Skip to main content

Maternal Folate, Methyl Donors, One-Carbon Metabolism, Vitamin B12 and Choline in Foetal Programming

  • Chapter
  • First Online:
Diet, Nutrition, and Fetal Programming

Abstract

Experimental and human population studies have established links between the deficit in dietary methyl donors (MDD) of one-carbon metabolism (1-CM) during pregnancy and foetal programming. This review on MDD foetal programming is focused on the mechanisms dissected in animal models and the associations with outcomes of obesity, metabolic syndrome and cognition in population studies. 1-CM plays a central role in the influence of metabolic and nutritional factors on DNA methylation and regulation of gene expression through its role on the synthesis of S-adenosylmethionine (SAM), which is needed for methylation of DNA, RNA and histones, the activation of nuclear receptor pathways and the adaptation to cellular stress. This complex metabolic network is regulated by a number of genes and requires micronutrients such as folate, vitamins B12 and B6 and choline to function properly. Experimental and epidemiological studies have clearly demonstrated an association between dietary and metabolic markers of the 1-CM and birth weight and age-related manifestations of foetal programming, including neurodevelopment and cognition, in which epigenomic mechanisms may play a central role. Some of the MDD foetal programming effects are exerted by altered methylation of differentially methylated region (DMR) and imprinted genes. These associations illustrate the need to perform further integrated analyses associating epigenomic and transcriptomic analyses and metabolic and nutritional factors that influence the outcomes of MDD foetal programming.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

MTHFD1, MTHFD2:

Methylenetetrahydrofolate dehydrogenase 1 and 2

1-CM:

One-carbon metabolisms

AHCY:

Adenosylhomocysteinase

BHMT:

Betaine homocysteine methyltransferase

BMI:

Body mass index

CBS:

Cystathionine beta-synthase

CTH:

Cystathionine gamma-lyase

DHFR:

Dihydrofolate reductase

DMR:

Differentially methylated region

DOHaD:

Developmental origins of health and disease

ER-α:

Oestrogen receptor alpha

ERR-α:

Oestrogen-related receptor alpha

EWAS:

Epigenome wide association studies

HAT:

Histone acetyltransferase

HDAC:

Histone deacetylase

HDM:

Histone demethylase

HIF-1α:

Hypoxia-inducible factor

HMT:

Histone methyltransferase

HNF-4:

Hepatic nuclear factor 4

HOMA-IR:

Homeostasis model assessment of insulin resistance

HSF1:

Heat shock factor protein 1

IGF1:

Insulin-like growth factor 1

IUGR:

Intrauterine growth restriction

MDD:

Methyl donor deficiency

MTHFD:

Methylenetetrahydrofolate dehydrogenase

MTHFR:

Methylenetetrahydrofolate reductase

MTR:

Methionine synthase

NASH:

Non-alcoholic steatohepatitis

PGC-1α:

Peroxisome proliferator-activated receptor γ coactivator1α

PPAR-α:

Peroxisome proliferator-activated receptor alpha

PRMT1:

Protein arginine methyltransferase 1

SAH:

S-adenosylhomocysteine

SAM:

S-adenosylmethionine

SHMT:

Serine hydroxymethyltransferase

SIRT:

Sirtuins

TYMS:

Thymidylate synthase

References

  1. Gueant JL, Caillerez-Fofou M, Battaglia-Hsu S, Alberto JM, Freund JN, Dulluc I, et al. Molecular and cellular effects of vitamin B12 in brain, myocardium and liver through its role as co-factor of methionine synthase. Biochimie. 2013;95(5):1033–40.

    Article  CAS  PubMed  Google Scholar 

  2. Selhub J, Rosenberg IH. Excessive folic acid intake and relation to adverse health outcome. Biochimie. 2016;126:71–8.

    Article  CAS  PubMed  Google Scholar 

  3. Sole-Navais P, Cavalle-Busquets P, Fernandez-Ballart JD, Murphy MM. Early pregnancy B vitamin status, one carbon metabolism, pregnancy outcome and child development. Biochimie. 2016;126:91–6.

    Article  CAS  PubMed  Google Scholar 

  4. Forges T, Monnier-Barbarino P, Alberto JM, Gueant-Rodriguez RM, Daval JL, Gueant JL. Impact of folate and homocysteine metabolism on human reproductive health. Hum Reprod Update. 2007;13(3):225–38.

    Article  CAS  PubMed  Google Scholar 

  5. Kwong WY, Adamiak SJ, Gwynn A, Singh R, Sinclair KD. Endogenous folates and single-carbon metabolism in the ovarian follicle, oocyte and pre-implantation embryo. Reproduction. 2010;139(4):705–15.

    Article  CAS  PubMed  Google Scholar 

  6. Ikeda S, Koyama H, Sugimoto M, Kume S. Roles of one-carbon metabolism in preimplantation period – effects on short-term development and long-term programming. J Reprod Dev. 2012;58(1):38–43.

    Article  CAS  PubMed  Google Scholar 

  7. Kim KC, Friso S, Choi SW. DNA methylation, an epigenetic mechanism connecting folate to healthy embryonic development and aging. J Nutr Biochem. 2009;20(12):917–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fekete K, Berti C, Trovato M, Lohner S, Dullemeijer C, Souverein OW, et al. Effect of folate intake on health outcomes in pregnancy: a systematic review and meta-analysis on birth weight, placental weight and length of gestation. Nutr J. 2012;11:75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gueant JL, Hambaba L, Vidailhet M, Schaefer C, Wahlstedt V, Nicolas JP. Concentration and physicochemical characterisation of unsaturated cobalamin binding proteins in amniotic fluid. Clin Chim Acta. 1989;181(2):151–61.

    Article  CAS  PubMed  Google Scholar 

  10. Greibe E, Andreasen BH, Lildballe DL, Morkbak AL, Hvas AM, Nexo E. Uptake of cobalamin and markers of cobalamin status: a longitudinal study of healthy pregnant women. Clin Chem Lab Med. 2011;49(11):1877–82.

    CAS  PubMed  Google Scholar 

  11. Amarin ZO, Obeidat AZ. Effect of folic acid fortification on the incidence of neural tube defects. Paediatr Perinat Epidemiol. 2010;24(4):349–51.

    Google Scholar 

  12. Aimone-Gastin I, Gueant JL, Plenat F, Muhale F, Maury F, Djalali M, et al. Assimilation of [57Co]-labeled cobalamin in human fetal gastrointestinal xenografts into nude mice. Pediatr Res. 1999;45(6):860–6.

    Article  CAS  PubMed  Google Scholar 

  13. Kalhan SC. One carbon metabolism in pregnancy: impact on maternal, fetal and neonatal health. Mol Cell Endocrinol. 2016;435:48–60.

    Article  CAS  PubMed  Google Scholar 

  14. McCabe DC, Caudill MA. DNA methylation, genomic silencing, and links to nutrition and cancer. Nutr Rev. 2005;63(6 Pt 1):183–95.

    Article  PubMed  Google Scholar 

  15. Ghoshal K, Li X, Datta J, Bai S, Pogribny I, Pogribny M, et al. A folate- and methyl-deficient diet alters the expression of DNA methyltransferases and methyl CpG binding proteins involved in epigenetic gene silencing in livers of F344 rats. J Nutr. 2006;136(6):1522–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Wolff GL, Kodell RL, Moore SR, Cooney CA. Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice. FASEB J. 1998;12(11):949–57.

    CAS  PubMed  Google Scholar 

  17. Waterland RA, Jirtle RL. Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol. 2003;23(15):5293–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sinclair KD, Allegrucci C, Singh R, Gardner DS, Sebastian S, Bispham J, et al. DNA methylation, insulin resistance, and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status. Proc Natl Acad Sci U S A. 2007;104(49):19351–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gueant JL, Namour F, Gueant-Rodriguez RM, Daval JL. Folate and fetal programming: a play in epigenomics? Trends Endocrinol Metab. 2013;24(6):279–89.

    Article  CAS  PubMed  Google Scholar 

  20. Garcia MM, Guéant-Rodriguez RM, Pooya S, Brachet P, Alberto JM, Jeannesson E, et al. Methyl donor deficiency induces cardiomyopathy through altered methylation/acetylation of PGC-1α by PRMT1 and SIRT1. J Pathol. 2011;225(3):324–35.

    Article  CAS  PubMed  Google Scholar 

  21. Pooya S, Blaise S, Moreno Garcia M, Giudicelli J, Alberto JM, Gueant-Rodriguez RM, et al. Methyl donor deficiency impairs fatty acid oxidation through PGC-1alpha hypomethylation and decreased ER-alpha, ERR-alpha, and HNF-4al(6)pha in the rat liver. J Hepatol. 2012;57(2):344–51.

    Article  CAS  PubMed  Google Scholar 

  22. Chen G, Broseus J, Hergalant S, Donnart A, Chevalier C, Bolanos-Jimenez F, et al. Identification of master genes involved in liver key functions through transcriptomics and epigenomics of methyl donor deficiency in rat: relevance to nonalcoholic liver disease. Mol Nutr Food Res. 2015;59(2):293–302.

    Article  CAS  PubMed  Google Scholar 

  23. Yajnik CS, Deshmukh US. Fetal programming: maternal nutrition and role of one-carbon metabolism. Rev Endocr Metab Disord. 2012;13(2):121–7.

    Article  CAS  PubMed  Google Scholar 

  24. Yajnik CS, Chandak GR, Joglekar C, Katre P, Bhat DS, Singh SN, et al. Maternal homocysteine in pregnancy and offspring birthweight: epidemiological associations and Mendelian randomization analysis. Int J Epidemiol. 2014;43(5):1487–97.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Yajnik CS, Deshpande SS, Jackson AA, Refsum H, Rao S, Fisher DJ, et al. Vitamin B12 and folate concentrations during pregnancy and insulin resistance in the offspring: the Pune maternal nutrition study. Diabetologia. 2008;51(1):29–38.

    Article  CAS  PubMed  Google Scholar 

  26. Stewart CP, Christian P, Schulze KJ, Arguello M, Leclerq SC, Khatry SK, et al. Low maternal vitamin B-12 status is associated with offspring insulin resistance regardless of antenatal micronutrient supplementation in rural Nepal. J Nutr. 2011;141(10):1912–7.

    Google Scholar 

  27. Krishnaveni GV, Veena SR, Karat SC, Yajnik CS, Fall CH. Association between maternal folate concentrations during pregnancy and insulin resistance in Indian children. Diabetologia. 2014;57(1):110–21.

    Article  CAS  PubMed  Google Scholar 

  28. Tabassum R, Jaiswal A, Chauhan G, Dwivedi OP, Ghosh S, Marwaha RK, et al. Genetic variant of AMD1 is associated with obesity in urban Indian children. PLoS One. 2012;7(4):e33162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Murphy MM, Scott JM, Arija V, Molloy AM, Fernandez-Ballart JD. Maternal homocysteine before conception and throughout pregnancy predicts fetal homocysteine and birth weight. Clin Chem. 2004;50(8):1406–12.

    Article  CAS  PubMed  Google Scholar 

  30. Onalan R, Onalan G, Gunenc Z, Karabulut E. Combining 2nd-trimester maternal serum homocysteine levels and uterine artery Doppler for prediction of preeclampsia and isolated intrauterine growth restriction. Gynecol Obstet Investig. 2006;61(3):142–8.

    Article  CAS  Google Scholar 

  31. Dodds L, Fell DB, Dooley KC, Armson BA, Allen AC, Nassar BA, et al. Effect of homocysteine concentration in early pregnancy on gestational hypertensive disorders and other pregnancy outcomes. Clin Chem. 2008;54(2):326–34.

    Article  CAS  PubMed  Google Scholar 

  32. Rao L, Puschner B, Prolla TA. Gene expression profiling of low selenium status in the mouse intestine: transcriptional activation of genes linked to DNA damage, cell cycle control and oxidative stress. J Nutr. 2001;131(12):3175–81.

    CAS  PubMed  Google Scholar 

  33. Relton CL, Pearce MS, Parker L. The influence of erythrocyte folate and serum vitamin B12 status on birth weight. Br J Nutr. 2005;93(5):593–9.

    Article  CAS  PubMed  Google Scholar 

  34. Hogeveen M, Blom HJ, den Heijer M. Maternal homocysteine and small-for-gestational-age offspring: systematic review and meta-analysis. Am J Clin Nutr. 2012;95(1):130–6.

    Article  CAS  PubMed  Google Scholar 

  35. McNulty B, McNulty H, Marshall B, Ward M, Molloy AM, Scott JM, et al. Impact of continuing folic acid after the first trimester of pregnancy: findings of a randomized trial of folic acid supplementation in the second and third trimesters. Am J Clin Nutr. 2013;98(1):92–8.

    Google Scholar 

  36. McCullough LE, Miller EE, Mendez MA, Murtha AP, Murphy SK, Hoyo C. Maternal B vitamins: effects on offspring weight and DNA methylation at genomically imprinted domains. Clin Epigenetics. 2016;8:8.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lewis SJ, Leary S, Davey Smith G, Ness A. Body composition at age 9 years, maternal folate intake during pregnancy and methyltetrahydrofolate reductase (MTHFR) C677T genotype. Br J Nutr. 2009;102(4):493–6.

    Article  CAS  PubMed  Google Scholar 

  38. Frelut ML, Nicolas JP, Guilland JC, de Courcy GP. Methylenetetrahydrofolate reductase 677 C->T polymorphism: a link between birth weight and insulin resistance in obese adolescents. Int J Pediatr Obes. 2011;6(2-2):e312–7.

    Article  PubMed  Google Scholar 

  39. Lewis SJ, Lawlor DA, Nordestgaard BG, Tybjaerg-Hansen A, Ebrahim S, Zacho J, et al. The methylenetetrahydrofolate reductase C677T genotype and the risk of obesity in three large population-based cohorts. Eur J Endocrinol. 2008;159(1):35–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Russo GT, Di Benedetto A, Alessi E, Ientile R, Antico A, Nicocia G, et al. Mild hyperhomocysteinemia and the common C677T polymorphism of methylene tetrahydrofolate reductase gene are not associated with the metabolic syndrome in type 2 diabetes. J Endocrinol Investig. 2006;29(3):201–7.

    Article  CAS  Google Scholar 

  41. Heppe DH, Medina-Gomez C, Hofman A, Franco OH, Rivadeneira F, Jaddoe VW. Maternal first-trimester diet and childhood bone mass: the Generation R Study. Am J Clin Nutr. 2013;98(1):224–32.

    Article  CAS  PubMed  Google Scholar 

  42. Mill J, Heijmans BT. From promises to practical strategies in epigenetic epidemiology. Nat Rev Genet. 2013;14(8):585–94.

    Article  CAS  PubMed  Google Scholar 

  43. Szyf M. DNA methylation, the early-life social environment and behavioral disorders. J Neurodev Disord. 2011;3(3):238–49.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Jiang X, Bar HY, Yan J, Jones S, Brannon PM, West AA, et al. A higher maternal choline intake among third-trimester pregnant women lowers placental and circulating concentrations of the antiangiogenic factor fms-like tyrosine kinase-1 (sFLT1). FASEB J. 2013;27(3):1245–53.

    Article  CAS  PubMed  Google Scholar 

  45. Fryer AA, Nafee TM, Ismail KM, Carroll WD, Emes RD, Farrell WE. LINE-1 DNA methylation is inversely correlated with cord plasma homocysteine in man: a preliminary study. Epigenetics. 2009;4(6):394–8.

    Article  CAS  PubMed  Google Scholar 

  46. Steegers-Theunissen RP, Obermann-Borst SA, Kremer D, Lindemans J, Siebel C, Steegers EA, et al. Periconceptional maternal folic acid use of 400 microg per day is related to increased methylation of the IGF2 gene in the very young child. PLoS One. 2009;4(11):e7845.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Boeke CE, Baccarelli A, Kleinman KP, Burris HH, Litonjua AA, Rifas-Shiman SL, et al. Gestational intake of methyl donors and global LINE-1 DNA methylation in maternal and cord blood: prospective results from a folate-replete population. Epigenetics. 2012;7(3):253–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dominguez-Salas P, Moore SE, Baker MS, Bergen AW, Cox SE, Dyer RA, et al. Maternal nutrition at conception modulates DNA methylation of human metastable epialleles. Nat Commun. 2014;5:3746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. van Mil NH, Bouwland-Both MI, Stolk L, Verbiest MM, Hofman A, Jaddoe VW, et al. Determinants of maternal pregnancy one-carbon metabolism and newborn human DNA methylation profiles. Reproduction. 2014;148(6):581–92.

    Article  PubMed  Google Scholar 

  50. Hoyo C, Murtha AP, Schildkraut JM, Jirtle RL, Demark-Wahnefried W, Forman MR, et al. Methylation variation at IGF2 differentially methylated regions and maternal folic acid use before and during pregnancy. Epigenetics. 2011;6(7):928–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ideraabdullah FY, Vigneau S, Bartolomei MS. Genomic imprinting mechanisms in mammals. Mutat Res. 2008;647(1-2):77–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ingrosso D, Cimmino A, Perna AF, Masella L, De Santo NG, De Bonis ML, et al. Folate treatment and unbalanced methylation and changes of allelic expression induced by hyperhomocysteinaemia in patients with uraemia. Lancet. 2003;361(9370):1693–9.

    Article  CAS  PubMed  Google Scholar 

  53. Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ, Susser ES, et al. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci U S A. 2008;105(44):17046–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rakyan VK, Down TA, Balding DJ, Beck S. Epigenome-wide association studies for common human diseases. Nat Rev Genet. 2011;12(8):529–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Suhre K, Gieger C. Genetic variation in metabolic phenotypes: study designs and applications. Nat Rev Genet. 2012;13(11):759–69.

    Article  CAS  PubMed  Google Scholar 

  56. Menni C, Kastenmuller G, Petersen AK, Bell JT, Psatha M, Tsai PC, et al. Metabolomic markers reveal novel pathways of ageing and early development in human populations. Int J Epidemiol. 2013;42(4):1111–9.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Bjornsson HT, Sigurdsson MI, Fallin MD, Irizarry RA, Aspelund T, Cui H, et al. Intra-individual change over time in DNA methylation with familial clustering. JAMA. 2008;299(24):2877–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dick KJ, Nelson CP, Tsaprouni L, Sandling JK, Aissi D, Wahl S, et al. DNA methylation and body-mass index: a genome-wide analysis. Lancet. 2014;383(9933):1990–8.

    Article  CAS  PubMed  Google Scholar 

  59. Hermsdorff HH, Puchau B, Zulet MA, Martinez JA. Association of body fat distribution with proinflammatory gene expression in peripheral blood mononuclear cells from young adult subjects. OMICS. 2010;14(3):297–307.

    Article  CAS  PubMed  Google Scholar 

  60. Cordero P, Campion J, Milagro FI, Goyenechea E, Steemburgo T, Javierre BM, et al. Leptin and TNF-alpha promoter methylation levels measured by MSP could predict the response to a low-calorie diet. J Physiol Biochem. 2011;67(3):463–70.

    Article  CAS  PubMed  Google Scholar 

  61. Milagro FI, Campion J, Cordero P, Goyenechea E, Gomez-Uriz AM, Abete I, et al. A dual epigenomic approach for the search of obesity biomarkers: DNA methylation in relation to diet-induced weight loss. FASEB J. 2011;25(4):1378–89.

    Article  CAS  PubMed  Google Scholar 

  62. Sookoian S, Rosselli MS, Gemma C, Burgueno AL, Fernandez Gianotti T, Castano GO, et al. Epigenetic regulation of insulin resistance in nonalcoholic fatty liver disease: impact of liver methylation of the peroxisome proliferator-activated receptor gamma coactivator 1alpha promoter. Hepatology. 2010;52(6):1992–2000.

    Article  CAS  PubMed  Google Scholar 

  63. Bell JT, Tsai PC, Yang TP, Pidsley R, Nisbet J, Glass D, et al. Epigenome-wide scans identify differentially methylated regions for age and age-related phenotypes in a healthy ageing population. PLoS Genet. 2012;8(4):e1002629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Dolinoy DC, Huang D, Jirtle RL. Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proc Natl Acad Sci U S A. 2007;104(32):13056–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kimanya ME, De Meulenaer B, Roberfroid D, Lachat C, Kolsteren P. Fumonisin exposure through maize in complementary foods is inversely associated with linear growth of infants in Tanzania. Mol Nutr Food Res. 2010;54(11):1659–67.

    Article  CAS  PubMed  Google Scholar 

  66. Chango A, Nour AA, Bousserouel S, Eveillard D, Anton PM, Gueant JL. Time course gene expression in the one-carbon metabolism network using HepG2 cell line grown in folate-deficient medium. J Nutr Biochem. 2009;20(4):312–20.

    Article  CAS  PubMed  Google Scholar 

  67. Abdel Nour AM, Ringot D, Gueant JL, Chango A. Folate receptor and human reduced folate carrier expression in HepG2 cell line exposed to fumonisin B1 and folate deficiency. Carcinogenesis. 2007;28(11):2291–7.

    Article  CAS  PubMed  Google Scholar 

  68. Pellanda H, Forges T, Bressenot A, Chango A, Bronowicki JP, Gueant JL, et al. Fumonisin FB1 treatment acts synergistically with methyl donor deficiency during rat pregnancy to produce alterations of H3- and H4-histone methylation patterns in fetuses. Mol Nutr Food Res. 2012;56(6):976–85.

    Article  CAS  PubMed  Google Scholar 

  69. Pourie G, Martin N, Bossenmeyer-Pourie C, Akchiche N, Gueant-Rodriguez RM, Geoffroy A, et al. Folate- and vitamin B12-deficient diet during gestation and lactation alters cerebellar synapsin expression via impaired influence of estrogen nuclear receptor alpha. FASEB J. 2015;29(9):3713–25.

    Article  CAS  PubMed  Google Scholar 

  70. Battaglia-Hsu SF, Akchiche N, Noel N, Alberto JM, Jeannesson E, Orozco-Barrios CE, et al. Vitamin B12 deficiency reduces proliferation and promotes differentiation of neuroblastoma cells and up-regulates PP2A, proNGF, and TACE. Proc Natl Acad Sci U S A. 2009;106(51):21930–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ghemrawi R, Pooya S, Lorentz S, Gauchotte G, Arnold C, Gueant JL, et al. Decreased vitamin B12 availability induces ER stress through impaired SIRT1-deacetylation of HSF1. Cell Death Dis. 2013;4:e553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kerek R, Geoffroy A, Bison A, Martin N, Akchiche N, Pourie G, et al. Early methyl donor deficiency may induce persistent brain defects by reducing Stat3 signaling targeted by miR-124. Cell Death Dis. 2013;4:e755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Julvez J, Fortuny J, Mendez M, Torrent M, Ribas-Fito N, Sunyer J. Maternal use of folic acid supplements during pregnancy and four-year-old neurodevelopment in a population-based birth cohort. Paediatr Perinat Epidemiol. 2009;23(3):199–206.

    Article  PubMed  Google Scholar 

  74. Veena SR, Krishnaveni GV, Srinivasan K, Wills AK, Muthayya S, Kurpad AV, et al. Higher maternal plasma folate but not vitamin B-12 concentrations during pregnancy are associated with better cognitive function scores in 9- to 10- year-old children in South India. J Nutr. 2010;140(5):1014–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Christian P, Murray-Kolb LE, Khatry SK, Katz J, Schaefer BA, Cole PM, et al. Prenatal micronutrient supplementation and intellectual and motor function in early school-aged children in Nepal. JAMA. 2010;304(24):2716–23.

    Article  CAS  PubMed  Google Scholar 

  76. Christian P, Morgan ME, Murray-Kolb L, LeClerq SC, Khatry SK, Schaefer B, et al. Preschool iron-folic acid and zinc supplementation in children exposed to iron-folic acid in utero confers no added cognitive benefit in early school-age. J Nutr. 2011;141(11):2042–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Tamura T, Goldenberg RL, Chapman VR, Johnston KE, Ramey SL, Nelson KG. Folate status of mothers during pregnancy and mental and psychomotor development of their children at five years of age. Pediatrics. 2005;116(3):703–8.

    Article  PubMed  Google Scholar 

  78. Pilsner JR, Hu H, Wright RO, Kordas K, Ettinger AS, Sanchez BN, et al. Maternal MTHFR genotype and haplotype predict deficits in early cognitive development in a lead-exposed birth cohort in Mexico City. Am J Clin Nutr. 2010;92(1):226–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Institutional grants were received from the French national institute for medical research (Inserm), the French national agency for research (ANR Nutrivigene project) and the Region of Lorraine (France). The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Louis Guéant MD, DSc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Guéant, JL., Guéant-Rodriguez, RM. (2017). Maternal Folate, Methyl Donors, One-Carbon Metabolism, Vitamin B12 and Choline in Foetal Programming. In: Rajendram, R., Preedy, V., Patel, V. (eds) Diet, Nutrition, and Fetal Programming. Nutrition and Health. Humana Press, Cham. https://doi.org/10.1007/978-3-319-60289-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60289-9_22

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-60287-5

  • Online ISBN: 978-3-319-60289-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics