Skip to main content

Other Histone Modifications

  • Chapter
  • First Online:
DNA and Histone Methylation as Cancer Targets

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 1201 Accesses

Abstract

There are a lot of histone modifications other than methylation, many of which are known to be dysregulated in cancer cells. This chapter briefly introduces typical histone modifications associated with cancer, and then provides an overview of the current understanding of histone acetylation. Histone acetylation, which occurs at the α-amino group of the most N-terminal amino acid residue, and at the ε-amino groups of internal lysine residues in histone molecules, is catalyzed by various kinds of histone acetyltransferases. This modification causes alterations in the electrostatic property of the target residue, and thereby contributes to the dynamic regulation of the state of chromatin. N-terminal acetylation of histones is considered to occur constitutively, whereas the internal lysine acetylation is reversible, being recognized by trans-acting bromodomain-containing proteins and removed by histone deacetylases. This chapter focuses on outlining representative histone acetyltransferases and their molecular mechanisms, to provide a picture of how their substrate-specificity is ensured. Next, how bromodomains recognize their target residues is presented. Finally, the molecular mechanisms of histone deacetylation and its inhibition are briefly summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kleff S, Andrulis ED, Anderson CW, Sternglanz R (1995) Identification of a gene encoding a yeast histone H4 acetyltransferase. J Biol Chem 270(42):24674–24677

    Article  CAS  PubMed  Google Scholar 

  2. Parthun MR, Widom J, Gottschling DE (1996) The major cytoplasmic histone acetyltransferase in yeast: links to chromatin replication and histone metabolism. Cell 87(1):85–94

    Article  CAS  PubMed  Google Scholar 

  3. Brownell JE, Zhou J, Ranalli T, Kobayashi R, Edmondson DG et al (1996) Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 84(6):843–851

    Article  CAS  PubMed  Google Scholar 

  4. Taunton J, Hassig CA, Schreiber SL (1996) A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272(5260):408–411

    Article  CAS  PubMed  Google Scholar 

  5. Rundlett SE, Carmen AA, Kobayashi R, Bavykin S, Turner BM et al (1996) HDA1 and RPD3 are members of distinct yeast histone deacetylase complexes that regulate silencing and transcription. Proc Natl Acad Sci U S A 93(25):14503–14508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rea S, Eisenhaber F, O'Carroll D, Strahl BD, Sun ZW et al (2000) Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406(6796):593–599

    Article  CAS  PubMed  Google Scholar 

  7. Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR et al (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119(7):941–953

    Article  CAS  PubMed  Google Scholar 

  8. Suka N, Suka Y, Carmen AA, Wu J, Grunstein M (2001) Highly specific antibodies determine histone acetylation site usage in yeast heterochromatin and euchromatin. Mol Cell 8(2):473–479

    Article  CAS  PubMed  Google Scholar 

  9. Turner BM, Fellows G (1989) Specific antibodies reveal ordered and cell-cycle-related use of histone-H4 acetylation sites in mammalian cells. Eur J Biochem 179(1):131–139

    Article  CAS  PubMed  Google Scholar 

  10. Turner BM, O'Neill LP, Allan IM (1989) Histone H4 acetylation in human cells. Frequency of acetylation at different sites defined by immunolabeling with site-specific antibodies. FEBS Lett 253(1–2):141–145

    Article  CAS  PubMed  Google Scholar 

  11. Fraga MF, Ballestar E, Villar-Garea A, Boix-Chornet M, Espada J et al (2005) Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 37(4):391–400

    Article  CAS  PubMed  Google Scholar 

  12. Seligson DB, Horvath S, Shi T, Yu H, Tze S et al (2005) Global histone modification patterns predict risk of prostate cancer recurrence. Nature 435(7046):1262–1266

    Article  CAS  PubMed  Google Scholar 

  13. Elsheikh SE, Green AR, Rakha EA, Powe DG, Ahmed RA et al (2009) Global histone modifications in breast cancer correlate with tumor phenotypes, prognostic factors, and patient outcome. Cancer Res 69(9):3802–3809

    Article  CAS  PubMed  Google Scholar 

  14. Chadee DN, Hendzel MJ, Tylipski CP, Allis CD, Bazett-Jones DP et al (1999) Increased Ser-10 phosphorylation of histone H3 in mitogen-stimulated and oncogene-transformed mouse fibroblasts. J Biol Chem 274(35):24914–24920

