Skip to main content
Log in

Maximal regularity of the spatially periodic stokes operator and application to nematic liquid crystal flows

  • Published:
Czechoslovak Mathematical Journal Aims and scope Submit manuscript

Abstract

We consider the dynamics of spatially periodic nematic liquid crystal flows in the whole space and prove existence and uniqueness of local-in-time strong solutions using maximal L p-regularity of the periodic Laplace and Stokes operators and a local-intime existence theorem for quasilinear parabolic equations à la Clément-Li (1993). Maximal regularity of the Laplace and the Stokes operator is obtained using an extrapolation theorem on the locally compact abelian group \(G: = \mathbb{R}^{n - 1} \times \mathbb{R}/L\mathbb{Z}\) to obtain an R-bound for the resolvent estimate. Then, Weis’ theorem connecting R-boundedness of the resolvent with maximal L p regularity of a sectorial operator applies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. M. Alfsen: A simplified constructive proof of the existence and uniqueness of Haar measure. Math. Scand. 12 (1963), 106–116.

    MathSciNet  MATH  Google Scholar 

  2. H. Amann: Quasilinear evolution equations and parabolic systems. Trans. Am. Math. Soc. 293 (1986), 191–227.

    Article  MathSciNet  MATH  Google Scholar 

  3. J. Bourgain: Vector-valued singular integrals and the H1-BMO duality. Probability Theory and Harmonic Analysis. Papers from the Mini-Conf. on Probability and Harmonic Analysis, Cleveland, 1983 (W. A. Woyczyński, ed.). Pure Appl. Math. 98, Marcel Dekker, New York, 1986, pp. 1–19.

    Google Scholar 

  4. F. Bruhat: Distributions sur un groupe localement compact et applications à l’étude des représentations des groupes -adiques. Bull. Soc. Math. Fr. 89 (1961), 43–75. (In French.)

    MathSciNet  MATH  Google Scholar 

  5. D. L. Burkholder: A geometric condition that implies the existence of certain singular integrals of Banach-space-valued functions. Conf. on Harmonic Analysis in Honor of Antoni Zygmund, (W. Beckner et al., eds.). vol. 1, Chicago, Ill., 1981, The Wadsworth Math. Ser., Wadsworth, Belmont, 1983, pp. 270–286.

    Google Scholar 

  6. H. Cartan: Sur la mesure de Haar. C. R. Acad. Sci., Paris 211 (1940), 759–762. (In French.)

    MathSciNet  MATH  Google Scholar 

  7. P. Clément, S. Li: Abstract parabolic quasilinear equations and application to a groundwater flow problem. Adv. Math. Sci. Appl. 3 (1993/1994), 17–32.

    MathSciNet  MATH  Google Scholar 

  8. R. Denk, M. Hieber, J. Prüss: R-boundedness, Fourier multipliers and problems of elliptic and parabolic type. Mem. Am. Math. Soc. 166 (2003), 114 pages.

  9. J. Diestel, H. Jarchow, A. Tonge: Absolutely Summing Operators. Cambridge Studies in Advanced Mathematics 43, Cambridge Univ. Press, Cambridge, 1995.

    Book  MATH  Google Scholar 

  10. J. L. Ericksen, D. Kinderlehrer: Theory and Applications of Liquid Crystals. The IMA Volumes in Mathematics and Its Applications Vol. 5, Papers from the IMA workshop, Minneapolis, Institute for Mathematics and Its Applications, University of Minnesota, Springer, New York, 1987.

    Book  MATH  Google Scholar 

  11. R. Farwig, M. -H. Ri: Resolvent estimates and maximal regularity in weighted L q-spaces of the Stokes operator in an infinite cylinder. J. Math. Fluid Mech. 10 (2008), 352–387.

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Haar: Der Massbegriff in der Theorie der kontinuierlichen Gruppen. Ann. Math. (2)34 (1933), 147–169. (In German.)

    Article  MathSciNet  MATH  Google Scholar 

  13. M. Hieber, M. Nesensohn, J. Prüß, K. Schade: Dynamics of nematic liquid crystal flows. The quasilinear approach. (2014), 11 pages. ArXiv:1302. 4596 [math. AP].

  14. P. C. Kunstmann, L. Weis: Maximal L p-regularity for parabolic equations, Fourier multiplier theorems and H-functional calculus. Functional Analytic Methods for Evolution Equations. Autumn School on Evolution Equations and Semigroups, Levico Terme, Trento, Italy, 2001 (M. Iannelli, et al., eds.). Lecture Notes in Mathematics 1855, Springer, Berlin, 2004, pp. 65–311.

    Google Scholar 

  15. F. -H. Lin: Nonlinear theory of defects in nematic liquid crystals; phase transition and flow phenomena. Commun. Pure Appl. Math. 42 (1989), 789–814.

    Article  MathSciNet  MATH  Google Scholar 

  16. F. -H. Lin, C. Liu: Nonparabolic dissipative systems modeling the flow of liquid crystals. Commun. Pure Appl. Math. 48 (1995), 501–537.

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Lunardi: Interpolation Theory. Appunti. Scuola Normale Superiore di Pisa 9. Lecture Notes. Scuola Normale Superiore di Pisa, Edizioni della Normale, Pisa, 2009.

  18. J. L. Rubio de Francia, F. J. Ruiz, J. L. Torrea: Calderón-Zygmund theory for operator- valued kernels. Adv. Math. 62 (1986), 7–48.

    Article  MATH  Google Scholar 

  19. W. Rudin: Fourier Analysis on Groups. Interscience Tracts in Pure and Applied Mathematics, Vol. 12, Interscience Publishers, John Wiley, New York, 1962.

    MATH  Google Scholar 

  20. J. Sauer: Weighted resolvent estimates for the spatially periodic Stokes equations. Ann. Univ. Ferrara Sez. VII Sci. Mat. 61 (2015), 333–354. DOI 10. 1007/s11565-014-0221-4.

    Article  MathSciNet  MATH  Google Scholar 

  21. J. Sauer: An extrapolation theorem in non-Euclidean geometries and its application to partial differential equations. To appear in J. Elliptic Parabol. Equ.

  22. C. Wang: Well-posedness for the heat flow of harmonic maps and the liquid crystal flow with rough initial data. Arch. Ration. Mech. Anal. 200 (2011), 1–19.

    Article  MathSciNet  MATH  Google Scholar 

  23. A. Weil: L’intégration Dans les Groupes Topologiques et Ses Applications. Actualités Scientifiques et Industrielles 869, Hermann & Cie., Paris, 1940. (In French.)

    MATH  Google Scholar 

  24. L. Weis: A new approach to maximal L p-regularity. Evolution Equations and Their Applications in Physical and Life Sciences. Proc. Bad Herrenalb Conf., Karlsruhe, 1999 (G. Lumer et al., eds.). Lect. Notes in Pure and Appl. Math. 215, Marcel Dekker, New York, 2001, pp. 195–214.

    Google Scholar 

  25. F. Zimmermann: On vector-valued Fourier multiplier theorems. Stud. Math. 93 (1989), 201–222.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Sauer.

Additional information

The author has been supported by the International Research Training Group 1529.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sauer, J. Maximal regularity of the spatially periodic stokes operator and application to nematic liquid crystal flows. Czech Math J 66, 41–55 (2016). https://doi.org/10.1007/s10587-016-0237-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10587-016-0237-2

Keywords

MSC 2010

Navigation