavy metals removal and growth of Sedum alfredii Hance in an aqueous medium. Chemosphere 70:489–494

    Article  Google Scholar 

  • Yang Q, Tu S, Wang G, Liao X, Yan X (2012) Effectiveness of applying arsenate reducing bacteria to enhance arsenic removal from polluted soils by Pteris vittata L. Int J Phytoremediation 14:89–99

    Article  Google Scholar 

  • Zaidi S, Usmani S, Singh BR, Musarrat J (2006) Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64:991–997

    Article  Google Scholar 

  • Zeng F, Ali S, Zhang H, Ouyang Y, Qiu B, Wu F, Zhang G (2011) The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environ Pollut 159:84–91

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emile Benizri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Benizri, E., Kidd, P.S. (2018). The Role of the Rhizosphere and Microbes Associated with Hyperaccumulator Plants in Metal Accumulation. In: Van der Ent, A., Echevarria, G., Baker, A., Morel, J. (eds) Agromining: Farming for Metals. Mineral Resource Reviews. Springer, Cham. https://doi.org/10.1007/978-3-319-61899-9_9

Download citation

Publish with us

Policies and ethics