    Article  CAS  PubMed  Google Scholar 

  15. Choi HS, Choi BY, Cho YY, Mizuno H, Kang BS et al (2005) Phosphorylation of histone H3 at serine 10 is indispensable for neoplastic cell transformation. Cancer Res 65(13):5818–5827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kim HG, Lee KW, Cho YY, Kang NJ, Oh SM et al (2008) Mitogen- and stress-activated kinase 1-mediated histone H3 phosphorylation is crucial for cell transformation. Cancer Res 68(7):2538–2547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tange S, Ito S, Senga T, Hamaguchi M (2009) Phosphorylation of histone H3 at Ser10: its role in cell transformation by v-Src. Biochem Biophys Res Commun 386(4):588–592

    Article  CAS  PubMed  Google Scholar 

  18. Li B, Huang G, Zhang X, Li R, Wang J et al (2013) Increased phosphorylation of histone H3 at serine 10 is involved in Epstein-Barr virus latent membrane protein-1-induced carcinogenesis of nasopharyngeal carcinoma. BMC Cancer 13:124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Prenzel T, Begus-Nahrmann Y, Kramer F, Hennion M, Hsu C et al (2011) Estrogen-dependent gene transcription in human breast cancer cells relies upon proteasome-dependent monoubiquitination of histone H2B. Cancer Res 71(17):5739–5753

    Article  CAS  PubMed  Google Scholar 

  20. Sterner DE, Berger SL (2000) Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev 64(2):435–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yuan H, Marmorstein R (2013) Histone acetyltransferases: rising ancient counterparts to protein kinases. Biopolymers 99(2):98–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. McCullough CE, Marmorstein R (2016) Molecular basis for histone acetyltransferase regulation by binding partners, associated domains, and autoacetylation. ACS Chem Biol 11(3):632–642

    Article  CAS  PubMed  Google Scholar 

  23. Lee DY, Hayes JJ, Pruss D, Wolffe AP (1993) A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell 72(1):73–84

    Article  CAS  PubMed  Google Scholar 

  24. Vettese-Dadey M, Grant PA, Hebbes TR, Crane- Robinson C, Allis CD et al (1996) Acetylation of histone H4 plays a primary role in enhancing transcription factor binding to nucleosomal DNA in vitro. EMBO J 15(10):2508–2518

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Shogren-Knaak M, Ishii H, Sun JM, Pazin MJ, Davie JR et al (2006) Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 311(5762):844–847

    Article  CAS  PubMed  Google Scholar 

  26. Turner BM, Birley AJ, Lavender J (1992) Histone H4 isoforms acetylated at specific lysine residues define individual chromosomes and chromatin domains in Drosophila polytene nuclei. Cell 69(2):375–384

    Article  CAS  PubMed  Google Scholar 

  27. Bone JR, Lavender J, Richman R, Palmer MJ, Turner BM et al (1994) Acetylated histone H4 on the male X chromosome is associated with dosage compensation in Drosophila. Genes Dev 8(1):96–104

    Article  CAS  PubMed  Google Scholar 

  28. Liu X, Bushnell DA, Kornberg RD (2013) RNA polymerase II transcription: structure and mechanism. Biochim Biophys Acta 1829(1):2–8

    Article  CAS  PubMed  Google Scholar 

  29. Lorch Y, Kornberg RD (2015) Chromatin-remodeling and the initiation of transcription. Q Rev Biophys 48(4):465–470

    Article  CAS  PubMed  Google Scholar 

  30. Sainsbury S, Bernecky C, Cramer P (2015) Structural basis of transcription initiation by RNA polymerase II. Nat Rev Mol Cell Biol 16(3):129–143

    Article  CAS  PubMed  Google Scholar 

  31. Venkatesh S, Workman JL (2015) Histone exchange, chromatin structure and the regulation of transcription. Nat Rev Mol Cell Biol 16(3):178–189

    Article  CAS  PubMed  Google Scholar 

  32. Kulaeva OI, Hsieh FK, Chang HW, Luse DS, Studitsky VM (2013) Mechanism of transcription through a nucleosome by RNA polymerase II. Biochim Biophys Acta 1829(1):76–83

    Article  CAS  PubMed  Google Scholar 

  33. Song OK, Wang X, Waterborg JH, Sternglanz R (2003) An Nalpha-acetyltransferase responsible for acetylation of the N-terminal residues of histones H4 and H2A. J Biol Chem 278(40):38109–38112

    Article  CAS  PubMed  Google Scholar 

  34. Polevoda B, Hoskins J, Sherman F (2009) Properties of Nat4, an N(alpha)-acetyltransferase of Saccharomyces cerevisiae that modifies N termini of histones H2A and H4. Mol Cell Biol 29(11):2913–2924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hole K, Van Damme P, Dalva M, Aksnes H, Glomnes N et al (2011) The human N-alpha-acetyltransferase 40 (hNaa40p/hNatD) is conserved from yeast and N-terminally acetylates histones H2A and H4. PLoS One 6(9):e24713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schiza V, Molina-Serrano D, Kyriakou D, Hadjiantoniou A, Kirmizis A (2013) N-alpha-terminal acetylation of histone H4 regulates arginine methylation and ribosomal DNA silencing. PLoS Genet 9(9):e1003805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pavlou D, Kirmizis A (2016) Depletion of histone N-terminal-acetyltransferase Naa40 induces p53-independent apoptosis in colorectal cancer cells via the mitochondrial pathway. Apoptosis 21(3):298–311

    Article  CAS  PubMed  Google Scholar 

  38. Liu Z, Liu Y, Wang H, Ge X, Jin Q et al (2009) Patt1, a novel protein acetyltransferase that is highly expressed in liver and downregulated in hepatocellular carcinoma, enhances apoptosis of hepatoma cells. Int J Biochem Cell Biol 41(12):2528–2537

    Article  CAS  PubMed  Google Scholar 

  39. Polevoda B, Norbeck J, Takakura H, Blomberg A, Sherman F (1999) Identification and specificities of N-terminal acetyltransferases from Saccharomyces cerevisiae. EMBO J 18(21):6155–6168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Arnesen T, Van Damme P, Polevoda B, Helsens K, Evjenth R et al (2009) Proteomics analyses reveal the evolutionary conservation and divergence of N-terminal acetyltransferases from yeast and humans. Proc Natl Acad Sci U S A 106(20):8157–8162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Varland S, Osberg C, Arnesen T (2015) N-terminal modifications of cellular proteins: the enzymes involved, their substrate specificities and biological effects. Proteomics 15(14):2385–2401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Magin RS, Liszczak GP, Marmorstein R (2015) The molecular basis for histone H4- and H2A-specific amino-terminal acetylation by NatD. Structure 23(2):332–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hilfiker A, Hilfiker-Kleiner D, Pannuti A, Lucchesi JC (1997) mof, a putative acetyl transferase gene related to the Tip60 and MOZ human genes and to the SAS genes of yeast, is required for dosage compensation in Drosophila. EMBO J 16(8):2054–2060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kuo MH, Allis CD (1998) Roles of histone acetyltransferases and deacetylases in gene regulation. BioEssays 20(8):615–626

    Article  CAS  PubMed  Google Scholar 

  45. Bordoli L, Netsch M, Luthi U, Lutz W, Eckner R (2001) Plant orthologs of p300/CBP: conservation of a core domain in metazoan p300/CBP acetyltransferase-related proteins. Nucleic Acids Res 29(3):589–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pandey R, Muller A, Napoli CA, Selinger DA, Pikaard CS et al (2002) Analysis of histone acetyltransferase and histone deacetylase families of Arabidopsis thaliana suggests functional diversification of chromatin modification among multicellular eukaryotes. Nucleic Acids Res 30(23):5036–5055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dancy BM, Cole PA (2015) Protein lysine acetylation by p300/CBP. Chem Rev 115(6):2419–2452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Allis CD, Berger SL, Cote J, Dent S, Jenuwien T et al (2007) New nomenclature for chromatin-modifying enzymes. Cell 131(4):633–636

    Article  CAS  PubMed  Google Scholar 

  49. Huang S, Lee WH, Lee EY (1991) A cellular protein that competes with SV40 T antigen for binding to the retinoblastoma gene product. Nature 350(6314):160–162

    Article  CAS  PubMed  Google Scholar 

  50. Parthun MR (2012) Histone acetyltransferase 1: more than just an enzyme? Biochim Biophys Acta 1819(3–4):256–263

    Article  CAS  PubMed  Google Scholar 

  51. Keck KM, Pemberton LF (2013) Histone chaperones link histone nuclear import and chromatin assembly. Biochim Biophys Acta 1819(3–4):277–289

    PubMed  Google Scholar 

  52. Eberharter A, Lechner T, Goralik-Schramel M, Loidl P (1996) Purification and characterization of the cytoplasmic histone acetyltransferase B of maize embryos. FEBS Lett 386(1):75–81

    Article  CAS  PubMed  Google Scholar 

  53. Verreault A, Kaufman PD, Kobayashi R, Stillman B (1998) Nucleosomal DNA regulates the core-histone-binding subunit of the human Hat1 acetyltransferase. Curr Biol 8(2):96–108

    Article  CAS  PubMed  Google Scholar 

  54. Kolle D, Sarg B, Lindner H, Loidl P (1998) Substrate and sequential site specificity of cytoplasmic histone acetyltransferases of maize and rat liver. FEBS Lett 421(2):109–114

    Article  CAS  PubMed  Google Scholar 

  55. Nagarajan P, Ge Z, Sirbu B, Doughty C, Agudelo Garcia PA et al (2013) Histone acetyl transferase 1 is essential for mammalian development, genome stability, and the processing of newly synthesized histones H3 and H4. PLoS Genet 9(6):e1003518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Poveda A, Pamblanco M, Tafrov S, Tordera V, Sternglanz R et al (2004) Hif1 is a component of yeast histone acetyltransferase B, a complex mainly localized in the nucleus. J Biol Chem 279(16):16033–16043

    Article  CAS  PubMed  Google Scholar 

  57. Campos EI, Fillingham J, Li G, Zheng H, Voigt P et al (2010) The program for processing newly synthesized histones H3.1 and H4. Nat Struct Mol Biol 17(11):1343–1351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Li Y, Zhang L, Liu T, Chai C, Fang Q et al (2014) Hat2p recognizes the histone H3 tail to specify the acetylation of the newly synthesized H3/H4 heterodimer by the Hat1p/Hat2p complex. Genes Dev 28(11):1217–1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wu H, Moshkina N, Min J, Zeng H, Joshua J et al (2012) Structural basis for substrate specificity and catalysis of human histone acetyltransferase 1. Proc Natl Acad Sci U S A 109(23):8925–8930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zheng Y, Thomas PM, Kelleher NL (2013) Measurement of acetylation turnover at distinct lysines in human histones identifies long-lived acetylation sites. Nat Commun 4:2203

    PubMed  PubMed Central  Google Scholar 

  61. Kaimori JY, Maehara K, Hayashi-Takanaka Y, Harada A, Fukuda M et al (2016) Histone H4 lysine 20 acetylation is associated with gene repression in human cells. Sci Rep 6:24318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Murzina NV, Pei XY, Zhang W, Sparkes M, Vicente-Garcia J et al (2008) Structural basis for the recognition of histone H4 by the histone-chaperone RbAp46. Structure 16(7):1077–1085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Georgakopoulos T, Thireos G (1992) Two distinct yeast transcriptional activators require the function of the GCN5 protein to promote normal levels of transcription. EMBO J 11(11):4145–4152

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Candau R, Moore PA, Wang L, Barlev N, Ying CY et al (1996) Identification of human proteins functionally conserved with the yeast putative adaptors ADA2 and GCN5. Mol Cell Biol 16(2):593–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yang XJ, Ogryzko VV, Nishikawa J, Howard BH, Nakatani Y (1996) A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature 382(6589):319–324

    Article  CAS  PubMed  Google Scholar 

  66. Nagy Z, Tora L (2007) Distinct GCN5/PCAF-containing complexes function as co-activators and are involved in transcription factor and global histone acetylation. Oncogene 26(37):5341–5357

    Article  CAS  PubMed  Google Scholar 

  67. Spedale G, Timmers HT, Pijnappel WW (2012) ATAC-king the complexity of SAGA during evolution. Genes Dev 26(6):527–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Krebs AR, Demmers J, Karmodiya K, Chang NC, Chang AC et al (2010) ATAC and Mediator coactivators form a stable complex and regulate a set of non-coding RNA genes. EMBO Rep 11(7):541–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nagy Z, Riss A, Fujiyama S, Krebs A, Orpinell M et al (2010) The metazoan ATAC and SAGA coactivator HAT complexes regulate different sets of inducible target genes. Cell Mol Life Sci 67(4):611–628

    Article  CAS  PubMed  Google Scholar 

  70. Marcus GA, Silverman N, Berger SL, Horiuchi J, Guarente L (1994) Functional similarity and physical association between GCN5 and ADA2: putative transcriptional adaptors. EMBO J 13(20):4807–4815

