Skip to main content

PET/CT in Pancreatic Malignancies

  • Chapter
  • First Online:
PET/CT in Hepatobiliary and Pancreatic Malignancies

Abstract

Pancreatic adenocarcinoma (PAC) accounts for about 85% of cases of pancreatic malignancies [1], and the term “pancreatic cancer” is sometimes used to refer only to that type. Imaging plays a central role in the management of this disease. Imaging facilitates establishing diagnosis, determining staging, monitoring treatment response, and detecting recurrence following surgery. Multiple modalities are involved, including computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography with computed tomography (PET/CT), and endoscopic ultrasound (EUS). PET/CT combines functional information of PET with detailed anatomic information of multidetector CT [2]. Although the role of PET/CT in the diagnostic evaluation of patients with various abdominal malignancies is established, its role in pancreatic imaging is still evolving.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. American Cancer Society. Cancer facts and figures. 2009. http://www.cancer.org/acs/groups/content/@nho/documents/document/500809webpdf.pdf. Last accessed 8 June 2012.

  2. Kinney T. Evidence-based imaging of pancreatic malignancies. Surg Clin North Am. 2010;90:235–49.

    Article  PubMed  Google Scholar 

  3. Karlson BM, Ekbom A, Lindgren PG, Kallskog V, Rastad J. Abdominal US for diagnosis of pancreatic tumor: prospective cohort analysis. Radiology. 1999;213:107–11.

    Article  CAS  PubMed  Google Scholar 

  4. Bluemke DA, Cameron JL, Hruban RH, Pitt HA, Siegelman SS, Soyer P, et al. Potentially resectable pancreatic adenocarcinoma: spiral CT assessment with surgical and pathologic correlation. Radiology. 1995;197:381–5.

    Article  CAS  PubMed  Google Scholar 

  5. Brennan DD, Zamboni GA, Raptopoulos VD, Kruskal JB. Comprehensive preoperative assessment of pancreatic adenocarcinoma with 64-section volumetric CT. Radiographics. 2007;27:1653–66.

    Article  PubMed  Google Scholar 

  6. Bronstein YL, Loyer EM, Kaur H, Choi H, David C, DuBrow RA, et al. Detection of small pancreatic tumors with multiphasic helical CT. AJR Am J Roentgenol. 2004;182:619–23.

    Article  PubMed  Google Scholar 

  7. Hanninen EL, Pech M, Jonas S, Ricke J, Thelen A, Langrehr J, et al. Magnetic resonance imaging including magnetic resonance cholangiopancreatography for tumor localization and therapy planning in malignant hilar obstructions. Acta Radiol. 2005;46:462–70.

    Article  CAS  PubMed  Google Scholar 

  8. Cannon ME, Carpenter SL, Elta GH, Nostrant TT, Kochman ML, Ginsberg GG, et al. EUS compared with CT, magnetic resonance imaging, and angiography and the influence of biliary stenting on staging accuracy of ampullary neoplasms. Gastrointest Endosc. 1999;50:27–33.

    Article  CAS  PubMed  Google Scholar 

  9. Chen CH, Yang CC, Yeh YH, Chou DA, Nien CK. Reappraisal of endosonography of ampullary tumors: correlation with transabdominal sonography, CT, and MRI. J Clin Ultrasound. 2009;37:18–25.

    Article  PubMed  Google Scholar 

  10. Prokesch RW, Chow LC, Beaulieu CF, Bammer R, Jeffrey RB Jr. Isoattenuating pancreatic adenocarcinoma at multi-detector row CT: secondary signs. Radiology. 2002;224:764–8.

    Article  PubMed  Google Scholar 

  11. Okano K, Kakinoki K, Akarnoto S, et al. 18-F Fluorodeoxyglucose positron emission tomography in the diagnosis of small pancreatic cancer. World J Gastroenterol. 2011;17:231–5.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Soriano A, Castells A, Ayuso C, et al. Preoperative staging and tumor resectability assessment of pancreatic cancer: prospective study comparing endoscopic ultrasonography, helical computed tomography, magnetic resonance imaging, and angiography. Am J Gastroenterol. 2004;99:499–501.

    Article  Google Scholar 

  13. Diedrichs CG, Steib L, Vogel J, et al. Values and limitations of 18-F-Fluoro deoxyglucose-positron emission tomography with preoperative evaluation of patients with pancreatic masses. Pancreas. 2000;20:109–16.

    Article  Google Scholar 

  14. Zamboni GA, Kruskal JB, Vollmer CM, Baptista J, Callery MP, Raptopoulos VD. Pancreatic adenocarcinoma: value of multidetector CT angiography in preoperative evaluation. Radiology. 2007;245:770–8.

    Article  PubMed  Google Scholar 

  15. Mallery JS, Centeno BA, Hahn PF, Chang Y, Warshaw AI, Brugge WR. Pancreatic tissue sampling guided by EUS, CT/US and surgery: a comparison of sensitivity and specificity. Gastrointest Endosc. 2002;56:218–24.

    Article  PubMed  Google Scholar 

  16. Kauhanen SP, Komar G, Seppänen MP, et al. A prospective diagnostic accuracy study of 18F-fluorodeoxyglucose positron emission tomography/computed tomography, multidetector row computed tomography, and magnetic resonance imaging in primary diagnosis and staging of pancreatic cancer. Ann Surg. 2009;250(6):957–63.

    Article  PubMed  Google Scholar 

  17. Heinrich S, Goerres GW, Schäfer M, et al. Positron emission tomography/computed tomography influences on the management of resectable pancreatic cancer and its cost-effectiveness. Ann Surg. 2005;242(2):235–43.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Nakamoto Y, Higashi T, Sakahara H, et al. Contribution of PET in the detection of liver metastases from pancreatic tumours. Clin Radiol. 1999;54(4):248–52.

    Article  CAS  PubMed  Google Scholar 

  19. Sahani DV, Kalva SP, Fischman AJ, et al. Detection of liver metastases from adenocarcinoma of the colon and pancreas: comparison of mangafodipir trisodium-enhanced liver MRI and whole-body FDG PET. AJR Am J Roentgenol. 2005;185(1):239–46.

    Article  PubMed  Google Scholar 

  20. Tabuchi T, Itoh K, Ohshio G, et al. Tumor staging of pancreatic adenocarcinoma using early- and late-phase helical CT. AJR Am J Roentgenol. 1999;173(2):375–80.

    Article  CAS  PubMed  Google Scholar 

  21. Liu RC, Traverso LW. Diagnostic laparoscopy improves staging of pancreatic cancer deemed locally unresectable by computed tomography. Surg Endosc. 2005;19(5):638–42.

    Article  CAS  Google Scholar 

  22. Sperti C, Pasquali C, Bissoli S, Chierichetti F, Liessi G, Pedrazzoli S. Tumor relapse after pancreatic cancer resection is detected earlier by 18-FDG PET than by CT. J Gastrointest Surg. 2010;14(1):131–40.

    Article  PubMed  Google Scholar 

  23. Casneuf V, Delrue L, Kelles A, et al. Is combined 18F-fluorodeoxyglucose-positron emission tomography/computed tomography superior to positron emission tomography or computed tomography alone for diagnosis, staging and restaging of pancreatic lesions? Acta Gastroenterol Belg. 2007;70(4):331–8.

    PubMed  Google Scholar 

  24. Ruf J, Lopez Hänninen E, Oettle H, et al. Detection of recurrent pancreatic cancer: comparison of FDG-PET with CT/MRI. Pancreatology. 2005;5(2–3):266–72.

    Article  PubMed  Google Scholar 

  25. Kuwatani M, Kawakami H, Eto K, et al. Modalities for evaluating chemotherapeutic efficacy and survival time in patients with advanced pancreatic cancer: comparison between FDG-PET, CT, and serum tumor markers. Intern Med. 2009;48(11):867–75.

    Article  Google Scholar 

  26. Bang S, Chung HW, Park SW, et al. The clinical usefulness of 18-fluorodeoxyglucose positron emission tomography in the differential diagnosis, staging, and response evaluation after concurrent chemoradiotherapy for pancreatic cancer. J Clin Gastroenterol. 2006;40(10):923–9.

    Article  PubMed  Google Scholar 

  27. Yoshioka M, Sato T, Furuya T, et al. Role of positron emission tomography with 2-deoxy-2-[18F]fluoro-d-glucose in evaluating the effects of arterial infusion chemotherapy and radiotherapy on pancreatic cancer. J Gastroenterol. 2004;39(1):50–5.

    Article  PubMed  Google Scholar 

  28. Schellenberg D, Quon A, Minn AY, et al. 18Fluorodeoxyglucose PET is prognostic of progression-free and overall survival in locally advanced pancreas cancer treated with stereotactic radiotherapy. Int J Radiat Oncol Biol Phys. 2010;77(5):1420–5.

    Article  PubMed  Google Scholar 

  29. Okamoto K, Koyama I, Miyazawa M, et al. Preoperative 18[F]-fluorodeoxyglucose positron emission tomography/computed tomography predicts early recurrence after pancreatic cancer resection. Int J Clin Oncol. 2011;16(1):39–44.

    Article  PubMed  Google Scholar 

  30. Blake MA, Singh A, Setty BN, et al. Pearls and pitfalls in interpretation of abdominal and pelvic PET-CT. Radiographics. 2006;26(5):1335–53.

    Article  PubMed  Google Scholar 

  31. Hruban RH, Klimstra DS, Pitman MB. AFIP atlas of tumor pathology: tumors of the pancreas—Series 4. Washington, DC: AFIP; 2007. p. 23–376.

    Google Scholar 

  32. Tan EH, Tan CH. Imaging of gastroenteropancreatic neuroendocrine tumors. World J Clin Oncol. 2011;2(1):28–43.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Rha SE, Jung SE, Lee KH, Ku YM, Byun JY, Lee JM. CT and MR imaging findings of endocrine tumor of the pancreas according to WHO classification. Eur J Radiol. 2007;62(3):371–7.

    Article  PubMed  Google Scholar 

  34. Versari A, Camellini L, Carlinfante G, et al. Ga-68 DOTATOC PET, endoscopic ultrasonography, and multidetector CT in the diagnosis of duodenopancreatic neuroendocrine tumors: a single-centre retrospective study. Clin Nucl Med. 2010;35(5):321–8.

    Article  PubMed  Google Scholar 

  35. de Herder WW, Niederle B, Scoazec J-Y, et al. Well-differentiated pancreatic tumor/carcinoma: insulinoma. Neuroendocrinology. 2006;84:183–8.

    Article  PubMed  Google Scholar 

  36. Christ E, Wild D, Forrer F, et al. Glucagon-like peptide-1 receptor imaging for localization of insulinomas. J Clin Endocrinol Metab. 2009;94:4398–405.

    Article  CAS  PubMed  Google Scholar 

  37. Antwi K, Fani M, Nicolas G, Rottenburger C, Heye T, Reubi JC, Gloor B, Christ E, Wild D. Localization of hidden Insulinomas with 68Ga-DOTA-Exendin-4 PET/CT: a pilot study. J Nucl Med. 2015;56(7):1075–8.

    Article  CAS  PubMed  Google Scholar 

  38. Imperiale A, Sebag F, Vix M, Castinetti F, Kessler L, Moreau F, Bachellier P, Guillet B, Namer IJ, Mundler O, Taïeb D. 18F-FDOPA PET/CT imaging of insulinoma revisited. Eur J Nucl Med Mol Imaging. 2015;42(3):409–18.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ameya D. Puranik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Puranik, A.D., Agrawal, A., Shah, S., Purandare, N., Rangarajan, V. (2018). PET/CT in Pancreatic Malignancies. In: Purandare, N., Shah, S. (eds) PET/CT in Hepatobiliary and Pancreatic Malignancies. Clinicians’ Guides to Radionuclide Hybrid Imaging(). Springer, Cham. https://doi.org/10.1007/978-3-319-60507-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60507-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60506-7

  • Online ISBN: 978-3-319-60507-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics