Skip to main content

Microbially Supported Phytoremediation of Heavy Metal Contaminated Soils: Strategies and Applications

  • Chapter
  • First Online:
Geobiotechnology I

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 141))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Cys:

Cysteine

Glu:

Glutamine

Gly:

Glycine

MT:

Metallothionein

PC:

Phytochelatin

PGPB:

Plant growth promoting bacteria

ROS:

Reactive oxygen species

References

  1. McGrath SP, Zhao FJ, Lombi E (2001) Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soils. Plant Soil 232:207–214

    CAS  Google Scholar 

  2. Memon AR, Schröder P (2009) Implications of metal accumulation mechanisms to phytoremediation. Env Sci Pollut Res 16:162–175

    CAS  Google Scholar 

  3. Haferburg G, Kothe E (2010) Metallomics: lessons for metalliferous soil remediation. Appl Microbiol Biotechnol 87:1271–1280

    CAS  Google Scholar 

  4. Hassan Z, Aarts MGM (2011) Opportunities and feasibilities for biotechnological improvement of Zn, Cd or Ni tolerance and accumulation in plants. Env Exp Bot 72:53–63

    CAS  Google Scholar 

  5. Vamerali T, Bandiera M, Mosca G (2010) Field crops for phytoremediation of metal-contaminated land. A review. Env Chem Lett 8:1–17

    CAS  Google Scholar 

  6. Khan AG (2005) Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biol 18:355–364

    CAS  Google Scholar 

  7. Sheoran V, Sheoran AS, Poonia P (2011) Role of hyperaccumulators in phytoextraction of metals from contaminated mining sites: A review. Crit Rev Env Sci Technol 41:168–214

    Google Scholar 

  8. Gardea-Torresdey JL, Peralta-Videa JR, de la Rosa G, Parsons JG (2005) Phytoremediation of heavy metals and study of the metal coordination by X-ray absorption spectroscopy. Coord Chem Rev 249:1797–1810

    CAS  Google Scholar 

  9. Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750

    CAS  Google Scholar 

  10. Bruins MR, Kapil S, Oehme FW (2000) Microbial resistance to metals in the environment. Ecotox Env Safety 45:198–207

    CAS  Google Scholar 

  11. Schmidt A, Haferburg G, Sineriz M, Merten D, Büchel G, Kothe E (2005) Heavy metal resistance mechanisms in actinobacteria for survival in AMD contaminated soils. Chem Erde Geochem 65:131–144

    CAS  Google Scholar 

  12. Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? and what makes them so interesting? Plant Sci 180:169–181

    CAS  Google Scholar 

  13. Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Ann Rev Plant Physiol Plant Mol Biol 49:643–668

    CAS  Google Scholar 

  14. Kordel W, Dassenakis M, Lintelmann J, Padberg S (1997) The importance of natural organic material for environmental processes in waters and soils. Pure Appl Chem 69:1571–1600

    CAS  Google Scholar 

  15. Yanez L, Ortiz D, Calderon J, Batres L, Carrizales L, Mejia J, Martinez L, Garcia-Nieto E, Diaz-Barriga F (2002) Overview of human health and chemical mixtures: problems facing developing countries. Env Health Perspect 110:901–909

    CAS  Google Scholar 

  16. Salt DE, Blaylock M, Kumar N, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation—a novel strategy for the removal of toxic metals from the environment using plants. Bio-Technol 13:468–474

    CAS  Google Scholar 

  17. Mulligan CN, Yong RN, Gibbs BF (2001) Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Eng Geol 60:193–207

    Google Scholar 

  18. Arthur EL, Rice PJ, Anderson TA, Baladi SM, Henderson KLD, Coats JR (2005) Phytoremediation—an overview. Critical Rev Plant Sci 24:109–122

    CAS  Google Scholar 

  19. Padmavathiamma PK, Li LY (2007) Phytoremediation technology: hyper-accumulation metals in plants. Water Air Soil Pollut 184:105–126

    CAS  Google Scholar 

  20. Mulligan CN, Yong RN, Gibbs BF (1999) On the use of biosurfactants for the removal of heavy metals from oil-contaminated soil. Env Progress 18:50–54

    CAS  Google Scholar 

  21. Cunningham SD, Berti WR, Huang JW (1995) Phytoremediation of contaminated soils. Trends Biotechnol 13:393–397

    CAS  Google Scholar 

  22. Cunningham SD, Shann JR, Crowley DE, Anderson TA (1997) Phytoremediation of contaminated water and soil. Am Chem Soc 664:2–17

    CAS  Google Scholar 

  23. Raskin I, Salt D, Krämer U, Schulman R (1998) Phytoremediation: green and clean. Acta Horticult (ISHS) 457:329–332

    Google Scholar 

  24. Raskin I, Kumar PBAN, Dushenkov S, Salt DE (1994) Bioconcentration of heavy metals by plants. Curr Opin Biotechnol 5:285–290

    CAS  Google Scholar 

  25. Cunningham SD, Anderson TA, Schwab AP, Hsu FC (1996) Phytoremediation of soils contaminated with organic pollutants. Adv Agron 56:55–114

    CAS  Google Scholar 

  26. Chaney RL, Malik M, Li YM, Brown SL, Brewer EP, Angle JS, Baker AJM (1997) Phytoremediation of soil metals. Curr Opin Biotechnol 8:279–284

    CAS  Google Scholar 

  27. Dushenkov S, Kapulnik Y, Blaylock M, Sorochisky B, Raskin I, Ensley B (1997) Phytoremediation: a novel approach to an old problem. Studies Env Sci 66:563–572

    CAS  Google Scholar 

  28. Dushenkov S, Vasudev D, Kapulnik Y, Gleba D, Fleisher D, Ting KC, Ensley B (1997) Removal of uranium from water using terrestrial plants. Env Sci Technol 31:3468–3474

    CAS  Google Scholar 

  29. Kumar PBAN, Dushenkov V, Motto H, Raskin I (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Env Sci Technol 29:1232–1238

    CAS  Google Scholar 

  30. Burken JG, Schnoor JL (1997) Uptake and metabolism of atrazine by poplar trees. Env Sci Technol 31:1399–1406

    CAS  Google Scholar 

  31. Baker AJM, McGrath SP, Sidoli CMD, Reeves RD (1994) The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants. Resour Conserv Recycl 11:41–49

    Google Scholar 

  32. Vangronsveld J, Colpaert JV, van Tichelen KK (1996) Reclamation of a bare industrial area contaminated by non-ferrous metals: physico-chemical and biological evaluation of the durability of soil treatment and revegetation. Env Pollut 94:131–140

    CAS  Google Scholar 

  33. Pulford ID, Watson C (2003) Phytoremediation of heavy metal-contaminated land by trees—a review. Env Int 29:529–540

    CAS  Google Scholar 

  34. Anderson CWN, Brooks RR, Chiarucci A, LaCoste CJ, Leblanc M, Robinson BH, Simcock R, Stewart RB (1999) Phytomining for nickel, thallium and gold. J Geochem Expl 67:407–415

    CAS  Google Scholar 

  35. Boyd V (1996) Pint-sized plants pack a punch in fight against heavy metals. Env Prot 7:38–39

    Google Scholar 

  36. Pilon-Smits E (2005) Phytoremediation. Ann Rev Plant Biol 56:15–39

    CAS  Google Scholar 

  37. Huang JWW, Chen JJ, Berti WR, Cunningham SD (1997) Phytoremediation of lead-contaminated soils: role of synthetic chelates in lead phytoextraction. Env Sci Technol 31:800–805

    CAS  Google Scholar 

  38. Ernst WHO (2005) Phytoextraction of mine wastes—options and impossibilities. Chem Erde Geochem 65:29–42

    CAS  Google Scholar 

  39. Garbisu C, Alkorta I (2001) Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresource Technol 77:229–236

    CAS  Google Scholar 

  40. Boyd RS, Jaffre T, Odom JW (1999) Variation in nickel content in the nickel-hyperaccumulating shrub Psychotria douarrei (Rubiaceae) from New Caledonia. Biotropica 31:403–410

    Google Scholar 

  41. van Nevel L, Mertens J, Oorts K, Verheyen K (2007) Phytoextraction of metals from soils: how far from practice? Env Pollut 150:34–40

    Google Scholar 

  42. Mendez MO, Maier RM (2008) Phytostabilization of mine tailings in arid and semiarid environments—an emerging remediation technology. Env Health Perspect 116:278–283

    CAS  Google Scholar 

  43. Kucharski R, Sas-Nowosielska A, Malkowski E, Japenga J, Kuperberg JM, Pogrzeba M, Krzyzak J (2005) The use of indigenous plant species and calcium phosphate for the stabilization of highly metal-polluted sites in southern Poland. Plant Soil 273:291–305

    CAS  Google Scholar 

  44. Yoon J, Cao XD, Zhou QX, Ma LQ (2006) Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci Total Env 368:456–464

    CAS  Google Scholar 

  45. Geebelen W, Adriano DC, van der Lelie D, Mench M, Carleer R, Clijsters H, Vangronsveld J (2003) Selected bioavailability assays to test the efficacy of amendment-induced immobilization of lead in soils. Plant Soil 249:217–228

    CAS  Google Scholar 

  46. Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K, Ruttens A, Thewys T, Vassilev A, Meers E, Nehnevajova E, van der Lelie D, Mench M (2009) Phytoremediation of contaminated soils and groundwater: lessons from the field. Env Sci Pollut Res 16:765–794

    CAS  Google Scholar 

  47. Pichtel JR, Dick WA, Sutton P (1994) Comparison of amendments and management practices for long-term reclamation of abandoned mine lands. J Env Qual 23:766–772

    CAS  Google Scholar 

  48. Dushenkov S, Kumar PBAN, Motto H, Raskin I (1995) Rhizofiltration: The use of plants to remove heavy metals from aqueous streams. Env Sci Technol 29:1239–1245

    CAS  Google Scholar 

  49. Macaskie LE (1991) The application of biotechnology to the treatment of wastes produced from the nuclear fuel cycle: Biodegradation and bioaccumulation as a means of treating radionuclide-containing streams. Crit Rev Biotechnol 11:41–112

    CAS  Google Scholar 

  50. Leyval C, Turnau K, Haselwandter K (1997) Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza 7:139–153

    CAS  Google Scholar 

  51. Kaschl A, Romheld V, Chen Y (2002) Cadmium binding by fractions of dissolved organic matter and humic substances from municipal solid waste compost. J Env Qual 31:1885–1892

    CAS  Google Scholar 

  52. Raskin I, Smith RD, Salt DE (1997) Phytoremediation of metals: using plants to remove pollutants from the environment. Curr Opin Biotechnol 8:221–226

    CAS  Google Scholar 

  53. Welch RM, Norvell WA, Schäfer SC, Shaff JE, Kochian LV (1993) Induction of iron(III) and copper(II) reduction in pea (Pisum sativum L.) roots by Fe and Cu status—does the root-cell plasmalemma Fe(III)-chelate reductase perform a general role in regulating cation uptake. Planta 190:555–561

    CAS  Google Scholar 

  54. Lagier T, Feuillade G, Matejka G (2000) Interactions between copper and organic macromolecules: determination of conditional complexation constants. Agronomie 20:537–546

    Google Scholar 

  55. Halim M, Conte P, Piccolo A (2003) Potential availability of heavy metals to phytoextraction from contaminated soils induced by exogenous humic substances. Chemosphere 52:265–275

    CAS  Google Scholar 

  56. Zhou J-M, Dang Z, Chen N-C, Xu S-G, Xie Z-Y (2007) Enhanced phytoextraction of heavy metal contaminated soil by chelating agents and auxin indole-3-acetic acid. Huan Jing Ke Xue 28:2085–2088

    CAS  Google Scholar 

  57. Abedin MJ, Feldmann J, Meharg AA (2002) Uptake kinetics of arsenic species in rice plants. Plant Physiol 128:1120–1128

    CAS  Google Scholar 

  58. Lasat MM (2002) Phytoextraction of toxic metals: a review of biological mechanisms. J Env Qual 31:109–120

    CAS  Google Scholar 

  59. Kagi JH, Kojima Y (1979) Nomenclature of metallothionein: a proposal. Experientia Suppl 34:141–142

    CAS  Google Scholar 

  60. Lane B, Kajioka R, Kennedy T (1987) The wheat-germ Ec protein is a zinc-containing metallothionein. Biochem Cell Biol-Biochim Biol Cellulaire 65:1001–1005

    CAS  Google Scholar 

  61. Murphy A, Zhou JM, Goldsbrough PB, Taiz L (1997) Purification and immunological identification of metallothioneins 1 and 2 from Arabidopsis thaliana. Plant Physiol 113:1293–1301

    CAS  Google Scholar 

  62. Schmidt A, Hagen M, Schütze E, Schmidt A, Kothe E (2010) In silico prediction of potential metallothioneins and metallohistins in actinobacteria. J Basic Microbiol 50:562–569