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Horiuchi J, Silverman N, Marcus GA, Guarente L (1995) ADA3, a putative transcriptional adaptor, consists of two separable domains and interacts with ADA2 and GCN5 in a trimeric complex. Mol Cell Biol 15(3):1203–1209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pollard KJ, Peterson CL (1997) Role for ADA/GCN5 products in antagonizing chromatin-mediated transcriptional repression. Mol Cell Biol 17(11):6212–6222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lee KK, Sardiu ME, Swanson SK, Gilmore JM, Torok M et al (2011) Combinatorial depletion analysis to assemble the network architecture of the SAGA and ADA chromatin remodeling complexes. Mol Syst Biol 7:503

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Bian C, Xu C, Ruan J, Lee KK, Burke TL et al (2011) Sgf29 binds histone H3K4me2/3 and is required for SAGA complex recruitment and histone H3 acetylation. EMBO J 30(14):2829–2842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Vermeulen M, Eberl HC, Matarese F, Marks H, Denissov S et al (2010) Quantitative interaction proteomics and genome-wide profiling of epigenetic histone marks and their readers. Cell 142(6):967–980

    Article  CAS  PubMed  Google Scholar 

  76. Dhalluin C, Carlson JE, Zeng L, He C, Aggarwal AK et al (1999) Structure and ligand of a histone acetyltransferase bromodomain. Nature 399(6735):491–496

    Article  CAS  PubMed  Google Scholar 

  77. Owen DJ, Ornaghi P, Yang JC, Lowe N, Evans PR et al (2000) The structural basis for the recognition of acetylated histone H4 by the bromodomain of histone acetyltransferase gcn5p. EMBO J 19(22):6141–6149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hassan AH, Prochasson P, Neely KE, Galasinski SC, Chandy M et al (2002) Function and selectivity of bromodomains in anchoring chromatin-modifying complexes to promoter nucleosomes. Cell 111(3):369–379

    Article  CAS  PubMed  Google Scholar 

  79. Riss A, Scheer E, Joint M, Trowitzsch S, Berger I et al (2015) Subunits of ADA-two-A-containing (ATAC) or Spt-Ada-Gcn5-acetyltrasferase (SAGA) Coactivator complexes enhance the Acetyltransferase activity of GCN5. J Biol Chem 290(48):28997–29009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Rojas JR, Trievel RC, Zhou J, Mo Y, Li X et al (1999) Structure of Tetrahymena GCN5 bound to coenzyme A and a histone H3 peptide. Nature 401(6748):93–98

    Article  CAS  PubMed  Google Scholar 

  81. Clements A, Poux AN, Lo WS, Pillus L, Berger SL et al (2003) Structural basis for histone and phosphohistone binding by the GCN5 histone acetyltransferase. Mol Cell 12(2):461–473

    Article  CAS  PubMed  Google Scholar 

  82. Trievel RC, Li FY, Marmorstein R (2000) Application of a fluorescent histone acetyltransferase assay to probe the substrate specificity of the human p300/CBP-associated factor. Anal Biochem 287(2):319–328

    Article  CAS  PubMed  Google Scholar 

  83. Poux AN, Marmorstein R (2003) Molecular basis for Gcn5/PCAF histone acetyltransferase selectivity for histone and nonhistone substrates. Biochemistry 42(49):14366–14374

    Article  CAS  PubMed  Google Scholar 

  84. Clements A, Marmorstein R (2003) Insights into structure and function of GCN5/PCAF and yEsa 1 histone acetyltransferase domains. Methods Enzymol 371:545–564

    Article  CAS  PubMed  Google Scholar 

  85. Sapountzi V, Cote J (2011) MYST-family histone acetyltransferases: beyond chromatin. Cell Mol Life Sci 68(7):1147–1156

    Article  CAS  PubMed  Google Scholar 

  86. Su J, Wang F, Cai Y, Jin J (2016) The functional analysis of histone acetyltransferase MOF in tumorigenesis. Int J Mol Sci 17(1):E99

    Article  PubMed  CAS  Google Scholar 

  87. Meller VH, Rattner BP (2002) The roX genes encode redundant male-specific lethal transcripts required for targeting of the MSL complex. EMBO J 21(5):1084–1091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Deng X, Meller VH (2006) roX RNAs are required for increased expression of X-linked genes in Drosophila melanogaster males. Genetics 174(4):1859–1866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Marin I (2003) Evolution of chromatin-remodeling complexes: comparative genomics reveals the ancient origin of "novel" compensasome genes. J Mol Evol 56(5):527–539

