Skip to main content

New Treatments for Metastatic Breast Cancer

  • Chapter
  • First Online:
Changing Paradigms in the Management of Breast Cancer

Abstract

In the era of next-generation sequencing, knowledge of the genomic drivers of breast cancer and resistance to treatment is expanding. The recognition that these molecular drivers are ubiquitous in all subtypes of breast cancer has resulted in a paradigm shift away from focusing on traditional targets, such as the estrogen receptor or HER2 receptor, to blocking oncogenic signaling pathways, cell-cycle regulatory checkpoints, or epigenetic modulators present in breast cancer in general. These novel therapies appear to be more efficacious when combined with traditional therapeutics, such as anti-HER2 agents, or hormonal therapies, yet the identification of which cancers harbor mutations or protein activation that correlate with tumor response to these innovative therapies still remains a mystery. This section outlines the background data and current clinical investigation of these novel therapies which target more global molecular pathways present in all metastatic breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Schiff R, Massarweh S, Shou J, Osborne CK. Breast cancer endocrine resistance: how growth factor signaling and estrogen receptor coregulators modulate response. Clin Cancer Res. 2003;9(1 Pt 2):447S–54S.

    CAS  PubMed  Google Scholar 

  2. Alves CL, Elias D, Lyng MB, Bak M, Kirkegaard T, Lykkesfeldt AE, et al. High CDK6 protects cells from fulvestrant-mediated apoptosis and is a predictor of resistance to fulvestrant in estrogen receptor-positive metastatic breast cancer. Clin Cancer Res. 2016;22:5514–26.

    Article  CAS  PubMed  Google Scholar 

  3. Raha P, Thomas S, Thurn KT, Park J, Munster PN. Combined histone deacetylase inhibition and tamoxifen induces apoptosis in tamoxifen-resistant breast cancer models, by reversing Bcl-2 overexpression. Breast Cancer Res. 2015;17:26.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Garcia-Garcia C, Ibrahim YH, Serra V, Calvo MT, Guzman M, Grueso J, et al. Dual mTORC1/2 and HER2 blockade results in antitumor activity in preclinical models of breast cancer resistant to anti-HER2 therapy. Clin Cancer Res. 2012;18(9):2603–12.

    Article  CAS  PubMed  Google Scholar 

  5. Goel S, Wang Q, Watt AC, Tolaney SM, Dillon DA, Li W, et al. Overcoming therapeutic resistance in HER2-positive breast cancers with CDK4/6 inhibitors. Cancer Cell. 2016;29(3):255–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Alberts B. Molecular biology of the cell, vol. xxxiv. 4th ed. New York: Garland Science; 2002. 1548 p. p

    Google Scholar 

  7. Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer. 2009;9(3):153–66.

    Article  CAS  PubMed  Google Scholar 

  8. Schwartz GK, Shah MA. Targeting the cell cycle: a new approach to cancer therapy. J Clin Oncol. 2005;23(36):9408–21.

    Article  CAS  PubMed  Google Scholar 

  9. Spring L, Bardia A, Modi S. Targeting the cyclin D-cyclin-dependent kinase (CDK) 4/6-retinoblastoma pathway with selective CDK 4/6 inhibitors in hormone receptor-positive breast cancer: rationale, current status, and future directions. Discov Med. 2016;21(113):65–74.

    PubMed  PubMed Central  Google Scholar 

  10. Finn RS, Aleshin A, Slamon DJ. Targeting the cyclin-dependent kinases (CDK) 4/6 in estrogen receptor-positive breast cancers. Breast Cancer Res. 2016;18(1):17.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zwijsen RM, Wientjens E, Klompmaker R, van der Sman J, Bernards R, Michalides RJ. CDK-independent activation of estrogen receptor by cyclin D1. Cell. 1997;88(3):405–15.

    Article  CAS  PubMed  Google Scholar 

  12. Cancer Genome Atlas N. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61–70.

    Article  Google Scholar 

  13. Finn RS, Dering J, Conklin D, Kalous O, Cohen DJ, Desai AJ, et al. PD 0332991, a selective cyclin D kinase 4/6 inhibitor, preferentially inhibits proliferation of luminal estrogen receptor-positive human breast cancer cell lines in vitro. Breast Cancer Res BCR. 2009;11(5):R77.

    Article  PubMed  Google Scholar 

  14. O’Leary B, Finn RS, Turner NC. Treating cancer with selective CDK4/6 inhibitors. Nat Rev Clin Oncol. 2016;13(7):417–30.

    Article  PubMed  Google Scholar 

  15. Raub TJ, Wishart GN, Kulanthaivel P, Staton BA, Ajamie RT, Sawada GA, et al. Brain exposure of two selective dual CDK4 and CDK6 inhibitors and the antitumor activity of CDK4 and CDK6 inhibition in combination with temozolomide in an intracranial glioblastoma xenograft. Drug Metab Dispos. 2015;43(9):1360–71.

    Article  CAS  PubMed  Google Scholar 

  16. Flaherty KT, Lorusso PM, Demichele A, Abramson VG, Courtney R, Randolph SS, et al. Phase I, dose-escalation trial of the oral cyclin-dependent kinase 4/6 inhibitor PD 0332991, administered using a 21-day schedule in patients with advanced cancer. Clin Cancer Res. 2012;18(2):568–76.

    Google Scholar 

  17. Infante JR, Shapiro GI, Witteven O, Gerecitano JF, Ribrag V, Chugh R, et al., editors. A phase I study of the single-agent CDK4/6 inhibitor LEE011 in patients with advanced solid tumors and lymphomas. 2014 American Society of Clinical Oncology (ASCO) Annual Meeting; May 30–June 3, 2014; Chicago, IL (USA): J Clin Oncol. 2014; 32:5s, (suppl; abstr 2528^).

    Google Scholar 

  18. Patnaik A, Rosen LS, Tolaney SM, Tolcher AW, Goldman JW, Gandhi L, et al. Efficacy and safety of abemaciclib, an inhibitor of CDK4 and CDK6, for patients with breast cancer, non-small cell lung cancer, and other solid tumors. Cancer Discov. 2016;6(7):740–53.

    Article  CAS  PubMed  Google Scholar 

  19. Finn RS, Crown JP, Lang I, Boer K, Bondarenko IM, Kulyk SO, et al. The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): a randomised phase 2 study. Lancet Oncol. 2015;16(1):25–35.

    Article  CAS  PubMed  Google Scholar 

  20. Finn RS, Martin M, Rugo HS, Jones S, Im S-A, Gelmon KA, et al., editors. PALOMA-2: primary results from a phase 3 trial of palbociclib plus letrozole compared with placebo plus letrozole in postmenopausal women with ER+/HER2- advanced breast cancer. 2016 American Society of Clinical Oncology (ASCO) Annual Meeting; June 3–7, 2016; Chicago, IL (USA): J Clin Oncol. 2016; 34 (suppl; abstr 507).

    Google Scholar 

  21. Turner NC, Ro J, Andre F, Loi S, Verma S, Iwata H, et al. Palbociclib in hormone-receptor-positive advanced breast cancer. N Engl J Med. 2015;373(3):209–19.

    Article  CAS  PubMed  Google Scholar 

  22. Cristofanilli M, Turner NC, Bondarenko I, Ro J, Im S-A, Masuda N, et al. Fulvestrant plus palbociclib versus fulvestrant plus placebo for treatment of hormone-receptor-positive, HER2-negative metastatic breast cancer that progressed on previous endocrine therapy (PALOMA-3): final analysis of the multicentre, double-blind, phase 3 randomised controlled trial. Lancet Oncol. 2016;17(4):425–39.

    Article  CAS  PubMed  Google Scholar 

  23. Hortobagyi GN, Stemmer SM, Burris HA, Yap YS, Sonke GS, Paluch-Shimon S, et al. Ribociclib as first-line therapy for HR-positive, advanced breast cancer. N Engl J Med. 2016;375(18):1738–48.

    Article  CAS  PubMed  Google Scholar 

  24. Dickler M, Tolaney SM, Rugo HS, Cortes J, Dieras V, Patt DA, et al., editors. MONARCH-1: results from a phase 2 study of abemaciclib, a CDK4 and CDK6 inhibitor, as monotherapy, in patients with HR+/HER2- breast cancer, after chemotherapy for metastatic disease. 2016 American Society of Clinical Oncology (ASCO) Annual Meeting; June 3–7, 2016; Chicago, IL (USA): J Clin Oncol. 2016; 34 (suppl; abstr 510).

    Google Scholar 

  25. Rajput S, Khera N, Guo Z, Hoog J, Li S, Ma CX. Inhibition of cyclin dependent kinase 9 by dinaciclib suppresses cyclin B1 expression and tumor growth in triple negative breast cancer. Oncotarget. 2016;7(35):56864–75.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Horiuchi D, Kusdra L, Huskey NE, Chandriani S, Lenburg ME, Gonzalez-Angulo AM, et al. MYC pathway activation in triple-negative breast cancer is synthetic lethal with CDK inhibition. J Exp Med. 2012;209(4):679–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Johnson SF, Johnson N, Chi D, Primack B, D’Andrea AD, Lim E, et al. Abstract 1788: the CDK inhibitor dinaciclib sensitizes triple-negative breast cancer cells to PARP inhibition. Cancer Res. 2013;73(8 Suppl):1788.

    Article  Google Scholar 

  28. Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013;39(1):1–10.

    Article  PubMed  Google Scholar 

  29. Acuto O, Michel F. CD28-mediated co-stimulation: a quantitative support for TCR signalling. Nat Rev Immunol. 2003;3(12):939–51.

    Article  CAS  PubMed  Google Scholar 

  30. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, et al. Signatures of mutational processes in human cancer. Nature. 2013;500(7463):415–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Savas P, Salgado R, Denkert C, Sotiriou C, Darcy PK, Smyth MJ, et al. Clinical relevance of host immunity in breast cancer: from TILs to the clinic. Nat Rev Clin Oncol. 2016;13(4):228–41.

