Skip to main content

Yeast Community Composition and Structure

  • Chapter
  • First Online:
Yeasts in Natural Ecosystems: Ecology

Abstract

Yeasts are globally distributed, but different species occur in different climates and environments. With a few exceptions, yeasts do not occur in their natural environments as a pure culture but co-occur with other microscopic eukaryotes and prokaryotes and comprise microbial communities. The observed yeast diversity in natural environments is a combined result of the response of each species to habitat conditions, including arrival, growth, and further dispersal, and the biotic interactions among species. In this chapter, we review some recent concepts and tools developed in community ecology and discuss how they may help understand yeast diversity in nature. We address species recognition approaches and the effects of the intraspecific variation and application of molecular operational taxonomic units on the yeast community parameters. Community ecology tools discussed in this chapter include diversity (taxonomic and functional), quantity, priority effects, species richness estimators, and species-abundance distribution. Additionally, we compare the use of community composition and community structure parameters in the literature. Concepts such as frequent (vs. rare), autochthonous (vs. transient or allochthonous) and specialist (vs. generalist) yeast species are also discussed through this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agapow PM, Bininda-Emonds OR, Crandall KA, Gittleman JL, Mace GM, Marshall JC, Purvis A (2004) The impact of species concept on biodiversity studies. Q Rev Biol 79:161–179

    Article  PubMed  Google Scholar 

  • Alvarez-Perez S, Herrera CM (2013) Composition, richness and nonrandom assembly of culturable bacterial–microfungal communities in floral nectar of Mediterranean plants. FEMS Microbiol Ecol 83:685–699

    Article  CAS  PubMed  Google Scholar 

  • Amann RI, Ludwig W, Schleifer K-H (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Amend AS, Seifert KA, Bruns TD (2010) Quantifying microbial communities with 454 pyrosequencing: does read abundance count? Mol Ecol 19:5555–5565

    Article  CAS  PubMed  Google Scholar 

  • Atlas RM, Bartha R (1993) Microbial ecology. Fundamentals and applications, 3rd edn. The Benjamin/Cummings, Menlo Park, CA

    Google Scholar 

  • Babjeva IP, Chernov IY (1995) Geographic aspects of yeast ecology. Physiol Gen Biol Rev 9:1–54

    Google Scholar 

  • Babjeva IP, Kartintseva A, Maksimova IA, Chernov IY (1999) Yeasts in the spruce forests of the Central Forest Reserve. Vestn Mosk Univ Ser Biol Pochvoved 4:45–49. (in Russian)

    Google Scholar 

  • Barnett JA (2004) A history of research on yeasts 8: taxonomy. Yeast 21:1141–1193

    Article  CAS  PubMed  Google Scholar 

  • Becher PG, Flick G, Rozpędowska E, Schmidt A, Hagman A, Lebreton S, Larsson MC, Hansson BS, Piškur J, Witzgall P (2012) Yeast, not fruit volatiles mediate Drosophila melanogaster attraction, oviposition and development. Funct Ecol 26:822–828

    Article  Google Scholar 

  • Bellemain E, Davey ML, Kauserud H, Epp LS, Boessenkool S, Coissac E, Geml J, Edwards M, Willerslev E, Gussarova G (2013) Fungal palaeodiversity revealed using high-throughput metabarcoding of ancient DNA from arctic permafrost. Environ Microbiol 15:1176–1189

    Article  CAS  PubMed  Google Scholar 

  • Bezemer TM, van der Putten WH (2007) Ecology: diversity and stability in plant communities. Nature 446:E6–E7

    Article  CAS  PubMed  Google Scholar 

  • Blackwell M (2011) The fungi: 1, 2, 3… 5.1 million species? Am J Bot 98:426–438

    Article  PubMed  Google Scholar 

  • Bohannan BJ, Hughes J (2003) New approaches to analyzing microbial biodiversity data. Curr Opin Microbiol 6:282–287

    Article  CAS  PubMed  Google Scholar 

  • Botha A (2006) Yeasts in soil. In: Rosa CA, Péter G (eds) Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 221–240

    Chapter  Google Scholar 

  • Boundy-Mills K (2006) Methods for investigating yeast biodiversity. In: Rosa CA, Péter G (eds) Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 67–100

    Chapter  Google Scholar 

  • Brandão LR, Libkind D, Vaz AB, Santo LCE, Moliné M, de García V, van Broock M, Rosa CA (2011) Yeasts from an oligotrophic lake in Patagonia (Argentina): diversity, distribution and synthesis of photoprotective compounds and extracellular enzymes. FEMS Microbiol Ecol 76:1–13

    Article  PubMed  CAS  Google Scholar 

  • Brysch-Herzberg M (2004) Ecology of yeasts in plant–bumblebee mutualism in Central Europe. FEMS Microbiol Ecol 50:87–100

    Article  CAS  PubMed  Google Scholar 

  • Buzzini P, Branda E, Goretti M, Turchetti B (2012) Psychrophilic yeasts from worldwide glacial habitats: diversity, adaptation strategies and biotechnological potential. FEMS Microbiol Ecol 82:217–241

    Article  CAS  PubMed  Google Scholar 

  • Buzzini P, Lachance MA, Yurkov AM (2017) Yeasts in natural ecosystems: diversity. Springer International Publishing

    Google Scholar 

  • Chase JM (2003) Community assembly: when should history matter? Oecologia 136:489–498

    Article  PubMed  Google Scholar 

  • Chernov IY (2005) The latitude-zonal and spatial-successional trends in the distribution of yeasts. Zh Obshch Biol 66:123–135. (in Russian)

    PubMed  Google Scholar 

  • Chernov IY (2013) Yeasts in nature. KMK Press, Moscow. (in Russian)

    Google Scholar 

  • Coelho MA, Gonçalves P, Sampaio JP (2011) Evidence for maintenance of sex determinants but not of sexual stages in red yeasts, a group of early diverged basidiomycetes. BMC Evol Biol 11:249

    Article  PubMed  PubMed Central  Google Scholar 

  • Crowther TW, Grossart H (2015) The role of bottom-up and top-down interactions in determining microbial and fungal diversity and function. In: Hanley TC, La Pierre KJ (eds) Trophic ecology: bottom-up and top-down interactions across aquatic and terrestrial systems. Cambridge University Press, Cambridge, pp 260–287

    Chapter  Google Scholar 

  • Darwin C (1872) The origin of species by means of natural selection, or the preservation of favoured races in the struggle for life, 6th edn. John Murray, London

    Google Scholar 

  • Davis TS (2015) The ecology of yeasts in the bark beetle holobiont: a century of research revisited. Microb Ecol 69:723–732

    Article  PubMed  Google Scholar 

  • Di Menna ME (1965) Yeasts in New Zealand soils. NZ J Bot 3:194–203

    Article  Google Scholar 

  • Diamond JM (1975) The island dilemma: lessons of modern biogeographic studies for the design of natural reserves. Biol Conserv 7:129–146

    Article  Google Scholar 

  • Fell JW (2012) Yeasts in marine environments. In: Jones EBG, Pang KL (eds) Marine fungi and fungal-like organisms. Walter de Gruyter, Berlin, pp 91–102

    Google Scholar 

  • Fell JW, Boekhout T, Fonseca A, Scorzetti G, Statzell-Tallman A (2000) Biodiversity and systematics of basidiomycetous yeasts as determined by large-subunit rDNA D1/D2 domain sequence analysis. Int J Syst Evol Microbiol 50:1351–1371

    Article  CAS  PubMed  Google Scholar 

  • Fonseca Á, Inácio J (2006) Phylloplane yeasts. In: Rosa CA, Péter G (eds) Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 263–301

    Chapter  Google Scholar 

  • Fukami T (2015) Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annu Rev Ecol Evol Syst 46:1–23

    Article  Google Scholar 

  • Gadanho M, Almeida JM, Sampaio JP (2003) Assessment of yeast diversity in a marine environment in the south of Portugal by microsatellite-primed PCR. Antonie van Leeuwenhoek 84:217–227

    Article  CAS  PubMed  Google Scholar 

  • Glushakova A, Chernov IY (2010) Seasonal dynamics of the structure of epiphytic yeast communities. Microbiology 79:830–839

    Article  CAS  Google Scholar 

  • Glushakova A, Yurkov A, Chernov IY (2007) Massive isolation of anamorphous ascomycete yeasts Candida oleophila from plant phyllosphere. Microbiology 76:799–803

    Article  CAS  Google Scholar 

  • Golubev WI (2006) Antagonistic interactions among yeasts. In: Rosa CA, Péter G (eds) Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 197–219

    Chapter  Google Scholar 

  • Gotelli NJ, Colwell RK (2011) Estimating species richness. In: Magurran AE, McGill BJ (eds) Biological diversity: frontiers in measurement and assessment. Oxford University Press, Oxford 12:39–54

    Google Scholar 

  • Gotelli NJ, McCabe DJ (2002) Species co-occurrence: a meta-analysis of JM Diamond’s assembly rules model. Ecology 83:2091-2096

    Google Scholar 

  • Grimm V, Wissel C (1997) Babel, or the ecological stability discussions: an inventory and analysis of terminology and a guide for avoiding confusion. Oecologia 109:323–334

    Article  CAS  PubMed  Google Scholar 

  • Hawksworth DL (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 105:1422–1432

    Article  Google Scholar 

  • Herrera CM, García IM, Pérez R (2008) Invisible floral larcenies: microbial communities degrade floral nectar of bumble bee-pollinated plants. Ecology 89:2369–2376

    Article  PubMed  Google Scholar 

  • Herrera CM, Pozo MI, Bazaga P (2011) Clonality, genetic diversity and support for the diversifying selection hypothesis in natural populations of a flower-living yeast. Mol Ecol 20:4395–4407

    Article  CAS  PubMed  Google Scholar 

  • Holighaus G, Rohlfs M (2016) Fungal allelochemicals in insect pest management. Appl Microbiol Biotechnol 100:5681–5689

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Li M, Chen H (2015) Community structure of gut fungi during different developmental stages of the Chinese white pine beetle (Dendroctonus armandi). Sci Rep 5:8411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes JB, Hellmann JJ, Ricketts TH, Bohannan BJ (2001) Counting the uncountable: statistical approaches to estimating microbial diversity. Appl Environ Microbiol 67:4399–4406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inácio J, Ludwig W, Spencer-Martins I, Fonseca Á (2010) Assessment of phylloplane yeasts on selected Mediterranean plants by FISH with group-and species-specific oligonucleotide probes. FEMS Microb Ecol 71:61–72

    Article  CAS  Google Scholar 

  • Jacquemyn H, Lenaerts M, Brys R, Willems K, Honnay O, Lievens B (2013a) Among-population variation in microbial community structure in the floral nectar of the bee-pollinated forest herb Pulmonaria officinalis L. PLoS One 8:e56917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacquemyn H, Lenaerts M, Tyteca D, Lievens B (2013b) Microbial diversity in the floral nectar of seven Epipactis (Orchidaceae) species. Microbiologyopen 2:644–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jumpponen A, Jones K (2010) Seasonally dynamic fungal communities in the Quercus macrocarpa phyllosphere differ between urban and nonurban environments. New Phytol 186:496–513

    Article  CAS  PubMed  Google Scholar 

  • Kachalkin AV, Yurkov AM (2012) Yeast communities in Sphagnum phyllosphere along the temperature-moisture ecocline in the boreal forest-swamp ecosystem and description of Candida sphagnicola sp. nov. Antonie van Leeuwenhoek 102:29–43

    Article  PubMed  Google Scholar 

  • Kurtzman CP, Robnett CJ (1998) Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie van Leeuwenhoek 73:331–371

    Article  CAS  PubMed  Google Scholar 

  • Kutty SN, Philip R (2008) Marine yeasts - a review. Yeast 25:465–483

    Article  CAS  PubMed  Google Scholar 

  • Lachance M-A (2006) Yeast biodiversity: how many and how much? In: Rosa CA, Péter G (eds) Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 1–9

    Google Scholar 

  • Lachance M-A (2016) Paraphyly and (yeast) classification. Int J Syst Evol Microbiol 66:4924–4929

    Article  PubMed  Google Scholar 

  • Lachance M, Starmer W (1998) Ecology and yeasts. In: Kurtzman CP, Fell JW (eds) The yeasts, a taxonomic study, 4th edn. Elsevier, Amsterdam, pp 21–30

    Chapter  Google Scholar 

  • Lachance M-A, Gilbert DG, Starmer WT (1995) Yeast communities associated with Drosophila species and related flies in an eastern oak-pine forest: a comparison with western communities. J Ind Microbiol 14:484–494

    Article  CAS  PubMed  Google Scholar 

  • Lachance M-A, Bowles JM, Starmer WT (2003) Geography and niche occupancy as determinants of yeast biodiversity: the yeast–insect–morning glory ecosystem of Kīpuka Puaulu, Hawai’i. FEMS Yeast Res 4:105–111

    Article  CAS  PubMed  Google Scholar 

  • Lachance M-A, Dobson J, Wijayanayaka DN, Smith AM (2010) The use of parsimony network analysis for the formal delineation of phylogenetic species of yeasts: Candida apicola, Candida azyma, and Candida parazyma sp. nov., cosmopolitan yeasts associated with floricolous insects. Antonie van Leeuwenhoek 97:155–170

    Article  CAS  PubMed  Google Scholar 

  • Leroux SJ, Loreau M (2015) Theoretical perspectives on bottom-up and top-down interactions across ecosystems. In: Hanley TC, La Pierre KJ (eds) Trophic ecology: bottom-up and top-down interactions across aquatic and terrestrial systems. Cambridge Univeristy Press, Cambridge, pp 3–27

    Chapter  Google Scholar 

  • Lyons KG, Schwartz MW (2001) Rare species loss alters ecosystem function–invasion resistance. Ecol Lett 4:358–365

    Article  Google Scholar 

  • Lyons KG, Brigham C, Traut B, Schwartz MW (2005) Rare species and ecosystem functioning. Conserv Biol 19:1019–1024

    Article  Google Scholar 

  • Magurran A (2004) Measuring biodiversity. Blackwell, Oxford

    Google Scholar 

  • Magurran AE, Henderson PA (2003) Explaining the excess of rare species in natural species abundance distributions. Nature 422:714–716

    Article  CAS  PubMed  Google Scholar 

  • Maksimova I, Chernov IY (2004) Community structure of yeast fungi in forest biogeocenoses. Microbiology 73:474–481

    Article  CAS  Google Scholar 

  • Malloch D, Blackwell M (1992) Dispersal of fungal diaspores. In: Dighton P, White J, Oudemans P (eds) The fungal community: its organization and role in the ecosystem, 2nd edn. Marcel Dekker, New York, pp 147–171

    Google Scholar 

  • Mašínová T, Bahnmann BD, Větrovský T, Tomšovský M, Merunková K, Baldrian P (2017) Drivers of yeast community composition in the litter and soil of a temperate forest. FEMS Microb Ecol 93:fiw223

    Google Scholar 

  • McGill BJ, Etienne RS, Gray JS, Alonso D, Anderson MJ, Benecha HK, Dornelas M, Enquist BJ, Green JL, He F (2007) Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. Ecol Lett 10:995–1015

    Article  PubMed  Google Scholar 

  • Medina K, Boido E, Dellacassa E, Carrau F (2012) Growth of non-Saccharomyces yeasts affects nutrient availability for Saccharomyces cerevisiae during wine fermentation. Int J Food Microbiol 157:245–250

    Article  CAS  PubMed  Google Scholar 

  • Mestre MC, Rosa CA, Safar SV, Libkind D, Fontenla SB (2011) Yeast communities associated with the bulk-soil, rhizosphere and ectomycorrhizosphere of a Nothofagus pumilio forest in northwestern Patagonia, Argentina. FEMS Microb Ecol 78:531–541

    Article  CAS  Google Scholar 

  • Meyer KM, Leveau JH (2012) Microbiology of the phyllosphere: a playground for testing ecological concepts. Oecologia 168:621–629

    Article  PubMed  Google Scholar 

  • Mittelbach M, Yurkov AM, Nocentini D, Nepi M, Weigend M, Begerow D (2015) Nectar sugars and bird visitation define a floral niche for basidiomycetous yeast on the Canary Islands. BMC Ecol 15:1

    Article  CAS  Google Scholar 

  • Mittelbach M, Yurkov AM, Begerow D (2016a) Adaptive anonymity: crypsis as an evolutionary trait of floral yeasts? bioRxiv:088179

    Google Scholar 

  • Mittelbach M, Yurkov AM, Stoll R, Begerow D (2016b) Inoculation order of nectar-borne yeasts opens a door for transient species and changes nectar rewarded to pollinators. Fungal Ecol 22:90–97

    Article  Google Scholar 

  • Morais CG, Cadete RM, Uetanabaro APT, Rosa LH, Lachance M-A, Rosa CA (2013) D-xylose-fermenting and xylanase-producing yeast species from rotting wood of two Atlantic Rainforest habitats in Brazil. Fungal Genet Biol 60:19–28

    Article  CAS  PubMed  Google Scholar 

  • Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, Schilling JS, Kennedy PG (2016) FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol 20:241–248

    Article  Google Scholar 

  • Niu L-H, Song X-F, He S-M, Zhang P, Wang N-X, Li Y, Huang D-W (2015) New insights into the fungal community from the raw genomic sequence data of fig wasp Ceratosolen solmsi. BMC Microbiol 15:1

    Article  Google Scholar 

  • Orgiazzi A, Lumini E, Nilsson RH, Girlanda M, Vizzini A, Bonfante P, Bianciotto V (2012) Unravelling soil fungal communities from different Mediterranean land-use backgrounds. PLoS One 7:e34847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ort BS, Bantay RM, Pantoja NA, O’Grady PM (2012) Fungal diversity associated with Hawaiian Drosophila host plants. PLoS One 7:e40550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peay KG, Belisle M, Fukami T (2012) Phylogenetic relatedness predicts priority effects in nectar yeast communities. Proc R Soc B Biol Sci 279:749–758

    Article  Google Scholar 

  • Pereira PT, de Carvalho MM, Gírio FM, Roseiro JC, Amaral-Collaço M (2002) Diversity of microfungi in the phylloplane of plants growing in a Mediterranean ecosystem. J Basic Microbiol 42:396–407

    Article  PubMed  Google Scholar 

  • Pozo MI, Herrera CM, Bazaga P (2011) Species richness of yeast communities in floral nectar of southern Spanish plants. Microb Ecol 61:82–91

    Article  PubMed  Google Scholar 

  • Pozo MI, Lachance M-A, Herrera CM (2012) Nectar yeasts of two southern Spanish plants: the roles of immigration and physiological traits in community assembly. FEMS Microb Ecol 80:281–293

    Article  CAS  Google Scholar 

  • Pozo MI, Herrera CM, Van den Ende W, Verstrepen K, Lievens B, Jacquemyn H (2015) The impact of nectar chemical features on phenotypic variation in two related nectar yeasts. FEMS Microb Ecol 91:fiv055

    Google Scholar 

  • Pozo MI, Herrera CM, Lachance MA, Verstrepen K, Lievens B, Jacquemyn H (2016) Species coexistence in simple microbial communities: unravelling the phenotypic landscape of co-occurring Metschnikowia species in floral nectar. Environ Microbiol 18:1850–1862

    Article  CAS  PubMed  Google Scholar 

  • Redford AJ, Bowers RM, Knight R, Linhart Y, Fierer N (2010) The ecology of the phyllosphere: geographic and phylogenetic variability in the distribution of bacteria on tree leaves. Environ Microbiol 12:2885–2893

    Article  PubMed  PubMed Central  Google Scholar 

  • Sampaio JP, Gonçalves P (2008) Natural populations of Saccharomyces kudriavzevii in Portugal are associated with oak bark and are sympatric with S. cerevisiae and S. paradoxus. Appl Environ Microbiol 74:2144–2152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanders HL (1968) Marine benthic diversity: a comparative study. Am Nat 102:243–282

    Article  Google Scholar 

  • Schnittler M, Unterseher M, Tesmer J (2006) Species richness and ecological characterization of myxomycetes and myxomycete-like organisms in the canopy of a temperate deciduous forest. Mycologia 98:223–232

    Article  PubMed  Google Scholar 

  • Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Bolchacova E, Voigt K, Crous PW (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci USA 109:6241–6246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scorzetti G, Fell J, Fonseca A, Statzell-Tallman A (2002) Systematics of basidiomycetous yeasts: a comparison of large subunit D1/D2 and internal transcribed spacer rDNA regions. FEMS Yeast Res 2:495–517

    Article  CAS  PubMed  Google Scholar 

  • Seth EC, Taga ME (2015) Nutrient cross-feeding in the microbial world. Front Microbiol 5:350

    Google Scholar 

  • Sláviková E, Vadkertiová R (2000) The occurrence of yeasts in the forest soils. J Basic Microbiol 40:207–212

    Article  PubMed  Google Scholar 

  • Starmer WT, Lachance M-A (2011) Yeast ecology. In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study, 5th edn. Elsevier, Amsterdam, pp 65–83

    Chapter  Google Scholar 

  • Starmer WT, Schmedicke RA, Lachance M-A (2003) The origin of the cactus-yeast community. FEMS Yeast Res 3:441–448

    Article  CAS  PubMed  Google Scholar 

  • Starmer WT, Fell JW, Catranis CM, Aberdeen V, Ma L-J, Zhou S, Rogers SO, Castello J, Rogers S (2005) Yeasts in the genus Rhodotorula recovered from the Greenland ice sheet. In: Castello JD, Rogers SO (eds) Life in ancient ice. Princeton Legacy Library, Princeton, pp 181–196

    Google Scholar 

  • Steven B, Briggs G, McKay CP, Pollard WH, Greer CW, Whyte LG (2007) Characterization of the microbial diversity in a permafrost sample from the Canadian high Arctic using culture-dependent and culture-independent methods. FEMS Microb Ecol 59:513–523

    Article  CAS  Google Scholar 

  • Takashima M, Sugita T, Van BH, Nakamura M, Endoh R, Ohkuma M (2012) Taxonomic richness of yeasts in Japan within subtropical and cool temperate areas. PLoS One 7:e50784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor DL, Hollingsworth TN, McFarland JW, Lennon NJ, Nusbaum C, Ruess RW (2014) A first comprehensive census of fungi in soil reveals both hyperdiversity and fine-scale niche partitioning. Ecol Monogr 84:3–20

    Article  Google Scholar 

  • Unterseher M, Otto P, Morawetz W (2005) Species richness and substrate specificity of lignicolous fungi in the canopy of a temperate, mixed deciduous forest. Mycol Progr 4:117–132

    Article  Google Scholar 

  • Unterseher M, Jumpponen A, Öpik M, Tedersoo L, Moora M, Dormann CF, Schnittler M (2011) Species abundance distributions and richness estimations in fungal metagenomics–lessons learned from community ecology. Mol Ecol 20:275–285

    Article  PubMed  Google Scholar 

  • Vannette RL, Fukami T (2016) Nectar microbes can reduce secondary metabolites in nectar and alter effects on nectar consumption by pollinators. Ecology 97:1410–1419

    Article  PubMed  Google Scholar 

  • Whittaker RH (1960) Vegetation of the Siskiyou mountains, Oregon and California. Ecol Monogr 30:279–338

    Article  Google Scholar 

  • Yurkov A, Maximova I, Chernov IY (2004) The comparative analysis of yeast communities in birch forests of the European part of Russia and Western Siberia. Mikol Fitopatol 38:71–79. (in Russian)

    Google Scholar 

  • Yurkov AM, Kemler M, Begerow D (2011) Species accumulation curves and incidence-based species richness estimators to appraise the diversity of cultivable yeasts from beech forest soils. PLoS One 6:e23671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yurkov A, Kemler M, Begerow D (2012a) Assessment of yeast diversity in soils under different management regimes. Fungal Ecol 5:24–35

    Article  Google Scholar 

  • Yurkov A, Wehde T, Kahl T, Begerow D (2012b) Aboveground deadwood deposition supports development of soil yeasts. Diversity 4:453–474

    Article  Google Scholar 

  • Yurkov A, Inácio J, Chernov IY, Fonseca A (2015a) Yeast biogeography and the effects of species recognition approaches: the case study of widespread basidiomycetous species from birch forests in Russia. Curr Microbiol 70:587–601

    Article  CAS  PubMed  Google Scholar 

  • Yurkov A, Guerreiro MA, Sharma L, Carvalho C, Fonseca Á (2015b) Multigene assessment of the species boundaries and sexual status of the basidiomycetous yeasts Cryptococcus flavescens and C. terrestris (Tremellales). PLoS One 10:e0120400

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yurkov AM, Röhl O, Pontes A, Carvalho C, Maldonado C, Sampaio JP (2016) Local climatic conditions constrain soil yeast diversity patterns in Mediterranean forests, woodlands and scrub biome. FEMS Yeast Res 16:fov103

    Google Scholar 

Download references

Acknowledgements

Tadashi Fukami and William T. Starmer are acknowledged for their valuable suggestions and for correcting the English text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey Yurkov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Yurkov, A., Pozo, M.I. (2017). Yeast Community Composition and Structure. In: Buzzini, P., Lachance, MA., Yurkov, A. (eds) Yeasts in Natural Ecosystems: Ecology . Springer, Cham. https://doi.org/10.1007/978-3-319-61575-2_3

Download citation

Publish with us

Policies and ethics