    CAS  Google Scholar 

  63. Rauser WE (1995) Phytochelatins and related peptides (structure, biosynthesis, and function). Plant Physiol 109:1141–1149

    CAS  Google Scholar 

  64. Grill E, Löffler S, Winnacker E-L, Zenk MH (1989) Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific γ-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc Nat Acad Sci U S A 86:6838–6842

    CAS  Google Scholar 

  65. Thumann J, Grill E, Winnacker E-L, Zenk MH (1991) Reactivation of metal-requiring apoenzymes by phytochelatin-metal complexes. FEBS Lett 284:66–69

    CAS  Google Scholar 

  66. Yang X-E, Jin X-F, Feng Y, Islam E (2005) Molecular mechanisms and genetic basis of heavy metal tolerance/hyperaccumulation in plants. J Integr Plant Biol 47:1025–1035

    CAS  Google Scholar 

  67. Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol Biochem 37:395–412

    CAS  Google Scholar 

  68. Dimkpa CO, Merten D, Svatos A, Büchel G, Kothe E (2009) Siderophores mediate reduced and increased uptake of cadmium by Streptomyces tendae F4 and sunflower (Helianthus annuus), respectively. J Appl Microbiol 107:1687–1696

    CAS  Google Scholar 

  69. Ma Y, Prasad MN, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29:248–258

    CAS  Google Scholar 

  70. Beneduzi A, Ambrosini A, Passaglia LMP (2012) Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Gen Mol Biol 35:1044–1051

    CAS  Google Scholar 

  71. Kloepper JW, Schroth MN (1979) Plant-growth promoting rhizobacteria—evidence that the mode of action involves root microflora interactions. Phytopathology 69:1020–1024

    Google Scholar 

  72. Teale WD, Paponov IA, Palme K (2006) Auxin in action: signalling, transport and the control of plant growth and development. Nat Rev Mol Cell Biol 7:847–859

    CAS  Google Scholar 

  73. Neilands JB (1984) Methodology of siderophores. Struct Bonding 58:1–24

    CAS  Google Scholar 

  74. Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Enhanced plant-growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286:885–886

    CAS  Google Scholar 

  75. Schalk IJ, Hannauer M, Braud A (2011) New roles for bacterial siderophores in metal transport and tolerance. Environ Microbiol 13:2844–2854

    CAS  Google Scholar 

  76. Dimkpa C, Svatos A, Merten D, Büchel G, Kothe E (2008) Hydroxamate siderophores produced by Streptomyces acidiscabies E13 bind nickel and promote growth in cowpea (Vigna unguiculata L.) under nickel stress. Can J Microbiol 54:163–172

    CAS  Google Scholar 

  77. Dimkpa CO, Svatos A, Dabrowska P, Schmidt A, Boland W, Kothe E (2008) Involvement of siderophores in the reduction of metal-induced inhibition of auxin synthesis in Streptomyces spp. Chemosphere 74:19–25

    CAS  Google Scholar 

  78. Dimkpa C, Weinand T, Asch F (2009) Plant-rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Env 32:1682–1694

    CAS  Google Scholar 

  79. Doty SL (2008) Enhancing phytoremediation through the use of transgenics and endophytes. New Phytol 179:318–333

    CAS  Google Scholar 

  80. Rajkumar M, Ae N, Freitas H (2009) Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere 77:153–160

    CAS  Google Scholar 

  81. Misaghi IJ, Donndelinger CR (1990) Endophytic bacteria in symptom-free cotton plants. Phytopathology 80:808–811

    Google Scholar 

  82. Lodewyckx C, Vangronsveld J, Porteous F, Moore ERB, Taghavi S, Mezgeay M, van der Lelie D (2002) Endophytic bacteria and their potential applications. Crit Rev Plant Sci 21:583–606

    Google Scholar 

  83. Barac T, Taghavi S, Borremans B, Provoost A, Oeyen L, Colpaert JV, Vangronsveld J, van der Lelie D (2004) Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nature Biotechnol 22:583–588

    CAS  Google Scholar 

  84. Germaine KJ, Keogh E, Ryan D, Dowling DN (2009) Bacterial endophyte-mediated naphthalene phytoprotection and phytoremediation. FEMS Microbiol Lett 296:226–234

    CAS  Google Scholar 

  85. Germaine KJ, Liu X, Cabellos GG, Hogan JP, Ryan D, Dowling DN (2006) Bacterial endophyte-enhanced phytoremediation of the organochlorine herbicide 2,4-dichlorophenoxyacetic acid. FEMS Microbiol Ecol 57:302–310

    CAS  Google Scholar 

  86. Weyens N, CroesS Dupae J, Newman L, van der Lelie D, Carleer R, Vangronsveld J (2010) Endophytic bacteria improve phytoremediation of Ni and TCE co-contamination. Env Pollut 158:2422–2427

    CAS  Google Scholar 

  87. Selosse MA, Baudoin E, Vandenkoornhuyse P (2004) Symbiotic microorganisms, a key for ecological success and protection of plants. Crit Rev Biol 327:639–648

    Google Scholar 

  88. Kothe E, Dudeja SS (2011) Editorial. J Basic Microbiol 51:4

    Google Scholar 

  89. Dudeja SS, Giri R, Saini R, Suneja-Madan P, Kothe E (2012) Interaction of endophytic microbes with legumes. J Basic Microbiol 52:248–260

    CAS  Google Scholar 

  90. Harrison MJ (2005) Signaling in the arbuscular mycorrhizal symbiosis. Ann Rev Microbiol 59:19–42

    CAS  Google Scholar 

  91. Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic Press, San Diego

    Google Scholar 

  92. Bonfante P, Genre A (2010) Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis. Nature Comm 1:48

    Google Scholar 

  93. Rinaldi AC, Comandini O, Kuyper TW (2008) Ectomycorrhizal fungal diversity: separating the wheat from the chaff. Fungal Div 33:1–45

    Google Scholar 

  94. Khan AG, Kuek C, Chaudhry TM, Khoo CS, Hayes WJ (2000) Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere 41:197–207

    CAS  Google Scholar 

  95. Wang B, Qiu YL (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363

    CAS  Google Scholar 

  96. Wilkins DA (1991) The influence of sheathing (ecto-) mycorrhizas of trees on the uptake and toxicity of metals. Agricult Ecosyst Env 35:245–260

    CAS  Google Scholar 

  97. Turnau K, Kottke I, Dexheimer J, Botton B (1994) Element distribution in mycelium of Pisolithus arrhizus treated with cadmium dust. Annals Bot 74:137–142

    CAS  Google Scholar 

  98. Bojarczuk K, Kieliszewska-Rokicka B (2010) Effect of ectomycorrhiza on Cu and Pb accumulation in leaves and roots of silver birch (Betula pendula Roth.) seedlings grown in metal-contaminated soil. Water Air Soil Pollut 207:227–240

    CAS  Google Scholar 

  99. Hrynkiewicz K, Dabrowska G, Baum C, Niedojadlo K, Leinweber P (2012) Interactive and single effects of ectomycorrhiza formation and Bacillus cereus on metallothionein MT1 expression and phytoextraction of Cd and Zn by willows. Water Air Soil Pollut 223:957–968

    CAS  Google Scholar 

  100. Bonfante P (2010) Plant–fungal interactions in mycorrhizas., Encyclopedia of Life SciencesWiley, London

    Google Scholar 

  101. Narula N, Reinicke M, Haferburg G, Kothe E, Behl RK (2012) Plant-microbe interaction in heavy metal-contaminated soils. In: Kothe E, Varma A (eds) Bio-geo interactions in heavy metal-contaminated soils. Springer, Heidelberg, pp 143–162

    Google Scholar 

  102. Ebenå G, Kothe E (2006) Bioleaching and microbial mineral degradation. In: Varma A (ed) Microbes: health and environment, vol 3. IK International Publishing, New Delhi, pp 389–405

    Google Scholar 

  103. Haferburg G, Kothe E (2012) Biogeosciences in heavy metal-contaminated soils. In: Kothe E, Varma A (eds) Bio-geo interactions in heavy metal-contaminated soils. Springer, Heidelberg, pp 17–34

    Google Scholar 

  104. Schindler F, Gube M, Kothe E (2012) Bioremediation and heavy metal uptake: microbial appraoches at field scale. In: Koth E, Varma A (eds) Bio-geo interactions in heavy metal-contaminated soils. Springer, Heidelberg, pp 365–384

    Google Scholar 

  105. Merten D, Geletneky J, Bergmann H, Haferburg G, Kothe E, Büchel G (2005) Rare earth element patterns: a tool for remediation of acid mine drainage. Chem Erde Geochem 65S1:97–114

    Google Scholar 

  106. Schmidt A, Haferburg G, Schmidt A, Lischke U, Merten D, Gherghel F, Büchel G, Kothe E (2009) Heavy metal resistance to the extreme: Streptomyces strains from a former uranium mining area. Chem Erde Geochem 69:35–44

    Google Scholar 

  107. Haferburg G, Klöß G, Schmitz W, Kothe E (2008) “Ni-struvite”—a new biomineral formed by a nickel resistant Streptomyces acidiscabies. Chemosphere 72:517–523

    CAS  Google Scholar 

  108. Kothe E, Dimkpa CO, Haferburg G, Schmidt A, Schmidt A, Schütze E (2010) Streptomycete heavy metal resistance: extracellular and intracellular mechanisms. In: Sherameti I, Varma A (eds) Soil heavy metals. Springer, Heidelberg, pp 225–236

    Google Scholar 

  109. Pitman M (1972) Uptake and transport of ions in barley seedlings II. Evidence for two active stages in transport to the shoot. Aus J Biol Sci 25:243–258

    CAS  Google Scholar 

  110. Boer AH, Prins HBA, Zanstra PE (1983) Bi-phasic composition of trans-root electrical potential in roots of Plantago species: involvement of spatially separated electrogenic pumps. Planta 157:259–266

    Google Scholar 

  111. Stephan UW, Schmidke I, Stephan VW, Scholz G (1996) The nicotianamine molecule is made-to-measure for complexation of metal micronutrients in plants. Biometals 9:84–90

    CAS  Google Scholar 

  112. Vögeli-Lange R, Wagner GJ (1990) Subcellular localization of cadmium and cadmium-binding peptides in tobacco leaves: implication of a transport function for cadmium-binding peptides. Plant Physiol 92:1086–1093

    Google Scholar 

  113. Kupper H, Zhao FJ, McGrath SP (1999) Cellular compartmentation of zinc in leaves of the hyperaccumulator Thlaspi caerulescens. Plant Physiol 119:305–311

    CAS  Google Scholar 

  114. Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements—a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  115. Prasad MNV (2005) Nickelophilous plants and their significance in phytotechnologies. Braz J Plant Physiol 17:113–128

    CAS  Google Scholar 

  116. Boyd RS, Shaw JJ, Martens SN (1994) Nickel hyperaccumulation defends Streptanthus polygaloides (Brassicaceae) against pathogens. Am J Bot 81:294–300

    CAS  Google Scholar 

  117. Boyd RS, Martens SN (1994) Nickel hyperaccumulated by Thlaspi montanum var. montanum is acutely toxic to an insect herbivore. Oikos 70:21–25

    CAS  Google Scholar 

  118. Chaney RL (1983) Plant uptake of inorganic waste. In: Parr JE, Marsh PB, Kla JM (eds) Land treatment of hazardous waste. Noyes Data Corp, Park Ridge, pp 50–76

    Google Scholar 

  119. McGrath SP, Sidoli CMD, Baker AJM, Reeves RD (1993) The potential for the use of metal-accumulating plants for the in situ decontamination of metal-polluted soils. In: Eijsackers HJP, Hamers T (eds) Integrated soil and sediment research : a basis for proper prediction. Kluwer, Dordrecht, The Netherlands, pp 673–676

    Google Scholar 

  120. Nicks L, Chambers MF (1998) A pioneering study of the potential of phytomining for nickel. In: Brooks RR (ed) Plants that hyperaccumulate heavy metals. CAB International, Wallingford, pp 312–325

    Google Scholar 

  121. Nicks L, Chambers MF (1995) Farming for metals. Mining Environ Meeting 199:15–18

    Google Scholar 

  122. Robinson BH, Brooks RR, Howes AW, Kirkman JH, Gregg PEH (1997) The potential of the high-biomass nickel hyperaccumulator Berkheya coddii for phytoremediation and phytomining. J Geochem Expl 60:115–126

    CAS  Google Scholar 

  123. Brooks RR, Robinson BH, Howes AW, Chiarucci A (2001) An evaluation of Berkheya coddii Roessler and Alyssum bertolonii Desv. for phytoremediation and phytomining of nickel. S Afr J Sci 97:558–560

    CAS  Google Scholar 

  124. Brooks RR, Robinson BH (1998) The potential use of hyperaccumulators and other plants for phytomining. In: Brooks RR (ed) Plants that hyperaccumulate heavy metals: their role in phytoremediation, microbiology, archaeology, mineral exploration and phytomining. CAB International, Wallingford, pp 327–356

    Google Scholar 

  125. Robinson BH, Banuelos G, Conesa HM, Evangelou MWH, Schulin R (2009) The phytomanagement of trace elements in soil. Critical Rev Plant Sci 28:240–266

    CAS  Google Scholar 

  126. Newman LA, Reynolds CM (2005) Bacteria and phytoremediation: new uses for endophytic bacteria in plants. Trends Biotechnol 23:6–8

    CAS  Google Scholar 

  127. Mastretta C, Barac T, Vangronsveld J, Newman L, Taghavi S, van der Lelie D (2006) Endophytic bacteria and their potential application to improve the phytoremediation of contaminated environments. Biotechnol Genet Eng Rev 23:175–207

    CAS  Google Scholar 

  128. Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9

    CAS  Google Scholar 

  129. Gatzweiler R, Jakubick AT, Meyer J, Paul M, Schreyer J (2003) Flooding of the WISMUT mines - learning by doing or applying a comprehensive systematic approach ? In: Merkel B, Planer-Friedrich B, Wolkersdorfer C (eds) Uranium in the aquatic environment. Springer, Heildelberg, pp 745–754

    Google Scholar 

  130. Grawunder A, Lonschinski M, Merten D, Büchel G (2009) Distribution and bonding of residual contamination in glacial sediments at the former uranium mining leaching heap of Gessen/Thuringia, Germany. Chem Erde - Geochem 69S2:5–19

    Google Scholar 

  131. Lonschinski M, Knöller K, Merten D, Büchel G (2011) Flow dynamics of groundwater and soil water in the former heap Gessenhalde at the uranium mining area of Ronneburg: a stable isotope approach. Hydrol Process 25:861–872

    Google Scholar 

  132. Senitz S, Gaupp R, Büchel G (2009) Hochaufgelöste dreidimensionale Rekonstruktion eines quartären Talaquifers in einem Teilbereich des Gessentals bei Ronneburg (ehemaliges ostthüringisches Uranerzbergbaurevier) durch die Kombination von Geländedaten und geostatistischer Schätzung. Zeitschr dtsch Ges Geowiss 160:367–389

    Google Scholar 

  133. Kothe E, Bergmann H, Büchel G (2005) Molecular mechanisms in bio-geo-interactions: from a case study to general mechanisms. Chem Erde Geochem 65S1:7–27

    Google Scholar 

  134. Willscher S, Mirgorodsky D, Jablonski L, Ollivier D, Merten D, Büchel G, Wittig J, Werner P (2013) Field scale phytoremediation experiments on a heavy metal and uranium contaminated site, and further utilization of the plant residues. Hydrometallurgy F:46–53

    Google Scholar 

  135. Büchel G, Bergmann H, Ebenå G, Kothe E (2005) Geomicrobiology in remediation of mine waste. Chem Erde 65S1:1–5

    Google Scholar 

  136. Mirgorodsky D, Ollivier D, Merten D, Bergmann H, Büchel G, Willscher S, Wittig J, Jablonski L, Werner P (2010) Radiation protection of radioactively contaminated large areas by phytoremediation and subsequent utilization of the contaminated plant residues. J Nucl Power 55:774–778

    CAS  Google Scholar 

  137. Demchik MC, Sharpe WE (2001) Forest floor plant response to lime and fertilizer before and after partial cutting of a northern red oak stand on an extremely acidic soil in Pennsylvania, USA. Forest Evol Manag 144:239–244

    Google Scholar 

  138. Reinicke M, Schindler G, Roth M, Kothe E (2013) Multi-metal bioremediation by microbial assisted phytoremediation. In: Actinobacteria. Application in bioremediation and production of industrial enzymes (Amorosos MJ, Benimeli CS, Cuozzo SA, Eds.). CRC, Boca Raton, USA, pp 87–105.

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge financial support by BMBF, DFG-Gk1257, JSMC and MikroInter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erika Kothe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Phieler, R., Voit, A., Kothe, E. (2013). Microbially Supported Phytoremediation of Heavy Metal Contaminated Soils: Strategies and Applications. In: Schippers, A., Glombitza, F., Sand, W. (eds) Geobiotechnology I. Advances in Biochemical Engineering/Biotechnology, vol 141. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2013_200

Download citation

Publish with us

Policies and ethics