    Article  CAS  PubMed  Google Scholar 

  90. Morales V, Straub T, Neumann MF, Mengus G, Akhtar A et al (2004) Functional integration of the histone acetyltransferase MOF into the dosage compensation complex. EMBO J 23(11):2258–2268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Morales V, Regnard C, Izzo A, Vetter I, Becker PB (2005) The MRG domain mediates the functional integration of MSL3 into the dosage compensation complex. Mol Cell Biol 25(14):5947–5954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Larschan E, Alekseyenko AA, Gortchakov AA, Peng S, Li B et al (2007) MSL complex is attracted to genes marked by H3K36 trimethylation using a sequence-independent mechanism. Mol Cell 28(1):121–133

    Article  CAS  PubMed  Google Scholar 

  93. Sural TH, Peng S, Li B, Workman JL, Park PJ et al (2008) The MSL3 chromodomain directs a key targeting step for dosage compensation of the Drosophila melanogaster X chromosome. Nat Struct Mol Biol 15(12):1318–1325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ilik IA, Quinn JJ, Georgiev P, Tavares-Cadete F, Maticzka D et al (2013) Tandem stem-loops in roX RNAs act together to mediate X chromosome dosage compensation in Drosophila. Mol Cell 51(2):156–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Maenner S, Muller M, Frohlich J, Langer D, Becker PB (2013) ATP-dependent roX RNA remodeling by the helicase maleless enables specific association of MSL proteins. Mol Cell 51(2):174–184

    Article  CAS  PubMed  Google Scholar 

  96. Kelley RL, Wang J, Bell L, Kuroda MI (1997) Sex lethal controls dosage compensation in Drosophila by a non-splicing mechanism. Nature 387(6629):195–199

    Article  CAS  PubMed  Google Scholar 

  97. Beckmann K, Grskovic M, Gebauer F, Hentze MW (2005) A dual inhibitory mechanism restricts msl-2 mRNA translation for dosage compensation in Drosophila. Cell 122(4):529–540

    Article  CAS  PubMed  Google Scholar 

  98. Mendjan S, Taipale M, Kind J, Holz H, Gebhardt P et al (2006) Nuclear pore components are involved in the transcriptional regulation of dosage compensation in Drosophila. Mol Cell 21(6):811–823

    Article  CAS  PubMed  Google Scholar 

  99. Raja SJ, Charapitsa I, Conrad T, Vaquerizas JM, Gebhardt P et al (2010) The nonspecific lethal complex is a transcriptional regulator in Drosophila. Mol Cell 38(6):827–841

    Article  CAS  PubMed  Google Scholar 

  100. Lam KC, Muhlpfordt F, Vaquerizas JM, Raja SJ, Holz H et al (2012) The NSL complex regulates housekeeping genes in Drosophila. PLoS Genet 8(6):e1002736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Gupta A, Sharma GG, Young CS, Agarwal M, Smith ER et al (2005) Involvement of human MOF in ATM function. Mol Cell Biol 25(12):5292–5305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Dou Y, Milne TA, Tackett AJ, Smith ER, Fukuda A et al (2005) Physical association and coordinate function of the H3 K4 methyltransferase MLL1 and the H4 K16 acetyltransferase MOF. Cell 121(6):873–885

    Article  CAS  PubMed  Google Scholar 

  103. Taipale M, Rea S, Richter K, Vilar A, Lichter P et al (2005) hMOF histone acetyltransferase is required for histone H4 lysine 16 acetylation in mammalian cells. Mol Cell Biol 25(15):6798–6810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Smith ER, Cayrou C, Huang R, Lane WS, Cote J et al (2005) A human protein complex homologous to the Drosophila MSL complex is responsible for the majority of histone H4 acetylation at lysine 16. Mol Cell Biol 25(21):9175–9188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Li X, Wu L, Corsa CA, Kunkel S, Dou Y (2009) Two mammalian MOF complexes regulate transcription activation by distinct mechanisms. Mol Cell 36(2):290–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Wu L, Zee BM, Wang Y, Garcia BA, Dou Y (2011) The RING finger protein MSL2 in the MOF complex is an E3 ubiquitin ligase for H2B K34 and is involved in crosstalk with H3 K4 and K79 methylation. Mol Cell 43(1):132–144

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Cai Y, Jin J, Swanson SK, Cole MD, Choi SH et al (2010) Subunit composition and substrate specificity of a MOF-containing histone acetyltransferase distinct from the male-specific lethal (MSL) complex. J Biol Chem 285(7):4268–4272

    Article  CAS  PubMed  Google Scholar 

  108. Luo H, Shenoy AK, Li X, Jin Y, Jin L et al (2016) MOF acetylates the histone demethylase LSD1 to suppress epithelial-to-mesenchymal transition. Cell Rep 15(12):2665–2678

    Article  CAS  PubMed  Google Scholar 

  109. Gupta A, Hunt CR, Hegde ML, Chakraborty S, Chakraborty S et al (2014) MOF phosphorylation by ATM regulates 53BP1-mediated double-strand break repair pathway choice. Cell Rep 8(1):177–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Li X, Corsa CA, Pan PW, Wu L, Ferguson D et al (2010) MOF and H4 K16 acetylation play important roles in DNA damage repair by modulating recruitment of DNA damage repair protein Mdc1. Mol Cell Biol 30(22):5335–5347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Sharma GG, So S, Gupta A, Kumar R, Cayrou C et al (2010) MOF and histone H4 acetylation at lysine 16 are critical for DNA damage response and double-strand break repair. Mol Cell Biol 30(14):3582–3595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Gupta A, Guerin-Peyrou TG, Sharma GG, Park C, Agarwal M et al (2008) The mammalian ortholog of Drosophila MOF that acetylates histone H4 lysine 16 is essential for embryogenesis and oncogenesis. Mol Cell Biol 28(1):397–409

    Article  CAS  PubMed  Google Scholar 

  113. Thomas T, Dixon MP, Kueh AJ, Voss AK (2008) Mof (MYST1 or KAT8) is essential for progression of embryonic development past the blastocyst stage and required for normal chromatin architecture. Mol Cell Biol 28(16):5093–5105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kumar R, Hunt CR, Gupta A, Nannepaga S, Pandita RK et al (2011) Purkinje cell-specific males absent on the first (mMof) gene deletion results in an ataxia-telangiectasia-like neurological phenotype and backward walking in mice. Proc Natl Acad Sci U S A 108(9):3636–3641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Gupta A, Hunt CR, Pandita RK, Pae J, Komal K et al (2013) T-cell-specific deletion of Mof blocks their differentiation and results in genomic instability in mice. Mutagenesis 28(3):263–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Horikoshi N, Hunt CR, Pandita TK (2016) More complex transcriptional regulation and stress response by MOF. Oncogene 35(21):2681–2683

    Article  CAS  PubMed  Google Scholar 

  117. Sheikh BN, Bechtel-Walz W, Lucci J, Karpiuk O, Hild I et al (2016) MOF maintains transcriptional programs regulating cellular stress response. Oncogene 35(21):2698–2710

    Article  CAS  PubMed  Google Scholar 

  118. Cao L, Zhu L, Yang J, Su J, Ni J et al (2014) Correlation of low expression of hMOF with clinicopathological features of colorectal carcinoma, gastric cancer and renal cell carcinoma. Int J Oncol 44(4):1207–1214

    Article  CAS  PubMed  Google Scholar 

  119. Liu N, Zhang R, Zhao X, Su J, Bian X et al (2013) A potential diagnostic marker for ovarian cancer: involvement of the histone acetyltransferase, human males absent on the first. Oncol Lett 6(2):393–400

    PubMed  PubMed Central  Google Scholar 

  120. Pfister S, Rea S, Taipale M, Mendrzyk F, Straub B et al (2008) The histone acetyltransferase hMOF is frequently downregulated in primary breast carcinoma and medulloblastoma and constitutes a biomarker for clinical outcome in medulloblastoma. Int J Cancer 122(6):1207–1213

    Article  CAS  PubMed  Google Scholar 

  121. Zhang J, Liu H, Pan H, Yang Y, Huang G et al (2014) The histone acetyltransferase hMOF suppresses hepatocellular carcinoma growth. Biochem Biophys Res Commun 452(3):575–580

    Article  CAS  PubMed  Google Scholar 

  122. Zhao L, Wang DL, Liu Y, Chen S, Sun FL (2013) Histone acetyltransferase hMOF promotes S phase entry and tumorigenesis in lung cancer. Cell Signal 25(8):1689–1698

    Article  CAS  PubMed  Google Scholar 

  123. Lin T, Ponn A, Hu X, Law BK, Lu J (2010) Requirement of the histone demethylase LSD1 in Snai1-mediated transcriptional repression during epithelial-mesenchymal transition. Oncogene 29(35):4896–4904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Tang M, Shen H, Jin Y, Lin T, Cai Q et al (2013) The malignant brain tumor (MBT) domain protein SFMBT1 is an integral histone reader subunit of the LSD1 demethylase complex for chromatin association and epithelial-to-mesenchymal transition. J Biol Chem 288(38):27680–27691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Lin Y, Wu Y, Li J, Dong C, Ye X et al (2010) The SNAG domain of Snail1 functions as a molecular hook for recruiting lysine-specific demethylase 1. EMBO J 29(11):1803–1816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Herrero J, Muffato M, Beal K, Fitzgerald S, Gordon L et al (2016) Ensembl comparative genomics resources. Database (Oxford) 2016:bav096

    Article  CAS  Google Scholar 

  127. Gamsjaeger R, Webb SR, Lamonica JM, Billin A, Blobel GA et al (2011) Structural basis and specificity of acetylated transcription factor GATA1 recognition by BET family bromodomain protein Brd3. Mol Cell Biol 31(13):2632–2640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Shi J, Wang Y, Zeng L, Wu Y, Deng J et al (2014) Disrupting the interaction of BRD4 with diacetylated twist suppresses tumorigenesis in basal-like breast cancer. Cancer Cell 25(2):210–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Schroder S, Cho S, Zeng L, Zhang Q, Kaehlcke K et al (2012) Two-pronged binding with bromodomain-containing protein 4 liberates positive transcription elongation factor b from inactive ribonucleoprotein complexes. J Biol Chem 287(2):1090–1099

    Article  PubMed  CAS  Google Scholar 

  130. Wang CY, Filippakopoulos P (2015) Beating the odds: BETs in disease. Trends Biochem Sci 40(8):468–479

    Article  CAS  PubMed  Google Scholar 

  131. Smith SG, Zhou MM (2016) The Bromodomain: a new target in emerging epigenetic medicine. ACS Chem Biol 11(3):598–608

    Article  CAS  PubMed  Google Scholar 

  132. Jacobson RH, Ladurner AG, King DS, Tjian R (2000) Structure and function of a human TAFII250 double bromodomain module. Science 288(5470):1422–1425

    Article  CAS  PubMed  Google Scholar 

  133. Filippakopoulos P, Picaud S, Mangos M, Keates T, Lambert JP et al (2012) Histone recognition and large-scale structural analysis of the human bromodomain family. Cell 149(1):214–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Mottamal M, Zheng S, Huang TL, Wang G (2015) Histone deacetylase inhibitors in clinical studies as templates for new anticancer agents. Molecules 20(3):3898–3941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Benedetti R, Conte M, Altucci L (2015) Targeting histone deacetylases in diseases: where are we? Antioxid Redox Signal 23(1):99–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Yoshida M, Beppu T (1988) Reversible arrest of proliferation of rat 3Y1 fibroblasts in both the G1 and G2 phases by trichostatin A. Exp Cell Res 177(1):122–131

    Article  CAS  PubMed  Google Scholar 

  137. Yoshida H, Sugita K (1992) A novel tetracyclic peptide, trapoxin, induces phenotypic change from transformed to normal in sis-oncogene-transformed NIH3T3 cells. Jpn J Cancer Res 83(4):324–328

    Article  CAS  PubMed  Google Scholar 

  138. Kijima M, Yoshida M, Sugita K, Horinouchi S, Beppu T (1993) Trapoxin, an antitumor cyclic tetrapeptide, is an irreversible inhibitor of mammalian histone deacetylase. J Biol Chem 268(30):22429–22435

    CAS  PubMed  Google Scholar 

  139. Vidal M, Gaber RF (1991) RPD3 encodes a second factor required to achieve maximum positive and negative transcriptional states in Saccharomyces cerevisiae. Mol Cell Biol 11(12):6317–6327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Finnin MS, Donigian JR, Cohen A, Richon VM, Rifkind RA et al (1999) Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature 401(6749):188–193

    Article  CAS  PubMed  Google Scholar 

  141. Simon RP, Robaa D, Alhalabi Z, Sippl W, Jung M (2016) KATching-up on small molecule modulators of lysine acetyltransferases. J Med Chem 59(4):1249–1270

    Article  CAS  PubMed  Google Scholar 

  142. Gil J, Ramirez-Torres A, Encarnacion-Guevara S (2017) Lysine acetylation and cancer: a proteomics perspective. J Proteome 150:297–309

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Kato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kato, H. (2017). Other Histone Modifications. In: Kaneda, A., Tsukada, Yi. (eds) DNA and Histone Methylation as Cancer Targets. Cancer Drug Discovery and Development. Humana Press, Cham. https://doi.org/10.1007/978-3-319-59786-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59786-7_9

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-59784-3

  • Online ISBN: 978-3-319-59786-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics