Skip to main content

Carbohydrate Metabolism in Wine Yeasts

  • Chapter
  • First Online:
Biology of Microorganisms on Grapes, in Must and in Wine

Abstract

The predominant feature in wine-making is the conversion of sugars contained in grape mashes or musts into ethanol, a task almost exclusively fulfilled by unicellular eukaryotes which divide by budding—the yeasts. Whereas several non-Saccharomyces yeast species are present in the early stages of fermentation, Saccharomyces cerevisiae commonly added in starter cultures generally outgrows all other yeasts in the process of vinification and determines the principle quality of the final product. In the first part of this chapter we recapitulate the pathway of alcoholic fermentation, with special focus on the physiological properties relevant in vinification and the molecular differences discovered between laboratory strains of S. cerevisiae and their relatives employed in wine production. We present the current view on how hexose transport and hexose phosphorylation are especially adapted to the environments encountered during wine production. The generation of organoleptic important by-products of alcoholic fermentation, such as glycerol and acetate, are also discussed. Finally, the three major signaling pathways governing the response to sugar availability, SNF1, cAMP/Ras, and Snf3-Rgt1/2, are briefly explained with relation to wine yeast. An outlook on the growing importance of non-Saccharomyces yeasts and the expected impact of modern high-throughput techniques concludes this review.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguilera A (1986) Deletion of the phosphoglucose isomerase structural gene makes growth and sporulation glucose dependent in Saccharomyces cerevisiae. Mol Gen Genet 204:310–316

    Article  CAS  PubMed  Google Scholar 

  • Arvanitidis A, Heinisch JJ (1994) Studies on the function of yeast phosphofructokinase subunits by in vitro mutagenesis. J Biol Chem 269:8911–8918

    CAS  PubMed  Google Scholar 

  • Barnett JA (2003) Beginnings of microbiology and biochemistry: the contribution of yeast research. Microbiology 149:557–567

    Article  CAS  PubMed  Google Scholar 

  • Barnett JA, Payne RW, Yarrow D (2000) Yeasts: characteristics and identification. Cambridge University Press, Cambridge

    Google Scholar 

  • Bauer FF, Pretorius IS (2000) Yeast stress response and fermentation efficiency: how to survive the making of wine. S Afr J Enol Vitic 21:27–51

    CAS  Google Scholar 

  • Bermejo C, Haerizadeh F, Takanaga H, Chermak D, Frommer WB (2011) Optical sensors for measuring dynamic changes of cytosolic metabolite levels in yeast. Nat Protoc 6:1806–1817

    Article  CAS  PubMed  Google Scholar 

  • Berthels NJ, Cordero Otero RR, Bauer FF, Thevelein JM, Pretorius IS (2004) Discrepancy in glucose and fructose utilisation during fermentation by Saccharomyces cerevisiae wine yeast strains. FEMS Yeast Res 4:683–689

    Article  CAS  PubMed  Google Scholar 

  • Berthels NJ, Cordero Otero RR, Bauer FF, Pretorius IS, Thevelein JM (2008) Correlation between glucose/fructose discrepancy and hexokinase kinetic properties in different Saccharomyces cerevisiae wine yeast strains. Appl Microbiol Biotechnol 77:1083–1091

    Article  CAS  PubMed  Google Scholar 

  • Bisson LF (1999) Stuck and sluggish fermentations. Am J Enol Vitic 50:107–119

    CAS  Google Scholar 

  • Bisson LF, Fraenkel DG (1983) Involvement of kinases in glucose and fructose uptake by Saccharomyces cerevisiae. Proc Natl Acad Sci USA 80:1730–1734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bisson LF, Karpel JE (2010) Genetics of yeast impacting wine quality. Annu Rev Food Sci Technol 1:139–162

    Article  CAS  PubMed  Google Scholar 

  • Bisson LF, Fan Q, Walker GA (2016) Sugar and glycerol transport in Saccharomyces cerevisiae. Adv Exp Med Biol 892:125–168

    Article  CAS  PubMed  Google Scholar 

  • Boles E, Hollenberg CP (1997) The molecular genetics of hexose transport in yeasts. FEMS Microbiol Rev 21:85–111

    Article  CAS  PubMed  Google Scholar 

  • Boles E, Schulte F, Miosga T, Freidel K, Schluter E, Zimmermann FK, Hollenberg CP, Heinisch JJ (1997) Characterization of a glucose-repressed pyruvate kinase (Pyk2p) in Saccharomyces cerevisiae that is catalytically insensitive to fructose-1,6-bisphosphate. J Bacteriol 179:2987–2993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borneman AR, Pretorius IS, Chambers PJ (2013) Comparative genomics: a revolutionary tool for wine yeast strain development. Curr Opin Biotechnol 24:192–199

    Article  CAS  PubMed  Google Scholar 

  • Borneman AR, Forgan AH, Kolouchova R, Fraser JA, Schmidt SA (2016) Whole genome comparison reveals high levels of inbreeding and strain redundancy across the spectrum of commercial wine strains of Saccharomyces cerevisiae. G3 (Bethesda) 6:957–971

    Article  Google Scholar 

  • Brice C, Sanchez I, Tesniere C, Blondin B (2014) Assessing the mechanisms responsible for differences between nitrogen requirements of Saccharomyces cerevisiae wine yeasts in alcoholic fermentation. Appl Environ Microbiol 80:1330–1339

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Broach JR (2012) Nutritional control of growth and development in yeast. Genetics 192:73–105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ciriacy M (1975) Genetics of alcohol dehydrogenase in Saccharomyces cerevisiae. II. Two loci controlling synthesis of the glucose-repressible ADH II. Mol Gen Genet 138:157–164

    Article  CAS  PubMed  Google Scholar 

  • Cohen R, Yokoi T, Holland JP, Pepper AE, Holland MJ (1987) Transcription of the constitutively expressed yeast enolase gene ENO1 is mediated by positive and negative cis-acting regulatory sequences. Mol Cell Biol 7:2753–2761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Compagno C, Piskur J (2014) Molecular mechanisms in yeast carbon metabolism. Springer, Heidelberg

    Google Scholar 

  • Compagno C, Boschi F, Ranzi BM (1996) Glycerol production in a triose phosphate isomerase deficient mutant of Saccharomyces cerevisiae. Biotechnol Prog 12:591–595

    Article  CAS  PubMed  Google Scholar 

  • Cordente AG, Cordero-Bueso G, Pretorius IS, Curtin CD (2013) Novel wine yeast with mutations in YAP1 that produce less acetic acid during fermentation. FEMS Yeast Res 13:62–73

    Article  CAS  PubMed  Google Scholar 

  • Curiel JA, Salvado Z, Tronchoni J, Morales P, Rodrigues AJ, Quiros M, Gonzalez R (2016) Identification of target genes to control acetate yield during aerobic fermentation with Saccharomyces cerevisiae. Microb Cell Fact 15:156

    Article  PubMed  PubMed Central  Google Scholar 

  • Dashko S, Zhou N, Compagno C, Piskur J (2014) Why, when, and how did yeast evolve alcoholic fermentation? FEMS Yeast Res 14:826–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deroover S, Ghillebert R, Broeckx T, Winderickx J, Rolland F (2016) Trehalose-6-phosphate synthesis controls yeast gluconeogenesis downstream and independent of SNF1. FEMS Yeast Res 16. doi:10.1093/femsyr/fow036

  • Dietvorst J, Karhumaa K, Kielland-Brandt MC, Brandt A (2010) Amino acid residues involved in ligand preference of the Snf3 transporter-like sensor in Saccharomyces cerevisiae. Yeast 27:131–138

    CAS  PubMed  Google Scholar 

  • Ehsani M, Fernandez MR, Biosca JA, Julien A, Dequin S (2009) Engineering of 2,3-butanediol dehydrogenase to reduce acetoin formation by glycerol-overproducing, low-alcohol Saccharomyces cerevisiae. Appl Environ Microbiol 75:3196–3205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Entian KD, Barnett JA (1992) Regulation of sugar utilization by Saccharomyces cerevisiae. Trends Biochem Sci 17:506–510

    Article  CAS  PubMed  Google Scholar 

  • Ferreira C, van Voorst F, Martins A, Neves L, Oliveira R, Kielland-Brandt MC, Lucas C, Brandt A (2005) A member of the sugar transporter family, Stl1p is the glycerol/H+ symporter in Saccharomyces cerevisiae. Mol Biol Cell 16:2068–2076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fleet GH (2008) Wine yeasts for the future. FEMS Yeast Res 8:979–995

    Article  CAS  PubMed  Google Scholar 

  • Fraenkel DG (1982) Carbohydrate metabolism. In: Strathern JN, Jones EW, Broach JR (eds) The molecular biology of the yeast Saccharomyces: metabolism and gene expression. Cold Spring Harbor Laboratory, New York, pp 1–37

    Google Scholar 

  • Galeote V, Novo M, Salema-Oom M, Brion C, Valerio E, Goncalves P, Dequin S (2010) FSY1, a horizontally transferred gene in the Saccharomyces cerevisiae EC1118 wine yeast strain, encodes a high-affinity fructose/H+ symporter. Microbiology 156:3754–3761

    Article  CAS  PubMed  Google Scholar 

  • Gamero A, Quintilla R, Groenewald M, Alkema W, Boekhout T, Hazelwood L (2016) High-throughput screening of a large collection of non-conventional yeasts reveals their potential for aroma formation in food fermentation. Food Microbiol 60:147–159

    Article  CAS  PubMed  Google Scholar 

  • Gancedo JM (2008) The early steps of glucose signalling in yeast. FEMS Microbiol Rev 32:673–704

    Article  CAS  PubMed  Google Scholar 

  • Gancedo C, Flores CL (2004) The importance of a functional trehalose biosynthetic pathway for the life of yeasts and fungi. FEMS Yeast Res 4:351–359

    Article  CAS  PubMed  Google Scholar 

  • Gancedo C, Serrano R (1989) Energy-yielding metabolism. In: Rose AH, Harrison JS (eds) The yeasts: metabolism and physiology of yeasts. Academic, London, pp 205–259

    Google Scholar 

  • Golbik R, Naumann M, Otto A, Muller E, Behlke J, Reuter R, Hubner G, Kriegel TM (2001) Regulation of phosphotransferase activity of hexokinase 2 from Saccharomyces cerevisiae by modification at serine-14. Biochemistry 40:1083–1090

    Article  CAS  PubMed  Google Scholar 

  • Graham IR, Chambers A (1997) Constitutive expression vectors: PGK. Methods Mol Biol 62:159–169

    CAS  PubMed  Google Scholar 

  • Guillaume C, Delobel P, Sablayrolles JM, Blondin B (2007) Molecular basis of fructose utilization by the wine yeast Saccharomyces cerevisiae: a mutated HXT3 allele enhances fructose fermentation. Appl Environ Microbiol 73:2432–2439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagman A, Sall T, Compagno C, Piskur J (2013) Yeast “make-accumulate-consume” life strategy evolved as a multi-step process that predates the whole genome duplication. PLoS One 8:e68734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hedbacker K, Carlson M (2008) SNF1/AMPK pathways in yeast. Front Biosci 13:2408–2420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heinisch J, Hollenberg CP (1993) Yeasts. In: Rehm HJ, Reed G (eds) Biotechnology. VCH Verlagsgesellschaft mbH, Weinheim, pp 469–514

    Chapter  Google Scholar 

  • Heinisch J, Rodicio R (1997) Fructose-1,6-bisphosphate aldolase, triosephosphate isomerase glyceraldehyde-3-phosphate dehydrogenases, and phosphoglycerate mutase. In: Zimmermann FK, Entian KD (eds) Yeast sugar metabolism. Technomics, Lancaster, pp 119–140

    Google Scholar 

  • Heinisch JJ, Muller S, Schluter E, Jacoby J, Rodicio R (1998) Investigation of two yeast genes encoding putative isoenzymes of phosphoglycerate mutase. Yeast 14:203–213

    Article  CAS  PubMed  Google Scholar 

  • Henricsson C, de Jesus Ferreira MC, Hedfalk K, Elbing K, Larsson C, Bill RM, Norbeck J, Hohmann S, Gustafsson L (2005) Engineering of a novel Saccharomyces cerevisiae wine strain with a respiratory phenotype at high external glucose concentrations. Appl Environ Microbiol 71:6185–6192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hohmann S (2015) An integrated view on a eukaryotic osmoregulation system. Curr Genet 61:373–382

    Article  CAS  PubMed  Google Scholar 

  • Holsbeeks I, Lagatie O, Van Nuland A, Van de Velde S, Thevelein JM (2004) The eukaryotic plasma membrane as a nutrient-sensing device. Trends Biochem Sci 29:556–564

    Article  CAS  PubMed  Google Scholar 

  • Horak J (2013) Regulations of sugar transporters: insights from yeast. Curr Genet 59:1–31

    Article  CAS  PubMed  Google Scholar 

  • Hung GC, Brown CR, Wolfe AB, Liu J, Chiang HL (2004) Degradation of the gluconeogenic enzymes fructose-1,6-bisphosphatase and malate dehydrogenase is mediated by distinct proteolytic pathways and signaling events. J Biol Chem 279:49138–49150

    Article  CAS  PubMed  Google Scholar 

  • Jolly NP, Varela C, Pretorius IS (2014) Not your ordinary yeast: non-Saccharomyces yeasts in wine production uncovered. FEMS Yeast Res 14:215–237

    Article  CAS  PubMed  Google Scholar 

  • Kim JH (2009) DNA-binding properties of the yeast Rgt1 repressor. Biochimie 91:300–303

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Roy A, Jouandot D, Cho KH (2013) The glucose signaling network in yeast. Biochim Biophys Acta 1830:5204–5210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim D, Song JY, Hahn JS (2015) Improvement of glucose uptake rate and production of target chemicals by overexpressing hexose transporters and transcriptional activator Gcr1 in Saccharomyces cerevisiae. Appl Environ Microbiol 81:8392–8401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kopperschläger G, Heinisch J (1997) Phosphofructokinase. In: Zimmermann FK, Entian KD (eds) Yeast sugar metabolism. Technomic, Lancaster, pp 97–118

    Google Scholar 

  • Lagunas R (1981) Is Saccharomyces cerevisiae a typical facultative anaerobe? Trends Biochem Sci 6:201–202

    Article  CAS  Google Scholar 

  • Lagunas R (1993) Sugar transport in Saccharomyces cerevisiae. FEMS Microbiol Rev 10:229–242

    Article  CAS  PubMed  Google Scholar 

  • Langenberg AK (2016) Genetische und physiologische Charakterisierung von Hanseniaspora uvarum PhD thesis, University of Osnabrück, Osnabrück 2016

    Google Scholar 

  • Liccioli T, Chambers PJ, Jiranek V (2011) A novel methodology independent of fermentation rate for assessment of the fructophilic character of wine yeast strains. J Ind Microbiol Biotechnol 38:833–843

    Article  CAS  PubMed  Google Scholar 

  • Lilly M, Bauer FF, Lambrechts MG, Swiegers JH, Cozzolino D, Pretorius IS (2006) The effect of increased yeast alcohol acetyltransferase and esterase activity on the flavour profiles of wine and distillates. Yeast 23:641–659

    Article  CAS  PubMed  Google Scholar 

  • Luyten K, Riou C, Blondin B (2002) The hexose transporters of Saccharomyces cerevisiae play different roles during enological fermentation. Yeast 19:713–726

    Article  CAS  PubMed  Google Scholar 

  • Maier A, Völker B, Boles E, Fuhrmann GF (2002) Characterisation of glucose transport in Saccharomyces cerevisiae with plasma membrane vesicles (countertransport) and intact cells (initial uptake) with single Hxt1, Hxt2, Hxt3, Hxt4, Hxt6, Hxt7 or Gal2 transporters. FEMS Yeast Res 2:539–550

    CAS  PubMed  Google Scholar 

  • McAlister L, Holland MJ (1985a) Isolation and characterization of yeast strains carrying mutations in the glyceraldehyde-3-phosphate dehydrogenase genes. J Biol Chem 260:15013–15018

    CAS  PubMed  Google Scholar 

  • McAlister L, Holland MJ (1985b) Differential expression of the three yeast glyceraldehyde-3-phosphate dehydrogenase genes. J Biol Chem 260:15019–15027

    CAS  PubMed  Google Scholar 

  • Mills DA, Johannsen EA, Cocolin L (2002) Yeast diversity and persistence in botrytis-affected wine fermentations. Appl Environ Microbiol 68:4884–4893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreno F, Ahuatzi D, Riera A, Palomino CA, Herrero P (2005) Glucose sensing through the Hxk2-dependent signalling pathway. Biochem Soc Trans 33:265–268

    Article  CAS  PubMed  Google Scholar 

  • Morris CN, Ainsworth S, Kinderlerer J (1986) The regulatory properties of yeast pyruvate kinase. Effect of fructose 1,6-bisphosphate. Biochem J 234:691–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orozco H, Matallana E, Aranda A (2012) Wine yeast sirtuins and Gcn5p control aging and metabolism in a natural growth medium. Mech Ageing Dev 133:348–358

    Article  CAS  PubMed  Google Scholar 

  • Özcan S, Johnston M (1999) Function and regulation of yeast hexose transporters. Microbiol Mol Biol Rev 63:554–569

    PubMed  PubMed Central  Google Scholar 

  • Özcan S, Dover J, Johnston M (1998) Glucose sensing and signaling by two glucose receptors in the yeast Saccharomyces cerevisiae. EMBO J 17:2566–2573

    Article  PubMed  PubMed Central  Google Scholar 

  • Palomino A, Herrero P, Moreno F (2005) Rgt1, a glucose sensing transcription factor, is required for transcriptional repression of the HXK2 gene in Saccharomyces cerevisiae. Biochem J 388:697–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearce AK, Crimmins K, Groussac E, Hewlins MJ, Dickinson JR, Francois J, Booth IR, Brown AJ (2001) Pyruvate kinase (Pyk1) levels influence both the rate and direction of carbon flux in yeast under fermentative conditions. Microbiology 147:391–401

    Article  CAS  PubMed  Google Scholar 

  • Perez M, Luyten K, Michel R, Riou C, Blondin B (2005) Analysis of Saccharomyces cerevisiae hexose carrier expression during wine fermentation: both low- and high-affinity Hxt transporters are expressed. FEMS Yeast Res 5:351–361

    Article  CAS  PubMed  Google Scholar 

  • Peter Smits H, Hauf J, Muller S, Hobley TJ, Zimmermann FK, Hahn-Hagerdal B, Nielsen J, Olsson L (2000) Simultaneous overexpression of enzymes of the lower part of glycolysis can enhance the fermentative capacity of Saccharomyces cerevisiae. Yeast 16:1325–1334

    Article  CAS  PubMed  Google Scholar 

  • Pina C, Couto JA, Hogg T (2004) Inferring ethanol tolerance of Saccharomyces and non-Saccharomyces yeasts by progressive inactivation. Biotechnol Lett 26:1521–1527

    Article  CAS  PubMed  Google Scholar 

  • Pretorius IS, Curtin CD, Chambers PJ (2012) The winemaker’s bug: from ancient wisdom to opening new vistas with frontier yeast science. Bioeng Bugs 3:147–156

    PubMed  PubMed Central  Google Scholar 

  • Radecka D, Mukherjee V, Mateo RQ, Stojiljkovic M, Foulquie-Moreno MR, Thevelein JM (2015) Looking beyond Saccharomyces: the potential of non-conventional yeast species for desirable traits in bioethanol fermentation. FEMS Yeast Res 15. doi:10.1093/femsyr/fov053

  • Reifenberger E, Boles E, Ciriacy M (1997) Kinetic characterization of individual hexose transporters of Saccharomyces cerevisiae and their relation to the triggering mechanisms of glucose repression. Eur J Biochem 245:324–333

    Article  CAS  PubMed  Google Scholar 

  • Remize F, Andrieu E, Dequin S (2000) Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae: role of the cytosolic Mg(2+) and mitochondrial K(+) acetaldehyde dehydrogenases Ald6p and Ald4p in acetate formation during alcoholic fermentation. Appl Environ Microbiol 66:3151–3159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodicio R, Heinisch JJ (2013) Yeast on the milky way: genetics, physiology and biotechnology of the yeast Kluyveromyces lactis. Yeast 30:165–177

    Article  CAS  PubMed  Google Scholar 

  • Rodicio R, Heinisch JJ, Hollenberg CP (1993) Transcriptional control of yeast phosphoglycerate mutase-encoding gene. Gene 125:125–133

    Article  CAS  PubMed  Google Scholar 

  • Rodicio R, Strauss A, Heinisch JJ (2000) Single point mutations in either gene encoding the subunits of the heterooctameric yeast phosphofructokinase abolish allosteric inhibition by ATP. J Biol Chem 275:40952–40960

    Article  CAS  PubMed  Google Scholar 

  • Rolland F, Winderickx J, Thevelein JM (2001) Glucose-sensing mechanisms in eukaryotic cells. Trends Biochem Sci 26:310–317

    Article  CAS  PubMed  Google Scholar 

  • Rolland F, Winderickx J, Thevelein JM (2002) Glucose-sensing and -signalling mechanisms in yeast. FEMS Yeast Res 2:183–201

    Article  CAS  PubMed  Google Scholar 

  • Rollero S, Mouret JR, Sanchez I, Camarasa C, Ortiz-Julien A, Sablayrolles JM, Dequin S (2016) Key role of lipid management in nitrogen and aroma metabolism in an evolved wine yeast strain. Microb Cell Fact 15:32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rossi G, Sauer M, Porro D, Branduardi P (2010) Effect of HXT1 and HXT7 hexose transporter overexpression on wild-type and lactic acid producing Saccharomyces cerevisiae cells. Microb Cell Fact 9:15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rossignol T, Dulau L, Julien A, Blondin B (2003) Genome-wide monitoring of wine yeast gene expression during alcoholic fermentation. Yeast 20:1369–1385

    Article  CAS  PubMed  Google Scholar 

  • Rossignol T, Postaire O, Storai J, Blondin B (2006) Analysis of the genomic response of a wine yeast to rehydration and inoculation. Appl Microbiol Biotechnol 71:699–712

    Article  CAS  PubMed  Google Scholar 

  • Roy A, Jouandot D, Cho KH, Kim JH (2014) Understanding the mechanism of glucose-induced relief of Rgt1-mediated repression in yeast. FEBS Open Bio 4:105–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy A, Dement AD, Cho KH, Kim JH (2015) Assessing glucose uptake through the yeast hexose transporter 1 (Hxt1). PLoS One 10:e0121985

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sabina J, Johnston M (2009) Asymmetric signal transduction through paralogs that comprise a genetic switch for sugar sensing in Saccharomyces cerevisiae. J Biol Chem 284:29635–29643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saerens SM, Delvaux F, Verstrepen KJ, Van Dijck P, Thevelein JM, Delvaux FR (2008) Parameters affecting ethyl ester production by Saccharomyces cerevisiae during fermentation. Appl Environ Microbiol 74:454–461

    Article  CAS  PubMed  Google Scholar 

  • Saint-Prix F, Bonquist L, Dequin S (2004) Functional analysis of the ALD gene family of Saccharomyces cerevisiae during anaerobic growth on glucose: the NADP+-dependent Ald6p and Ald5p isoforms play a major role in acetate formation. Microbiology 150:2209–2220

    Article  CAS  PubMed  Google Scholar 

  • Salvado Z, Chiva R, Rodriguez-Vargas S, Randez-Gil F, Mas A, Guillamon JM (2008) Proteomic evolution of a wine yeast during the first hours of fermentation. FEMS Yeast Res 8:1137–1146

    Article  CAS  PubMed  Google Scholar 

  • Santangelo GM (2006) Glucose signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 70:253–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasaki H, Kishimoto T, Mizuno T, Shinzato T, Uemura H (2005) Expression of GCR1, the transcriptional activator of glycolytic enzyme genes in the yeast Saccharomyces cerevisiae, is positively autoregulated by Gcr1p. Yeast 22:305–319

    Article  CAS  PubMed  Google Scholar 

  • Schaaff I, Heinisch J, Zimmermann FK (1989) Overproduction of glycolytic enzymes in yeast. Yeast 5:285–290

    Article  CAS  PubMed  Google Scholar 

  • Schmitt HD, Zimmermann FK (1982) Genetic analysis of the pyruvate decarboxylase reaction in yeast glycolysis. J Bacteriol 151:1146–1152

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schwelberger HG, Kohlwein SD, Paltauf F (1989) Molecular cloning, primary structure and disruption of the structural gene of aldolase from Saccharomyces cerevisiae. Eur J Biochem 180:301–308

    Article  CAS  PubMed  Google Scholar 

  • Tamas MJ, Karlgren S, Bill RM, Hedfalk K, Allegri L, Ferreira M, Thevelein JM, Rydstrom J, Mullins JG, Hohmann S (2003) A short regulatory domain restricts glycerol transport through yeast Fps1p. J Biol Chem 278:6337–6345

    Article  CAS  PubMed  Google Scholar 

  • Turcotte B, Liang XB, Robert F, Soontorngun N (2010) Transcriptional regulation of nonfermentable carbon utilization in budding yeast. FEMS Yeast Res 10:2–13

    Article  CAS  PubMed  Google Scholar 

  • Valadi H, Valadi A, Ansell R, Gustafsson L, Adler L, Norbeck J, Blomberg A (2004) NADH-reductive stress in Saccharomyces cerevisiae induces the expression of the minor isoform of glyceraldehyde-3-phosphate dehydrogenase (TDH1). Curr Genet 45:90–95

    Article  CAS  PubMed  Google Scholar 

  • Van Urk H, Voll WS, Scheffers WA, Van Dijken JP (1990) Transient-state analysis of metabolic fluxes in crabtree-positive and crabtree-negative yeasts. Appl Environ Microbiol 56:281–287

    PubMed  PubMed Central  Google Scholar 

  • Varela C (2016) The impact of non-Saccharomyces yeasts in the production of alcoholic beverages. Appl Microbiol Biotechnol 100:9861–9874

    Article  CAS  PubMed  Google Scholar 

  • Vega M, Riera A, Fernandez-Cid A, Herrero P, Moreno F (2016) Hexokinase 2 is an intracellular glucose sensor of yeast cells that maintains the structure and activity of Mig1 protein repressor complex. J Biol Chem 291:7267–7285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verstrepen KJ, Iserentant D, Malcorps P, Derdelinckx G, Van Dijck P, Winderickx J, Pretorius IS, Thevelein JM, Delvaux FR (2004) Glucose and sucrose: hazardous fast-food for industrial yeast? Trends Biotechnol 22:531–537

    Article  CAS  PubMed  Google Scholar 

  • Verwaal R, Paalman JW, Hogenkamp A, Verkleij AJ, Verrips CT, Boonstra J (2002) HXT5 expression is determined by growth rates in Saccharomyces cerevisiae. Yeast 19:1029–1038

    Article  CAS  PubMed  Google Scholar 

  • Westholm JO, Nordberg N, Muren E, Ameur A, Komorowski J, Ronne H (2008) Combinatorial control of gene expression by the three yeast repressors Mig1, Mig2 and Mig3. BMC Genomics 9:601

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu YF, Zhao X, Glass DS, Absalan F, Perlman DH, Broach JR, Rabinowitz JD (2012) Regulation of yeast pyruvate kinase by ultrasensitive allostery independent of phosphorylation. Mol Cell 48:52–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaman S, Lippman SI, Schneper L, Slonim N, Broach JR (2009) Glucose regulates transcription in yeast through a network of signaling pathways. Mol Syst Biol 5:245

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao X, Procopio S, Becker T (2015) Flavor impacts of glycerol in the processing of yeast fermented beverages: a review. J Food Sci Technol 52:7588–7598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuchowska M, Jaenicke E, Konig H, Claus H (2015) Allelic variants of hexose transporter Hxt3p and hexokinases Hxk1p/Hxk2p in strains of Saccharomyces cerevisiae and interspecies hybrids. Yeast 32:657–669

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosaura Rodicio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rodicio, R., Heinisch, J.J. (2017). Carbohydrate Metabolism in Wine Yeasts. In: König, H., Unden, G., Fröhlich, J. (eds) Biology of Microorganisms on Grapes, in Must and in Wine. Springer, Cham. https://doi.org/10.1007/978-3-319-60021-5_8

Download citation

Publish with us

Policies and ethics