    Article  CAS  PubMed  Google Scholar 

  32. Nanda R, Chow LQM, Dees EC, Berger R, Gupta S, Geva R, et al. Pembrolizumab in patients with advanced triple-negative breast cancer: phase Ib KEYNOTE-012 study. J Clin Oncol. 2016;34(21):2460–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Emens L, Adams S, Loi S, Schmid P, Schneeweiss A, Rugo H, et al. Abstract OT1-01-06: a phase III randomized trial of atezolizumab in combination with nab-paclitaxel as first line therapy for patients with metastatic triple-negative breast cancer (mTNBC). Cancer Res. 2016;76(4 Suppl):OT1-01-6-OT1--6.

    Google Scholar 

  34. Rugo H, Delord J-P, Im S-A, Ott P, Piha-Paul S, Bedard P, et al. Abstract S5-07: preliminary efficacy and safety of pembrolizumab (MK-3475) in patients with PD-L1–positive, estrogen receptor-positive (ER+)/HER2-negative advanced breast cancer enrolled in KEYNOTE-028. Cancer Res. 2016;76(4 Suppl):S5-07-S5.

    Google Scholar 

  35. Dirix L, Takacs I, Nikolinakos P, Jerusalem G, Arkenau H-T, Hamilton E, et al. Abstract S1-04: avelumab (MSB0010718C), an anti-PD-L1 antibody, in patients with locally advanced or metastatic breast cancer: a phase Ib JAVELIN solid tumor trial. Cancer Res. 2016;76(4 Suppl):S1-04-S1.

    Google Scholar 

  36. Emens LA, Braiteh FS, Cassier P, DeLord J-P, Eder JP, Shen X, et al. Abstract PD1-6: inhibition of PD-L1 by MPDL3280A leads to clinical activity in patients with metastatic triple-negative breast cancer. Cancer Res. 2015;75(9 Suppl):PD1-6.

    Google Scholar 

  37. Courtney KD, Corcoran RB, Engelman JA. The PI3K pathway as drug target in human cancer. J Clin Oncol. 2010;28(6):1075–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Thorpe LM, Yuzugullu H, Zhao JJ. PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting. Nat Rev Cancer. 2015;15(1):7–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hoeflich KP, Guan J, Edgar KA, O’Brien C, Savage H, Wilson TR, et al. The PI3K inhibitor taselisib overcomes letrozole resistance in a breast cancer model expressing aromatase. Genes Cancer. 2016;7(3–4):73–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Miller TW, Balko JM, Arteaga CL. Phosphatidylinositol 3-kinase and antiestrogen resistance in breast cancer. J Clin Oncol. 2011;29(33):4452–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Boulay A, Rudloff J, Ye J, Zumstein-Mecker S, O’Reilly T, Evans DB, et al. Dual inhibition of mTOR and estrogen receptor signaling in vitro induces cell death in models of breast cancer. Clin Cancer Res. 2005;11(14):5319–28.

    Article  CAS  PubMed  Google Scholar 

  42. Baselga J, Campone M, Piccart M, Burris HA 3rd, Rugo HS, Sahmoud T, et al. Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N Engl J Med. 2012;366(6):520–9.

    Article  CAS  PubMed  Google Scholar 

  43. Yardley DA, Noguchi S, Pritchard KI, Burris HA 3rd, Baselga J, Gnant M, et al. Everolimus plus exemestane in postmenopausal patients with HR(+) breast cancer: BOLERO-2 final progression-free survival analysis. Adv Ther. 2013;30(10):870–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Piccart M, Hortobagyi GN, Campone M, Pritchard KI, Lebrun F, Ito Y, et al. Everolimus plus exemestane for hormone-receptor-positive, human epidermal growth factor receptor-2-negative advanced breast cancer: overall survival results from BOLERO-2dagger. Ann Oncol. 2014;25(12):2357–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Maira SM, Pecchi S, Huang A, Burger M, Knapp M, Sterker D, et al. Identification and characterization of NVP-BKM120, an orally available pan-class I PI3-kinase inhibitor. Mol Cancer Ther. 2012;11(2):317–28.

    Article  CAS  PubMed  Google Scholar 

  46. Mayer IA, Abramson VG, Isakoff SJ, Forero A, Balko JM, Kuba MG, et al. Stand up to cancer phase Ib study of pan-phosphoinositide-3-kinase inhibitor buparlisib with letrozole in estrogen receptor-positive/human epidermal growth factor receptor 2-negative metastatic breast cancer. J Clin Oncol. 2014;32(12):1202–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ma CX, Luo J, Naughton M, Ademuyiwa F, Suresh R, Griffith M, et al. A phase I trial of BKM120 (buparlisib) in combination with fulvestrant in postmenopausal women with estrogen receptor-positive metastatic breast cancer. Clin Cancer Res. 2016;22(7):1583–91.

    Article  CAS  PubMed  Google Scholar 

  48. Baselga J, Im S-A, Iwata H, Clemons M, Ito Y, Awada A, et al., editors. PIK3CA status in circulating tumor DNA predicts efficacy of buparlisib plus fulvestrant in postmenopausal women with endocrine-resistant HR+/HER2- advanced breast cancer: first results from the randomized, phase III BELLE-2 trial. 38th Annual San Antonio Breast Cancer Symposium; Dec 8-12, 2015; San Antonio, TX (USA): Cancer Res. 2016;76(4 suppl):abstr S6–01.

    Google Scholar 

  49. Di Leo A, Seok Lee K, Ciruelos E, Lonning P, Janni W, O’Regan R, et al., editors. BELLE-3: a phase III study of buparlisib and fulvestrant in postmenopausal women with HR+, HER2-, AI-treated locally advanced or metastatic breast cancer, who progressed on or after mTOR inhibitor-based treatment. 39th Annual San Antonio Breast Cancer Symposium; Dec 6–10. San Antonio, TX (USA); 2016.

    Google Scholar 

  50. Ndubaku CO, Heffron TP, Staben ST, Baumgardner M, Blaquiere N, Bradley E, et al. Discovery of 2-{3-[2-(1-isopropyl-3-methyl-1H-1,2-4-triazol-5-yl)-5,6-dihydrobenzo[f]imidazo[1,2-d][1,4]oxazepin-9-yl]-1H-pyrazol-1-yl}-2-methylpropanamide (GDC-0032): a beta-sparing phosphoinositide 3-kinase inhibitor with high unbound exposure and robust in vivo antitumor activity. J Med Chem. 2013;56(11):4597–610.

    Article  CAS  PubMed  Google Scholar 

  51. Dickler M, Saura C, Richards D, Krop I, Cervantes A, Bedard PL, et al., editors. A phase II study of the PI3K inhibitor taselisib (GDC-0032) combined with fulvestrant (F) in patients (pts) with HER2-negative (HER2-), hormone receptor-positive (HR+) advanced breast cancer (BC). 2016 American Society of Clinical Oncology (ASCO) Annual Meeting; June 3–7, 2016; Chicago, IL (USA): J Clin Oncol. 2016;34(suppl; abstr 520).

    Google Scholar 

  52. Gonzalez-Angulo AM, Juric D, Argilés G, Schellens J, Burris H, Berlin J, et al., editors. Safety, pharmacokinetics, and preliminary activity of the α-specific PI3K inhibitor BYL719: results from the first-in-human study. 2013 American Society of Clinical Oncology (ASCO) Annual Meeting; May 31-June 4, 2013; Chicago, IL (USA): J Clin Oncol. 2013;31(suppl; abstr 2531).

    Google Scholar 

  53. Mayer IA, Abramson VG, Formisano L, Balko JM, Estrada MV, Sanders ME, et al. A phase Ib study of alpelisib (BYL719), a PI3Kalpha-specific inhibitor, with letrozole in ER+/HER2- metastatic breast cancer. Clin Cancer Res. 2017;23(1):26–34.

    Article  CAS  PubMed  Google Scholar 

  54. Janku F, Juric D, Cortes J, Rugo H, Burris HA, Schuler M, et al., editors. Phase I study of the PI3K alpha inhibitor BYL719 plus fulvestrant in patients with PIK3CA-altered and wild type ER+/HER2-locally advanced or metastatic breast cancer. 37th Annual San Antonio Breast Cancer Symposium; December 9-13, 2014; San Antonio, TX (USA): Cancer Res. 2015;75(9 suppl):abstr PD5–5.

    Google Scholar 

  55. Berns K, Horlings HM, Hennessy BT, Madiredjo M, Hijmans EM, Beelen K, et al. A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell. 2007;12(4):395–402.

    Article  CAS  PubMed  Google Scholar 

  56. Dave B, Migliaccio I, Gutierrez MC, Wu MF, Chamness GC, Wong H, et al. Loss of phosphatase and tensin homolog or phosphoinositol-3 kinase activation and response to trastuzumab or lapatinib in human epidermal growth factor receptor 2-overexpressing locally advanced breast cancers. J Clin Oncol. 2011;29(2):166–73.

    Article  CAS  PubMed  Google Scholar 

  57. Miller TW, Forbes JT, Shah C, Wyatt SK, Manning HC, Olivares MG, et al. Inhibition of mammalian target of rapamycin is required for optimal antitumor effect of HER2 inhibitors against HER2-overexpressing cancer cells. Clin Cancer Res. 2009;15(23):7266–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yao E, Zhou W, Lee-Hoeflich ST, Truong T, Haverty PM, Eastham-Anderson J, et al. Suppression of HER2/HER3-mediated growth of breast cancer cells with combinations of GDC-0941 PI3K inhibitor, trastuzumab, and pertuzumab. Clin Cancer Res. 2009;15(12):4147–56.

    Article  CAS  PubMed  Google Scholar 

  59. Andre F, O’Regan R, Ozguroglu M, Toi M, Xu B, Jerusalem G, et al. Everolimus for women with trastuzumab-resistant, HER2-positive, advanced breast cancer (BOLERO-3): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet Oncol. 2014;15(6):580–91.

    Article  CAS  PubMed  Google Scholar 

  60. Hurvitz SA, Andre F, Jiang Z, Shao Z, Mano MS, Neciosup SP, et al. Combination of everolimus with trastuzumab plus paclitaxel as first-line treatment for patients with HER2-positive advanced breast cancer (BOLERO-1): a phase 3, randomised, double-blind, multicentre trial. Lancet Oncol. 2015;16(7):816–29.

    Article  CAS  PubMed  Google Scholar 

  61. Fedele CG, Ooms LM, Ho M, Vieusseux J, O’Toole SA, Millar EK, et al. Inositol polyphosphate 4-phosphatase II regulates PI3K/Akt signaling and is lost in human basal-like breast cancers. Proc Natl Acad Sci U S A. 2010;107(51):22231–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pollak MN, Schernhammer ES, Hankinson SE. Insulin-like growth factors and neoplasia. Nat Rev Cancer. 2004;4(7):505–18.

    Article  CAS  PubMed  Google Scholar 

  63. Zhang Y, Moerkens M, Ramaiahgari S, de Bont H, Price L, Meerman J, et al. Elevated insulin-like growth factor 1 receptor signaling induces antiestrogen resistance through the MAPK/ERK and PI3K/Akt signaling routes. Breast Cancer Res. 2011;13(3):R52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gallardo A, Lerma E, Escuin D, Tibau A, Munoz J, Ojeda B, et al. Increased signalling of EGFR and IGF1R, and deregulation of PTEN/PI3K/Akt pathway are related with trastuzumab resistance in HER2 breast carcinomas. Br J Cancer. 2012;106(8):1367–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ryan P, Neven P, Blackwell K, Dirix L, Barrios C, Miller W, et al. P1-17-01: figitumumab plus exemestane versus exemestane as first-line treatment of postmenopausal hormone receptor-positive advanced breast cancer: a randomized, open-label phase II trial. Cancer Res. 2011;71(24 Suppl):P1-17-01-P1-17-01.

    Google Scholar 

  66. Gradishar WJ, Yardley DA, Layman R, Sparano JA, Chuang E, Northfelt DW, et al. Clinical and translational results of a phase II, randomized trial of an anti-IGF-1R (cixutumumab) in women with breast cancer that progressed on endocrine therapy. Clin Cancer Res. 2016;22(2):301–9.

    Article  CAS  PubMed  Google Scholar 

  67. Robertson JF, Ferrero JM, Bourgeois H, Kennecke H, de Boer RH, Jacot W, et al. Ganitumab with either exemestane or fulvestrant for postmenopausal women with advanced, hormone-receptor-positive breast cancer: a randomised, controlled, double-blind, phase 2 trial. Lancet Oncol. 2013;14(3):228–35.

    Article  CAS  PubMed  Google Scholar 

  68. O’Reilly KE, Rojo F, She QB, Solit D, Mills GB, Smith D, et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res. 2006;66(3):1500–8.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Cortes J, Martinez Janez N, Sablin M-P, Perez-Fidalgo JA, Neven P, Hedayati E, et al., editors. Phase 1b/2 trial of BI 836845, an insulin-like growth factor (IGF) ligand-neutralizing antibody, combined with exemestane (Ex) and everolimus (Ev) in hormone receptor-positive (HR+) locally advanced or metastatic breast cancer (BC): primary phase 1b results. 2016 American Society of Clinical Oncology (ASCO) Annual Meeting; June 3–7, 2016; Chicago, IL (USA): J Clin Oncol. 2016;34(suppl; abstr 530).

    Google Scholar 

  70. Courjal F, Cuny M, Simony-Lafontaine J, Louason G, Speiser P, Zeillinger R, et al. Mapping of DNA amplifications at 15 chromosomal localizations in 1875 breast tumors: definition of phenotypic groups. Cancer Res. 1997;57(19):4360–7.

    CAS  PubMed  Google Scholar 

  71. Turner N, Pearson A, Sharpe R, Lambros M, Geyer F, Lopez-Garcia MA, et al. FGFR1 amplification drives endocrine therapy resistance and is a therapeutic target in breast cancer. Cancer Res. 2010;70(5):2085–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Elbauomy Elsheikh S, Green AR, Lambros MB, Turner NC, Grainge MJ, Powe D, et al. FGFR1 amplification in breast carcinomas: a chromogenic in situ hybridisation analysis. Breast Cancer Res. 2007;9(2):R23.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Sharpe R, Pearson A, Herrera-Abreu MT, Johnson D, Mackay A, Welti JC, et al. FGFR signaling promotes the growth of triple-negative and basal-like breast cancer cell lines both in vitro and in vivo. Clin Cancer Res. 2011;17(16):5275–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Andre F, Cortes J. Rationale for targeting fibroblast growth factor receptor signaling in breast cancer. Breast Cancer Res Treat. 2015;150(1):1–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tabernero J, Bahleda R, Dienstmann R, Infante JR, Mita A, Italiano A, et al. Phase I dose-escalation study of JNJ-42756493, an oral pan-fibroblast growth factor receptor inhibitor, in patients with advanced solid tumors. J Clin Oncol. 2015;33(30):3401–8.

    Article  CAS  PubMed  Google Scholar 

  76. Nogova L, Sequist LV, Perez Garcia JM, Andre F, Delord JP, Hidalgo M, et al. Evaluation of BGJ398, a fibroblast growth factor receptor 1-3 kinase inhibitor, in patients with advanced solid tumors harboring genetic alterations in fibroblast growth factor receptors: results of a global phase I, dose-escalation and dose-expansion study. J Clin Oncol. 2017;35(2):157–65.

    Article  CAS  PubMed  Google Scholar 

  77. Desrivieres S, Kunz C, Barash I, Vafaizadeh V, Borghouts C, Groner B. The biological functions of the versatile transcription factors STAT3 and STAT5 and new strategies for their targeted inhibition. J Mammary Gland Biol Neoplasia. 2006;11(1):75–87.

    Article  PubMed  Google Scholar 

  78. Marotta LL, Almendro V, Marusyk A, Shipitsin M, Schemme J, Walker SR, et al. The JAK2/STAT3 signaling pathway is required for growth of CD44(+)CD24(−) stem cell-like breast cancer cells in human tumors. J Clin Invest. 2011;121(7):2723–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Britschgi A, Andraos R, Brinkhaus H, Klebba I, Romanet V, Muller U, et al. JAK2/STAT5 inhibition circumvents resistance to PI3K/mTOR blockade: a rationale for cotargeting these pathways in metastatic breast cancer. Cancer Cell. 2012;22(6):796–811.

    Article  CAS  PubMed  Google Scholar 

  80. Overmoyer B, Regan M, Schlosnagle E, Bunnell CA, Freedman R, Tolaney SM, et al., editors. Phase I study of the JAK 1/2 inhibitor ruxolitinib with weekly paclitaxel for the treatment of HER2 negative metastatic breast cancer (MBC). 39th Annual San Antonio Breast Cancer Symposium; Dec 6–10. San Antonio, TX (USA); 2016.

    Google Scholar 

  81. Bergers G, Benjamin LE. Tumorigenesis and the angiogenic switch. Nat Rev Cancer. 2003;3(6):401–10.

    Article  CAS  PubMed  Google Scholar 

  82. Robert NJ, Dieras V, Glaspy J, Brufsky AM, Bondarenko I, Lipatov ON, et al. RIBBON-1: randomized, double-blind, placebo-controlled, phase III trial of chemotherapy with or without bevacizumab for first-line treatment of human epidermal growth factor receptor 2-negative, locally recurrent or metastatic breast cancer. J Clin Oncol. 2011;29(10):1252–60.

    Article  CAS  PubMed  Google Scholar 

  83. Gray R, Bhattacharya S, Bowden C, Miller K, Comis RL. Independent review of E2100: a phase III trial of bevacizumab plus paclitaxel versus paclitaxel in women with metastatic breast cancer. J Clin Oncol. 2009;27(30):4966–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Miles DW, Chan A, Dirix LY, Cortes J, Pivot X, Tomczak P, et al. Phase III study of bevacizumab plus docetaxel compared with placebo plus docetaxel for the first-line treatment of human epidermal growth factor receptor 2-negative metastatic breast cancer. J Clin Oncol. 2010;28(20):3239–47.

    Article  CAS  PubMed  Google Scholar 

  85. Tolaney SM, Nechushtan H, Ron IG, Schoffski P, Awada A, Yasenchak CA, et al. Cabozantinib for metastatic breast carcinoma: results of a phase II placebo-controlled randomized discontinuation study. Breast Cancer Res Treat. 2016;160(2):305–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Soria JC, DeBraud F, Bahleda R, Adamo B, Andre F, Dienstmann R, et al. Phase I/IIa study evaluating the safety, efficacy, pharmacokinetics, and pharmacodynamics of lucitanib in advanced solid tumors. Ann Oncol. 2014;25(11):2244–51.

    Article  PubMed  Google Scholar 

  87. Bergh J, Bondarenko IM, Lichinitser MR, Liljegren A, Greil R, Voytko NL, et al. First-line treatment of advanced breast cancer with sunitinib in combination with docetaxel versus docetaxel alone: results of a prospective, randomized phase III study. J Clin Oncol. 2012;30(9):921–9.

    Article  CAS  PubMed  Google Scholar 

  88. Gradishar WJ, Kaklamani V, Sahoo TP, Lokanatha D, Raina V, Bondarde S, et al. A double-blind, randomised, placebo-controlled, phase 2b study evaluating sorafenib in combination with paclitaxel as a first-line therapy in patients with HER2-negative advanced breast cancer. Eur J Cancer. 2013;49(2):312–22.

    Article  CAS  PubMed  Google Scholar 

  89. Rugo HS, Stopeck AT, Joy AA, Chan S, Verma S, Lluch A, et al. Randomized, placebo-controlled, double-blind, phase II study of axitinib plus docetaxel versus docetaxel plus placebo in patients with metastatic breast cancer. J Clin Oncol. 2011;29(18):2459–65.

    Article  CAS  PubMed  Google Scholar 

  90. Diamantis N, Banerji U. Antibody-drug conjugates – an emerging class of cancer treatment. Br J Cancer. 2016;114(4):362–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Bardia A, Diamond JR, Mayer IA, Isakoff S, Abramson V, Starodub AN, et al., editors. Sacituzumab govitecan (IMMU-132), an anti-Trop-2-SN-38 antibody-drug conjugate (ADC) for the treatment of relapsed/refractory, metastatic triple-negative breast cancer (mTNBC): updated results. 39th Annual San Antonio Breast Cancer Symposium; Dec 6–10. San Antonio, TX (USA); 2016.

    Google Scholar 

  92. Ogitani Y, Aida T, Hagihara K, Yamaguchi J, Ishii C, Harada N, et al. DS-8201a, a novel HER2-targeting ADC with a novel DNA topoisomerase I inhibitor, demonstrates a promising antitumor efficacy with differentiation from T-DM1. Clin Cancer Res. 2016;22(20):5097–108.

    Article  CAS  PubMed  Google Scholar 

  93. Glozak MA, Seto E. Histone deacetylases and cancer. Oncogene. 2007;26(37):5420–32.

    Article  CAS  PubMed  Google Scholar 

  94. Hodges-Gallagher L, Valentine CD, Bader SE, Kushner PJ. Inhibition of histone deacetylase enhances the anti-proliferative action of antiestrogens on breast cancer cells and blocks tamoxifen-induced proliferation of uterine cells. Breast Cancer Res Treat. 2007;105(3):297–309.

    Article  CAS  PubMed  Google Scholar 

  95. Sabnis GJ, Goloubeva OG, Kazi AA, Shah P, Brodie AH. HDAC inhibitor entinostat restores responsiveness of letrozole-resistant MCF-7Ca xenografts to aromatase inhibitors through modulation of Her-2. Mol Cancer Ther. 2013;12(12):2804–16.

    Article  CAS  PubMed  Google Scholar 

  96. Yardley DA, Ismail-Khan RR, Melichar B, Lichinitser M, Munster PN, Klein PM, et al. Randomized phase II, double-blind, placebo-controlled study of exemestane with or without entinostat in postmenopausal women with locally recurrent or metastatic estrogen receptor-positive breast cancer progressing on treatment with a nonsteroidal aromatase inhibitor. J Clin Oncol. 2013;31(17):2128–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Woods DM, Sodre AL, Villagra A, Sarnaik A, Sotomayor EM, Weber J. HDAC inhibition upregulates PD-1 ligands in melanoma and augments Immunotherapy with PD-1 blockade. Cancer Immunol Res. 2015;3(12):1375–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Schultz N, Lopez E, Saleh-Gohari N, Helleday T. Poly(ADP-ribose) polymerase (PARP-1) has a controlling role in homologous recombination. Nucleic Acids Res. 2003;31(17):4959–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Turner N, Tutt A, Ashworth A. Hallmarks of ‘BRCAness’ in sporadic cancers. Nat Rev Cancer. 2004;4(10):814–9.

    Article  CAS  PubMed  Google Scholar 

  100. Puhalla S, Beumer JH, Pahuja S, Appleman LJ, Abdul-Hassan Tawbi H, Stoller RG, et al., editors. Final results of a phase 1 study of single-agent veliparib (V) in patients (pts) with either BRCA1/2-mutated cancer (BRCA+), platinum-refractory ovarian, or basal-like breast cancer (BRCA-wt). 2014 American Society of Clinical Oncology (ASCO) Annual Meeting; May 30-June 3, 2014; Chicago, IL (USA): J Clin Oncol. 2014;32:5s. (suppl; abstr 2570).

    Google Scholar 

  101. Sandhu SK, Schelman WR, Wilding G, Moreno V, Baird RD, Miranda S, et al. The poly(ADP-ribose) polymerase inhibitor niraparib (MK4827) in BRCA mutation carriers and patients with sporadic cancer: a phase 1 dose-escalation trial. Lancet Oncol. 2013;14(9):882–92.

    Article  CAS  PubMed  Google Scholar 

  102. de Bono JS, Mina LA, Gonzalez M, Curtin NJ, Wang E, Henshaw JW, et al., editors. First-in-human trial of novel oral PARP inhibitor BMN 673 in patients with solid tumors. 2013 American Society of Clinical Oncology (ASCO) Annual Meeting; May 31 – June 4, 2013; Chicago, IL (USA): J Clin Oncol. 2013;31(suppl; abstr 2580).

    Google Scholar 

  103. Tutt A, Robson M, Garber JE, Domchek SM, Audeh MW, Weitzel JN, et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet. 2010;376(9737):235–44.

    Article  CAS  PubMed  Google Scholar 

  104. Donawho CK, Luo Y, Luo Y, Penning TD, Bauch JL, Bouska JJ, et al. ABT-888, an orally active poly(ADP-ribose) polymerase inhibitor that potentiates DNA-damaging agents in preclinical tumor models. Clin Cancer Res. 2007;13(9):2728–37.

    Article  CAS  PubMed  Google Scholar 

  105. Isakoff S, Overmoyer B, Tung N, Gelman R, Habin K, Qian J, et al. P3-16-05: a phase II trial expansion cohort of the PARP inhibitor veliparib (ABT888) and temozolomide in BRCA1/2 associated metastatic breast cancer. Cancer Res. 2011;71(24 Suppl):P3-16-05-P3-16-05.

    Google Scholar 

  106. Rodler ET, Kurland BF, Griffin M, Gralow JR, Porter P, Yeh RF, et al. Phase I study of veliparib (ABT-888) combined with cisplatin and vinorelbine in advanced triple-negative breast cancer and/or BRCA mutation-associated breast cancer. Clin Cancer Res. 2016;22(12):2855–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Pahuja S, Beumer JH, Appleman LJ, Abdul-Hassan Tawbi H, Stoller RG, Lee JJ, et al., editors. A phase I study of veliparib (ABT-888) in combination with weekly carboplatin and paclitaxel in advanced solid malignancies and enriched for triple-negative breast cancer (TNBC). 2015 American Society of Clinical Oncology (ASCO) Annual Meeting; May 29-June 2, 2015; Chicago, IL (USA): J Clin Oncol. 2015;33(suppl; abstr 1015).

    Google Scholar 

  108. Jiang T, Safonov A, Bianchini G, Shi W, Wali V, Pusztai L, et al. Abstract P4-07-01: DNA repair deficiency enhances immune response and correlates with excellent clinical outcome in triple negative breast cancer. Cancer Res. 2016;76(4 Suppl):P4-07-1-P4--1.

    Google Scholar 

  109. Beliakoff J, Whitesell L. Hsp90: an emerging target for breast cancer therapy. Anti-Cancer Drugs. 2004;15(7):651–62.

    Article  CAS  PubMed  Google Scholar 

  110. Zagouri F, Sergentanis TN, Nonni A, Papadimitriou CA, Michalopoulos NV, Domeyer P, et al. Hsp90 in the continuum of breast ductal carcinogenesis: evaluation in precursors, preinvasive and ductal carcinoma lesions. BMC Cancer. 2010;10:353.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Modi S, Stopeck A, Linden H, Solit D, Chandarlapaty S, Rosen N, et al. HSP90 inhibition is effective in breast cancer: a phase II trial of tanespimycin (17-AAG) plus trastuzumab in patients with HER2-positive metastatic breast cancer progressing on trastuzumab. Clin Cancer Res. 2011;17(15):5132–9.

    Article  CAS  PubMed  Google Scholar 

  112. Jhaveri K, Chandarlapaty S, Lake D, Gilewski T, Robson M, Goldfarb S, et al. A phase II open-label study of ganetespib, a novel heat shock protein 90 inhibitor for patients with metastatic breast cancer. Clin Breast Cancer. 2014;14(3):154–60.

    Article  CAS  PubMed  Google Scholar 

  113. Lin NU. Breast cancer brain metastases: new directions in systemic therapy. Ecancermedicalscience. 2013;7:307.

    PubMed  PubMed Central  Google Scholar 

  114. Freedman RA, Gelman RS, Wefel JS, Melisko ME, Hess KR, Connolly RM, et al. Translational Breast Cancer Research Consortium (TBCRC) 022: a phase II trial of neratinib for patients with human epidermal growth factor receptor 2-positive breast cancer and brain metastases. J Clin Oncol. 2016;34(9):945–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Lin NU, Dieras V, Paul D, Lossignol D, Christodoulou C, Stemmler HJ, et al. Multicenter phase II study of lapatinib in patients with brain metastases from HER2-positive breast cancer. Clin Cancer Res. 2009;15(4):1452–9.

    Article  CAS  PubMed  Google Scholar 

  116. Borges VF, Ferrario C, Aucoin N, Falkson CI, Khan QJ, Krop I, et al., editors. Efficacy results of a phase 1b study of ont-380, a CNS-penetrant TKI, in combination with T-DM1 in HER2+ metastatic breast cancer (MBC), including patients (pts) with brain metastases. 2016 American Society of Clinical Oncology (ASCO) Annual Meeting; June 3–7, 2016; Chicago, IL (USA): J Clin Oncol. 2016;34(suppl; abstr 513).

    Google Scholar 

  117. DeMichele A, Clark AS, Tan KS, Heitjan DF, Gramlich K, Gallagher M, et al. CDK 4/6 inhibitor palbociclib (PD0332991) in Rb+ advanced breast cancer: phase II activity, safety, and predictive biomarker assessment. Clin Cancer Res. 2015;21(5):995–1001.

    Article  CAS  PubMed  Google Scholar 

  118. Finn R, Jiang Y, Rugo H, Moulder SL, Im SA, Gelmon KA, et al. Biomarker analyses from the phase 3 PALOMA-2 trial of palbociclib (P) with letrozole (L) compared with placebo (PLB) plus L in postmenopausal women with ER + /HER2– advanced breast cancer (ABC). Ann Oncol. 2016;27(suppl_6):LBA15–LBA.

    Google Scholar 

  119. Fribbens C, O’Leary B, Kilburn L, Hrebien S, Garcia-Murillas I, Beaney M, et al. Plasma ESR1 mutations and the treatment of estrogen receptor-positive advanced breast cancer. J Clin Oncol. 2016;34:2961–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beth Overmoyer MD, FACP .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Garrido-Castro, A.C., Overmoyer, B. (2018). New Treatments for Metastatic Breast Cancer. In: Howard-McNatt, M. (eds) Changing Paradigms in the Management of Breast Cancer . Springer, Cham. https://doi.org/10.1007/978-3-319-60336-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60336-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60335-3

  • Online ISBN: 978-3-319-60336-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics