Skip to main content

Potato virus Y: Control, Management and Seed Certification Programmes

  • Chapter
  • First Online:
Potato virus Y: biodiversity, pathogenicity, epidemiology and management

Abstract

The management of Potato virus Y (PVY) in potato crops poses a continual challenge due to the non-persistent mode of transmission of the virus and the propagation of seed potato tubers over several generations in the field. While PVY-resistant cultivars remain the most efficient way to protect potato crops against PVY, a vast majority of cultivars grown do not display significant resistance to PVY. Due to the short time period for PVY transmission by non-colonising aphid vectors, efficient control of PVY relies on preventing aphids landing on a crop and on adopting precautionary measures by ensuring that crops are grown in areas of low aphid and low virus pressure and limiting field generation. Prophylactic measures such as roguing and early haulm destruction limit PVY spread but are not efficient alone. Among all existing control methods, spraying potato crops with mineral oils can offer significant protection against PVY spread, but their efficacy do vary in field conditions. The combination of several control methods such as mineral oil treatments, crop borders, intercropping, straw mulching or insecticide treatments can increase protection. These emphasise the importance of controlling virus through appropriate monitoring methods and crop management enforced by seed certification schemes through the use of ‘clean’ input seed and, when possible, the segregation of seed and ware crops to minimise the risk of virus transmission. This chapter presents and discusses the most widely used techniques of control and management of PVY, their effectiveness and their mode of action. This chapter also presents the history, objectives and principles of seed potato certification schemes and their role in minimising the spread of viruses within potato crops worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Daoud F, Fageria MS, Zhang JH, Boquel S, Pelletier Y (2014) Mineral oil inhibits movement of potato virus Y in potato plants in an age-dependent manner. Am J Potato Res 91:337–345

    Article  CAS  Google Scholar 

  • Al-Mrabeh A, Anderson E, Torrance L, Evans A, Fenton B (2010) A literature review of insecticide and mineral oil use in preventing the spread of non-persistent viruses in potato crops In: Council P (ed) Agriculture and horticulture development board 2010. Warwickshire, UK, 65. (Council P, ed.)

    Google Scholar 

  • Alyokhin A, Sewell G (2003) On-soil movement and plant colonization by walking wingless morphs of three aphid species (Homoptera : Aphididae) in greenhouse arenas. Environ Entomol 32:1393–1398

    Article  Google Scholar 

  • Alyokhin A, Sewell G, Groden E (2002) Aphid abundance and potato virus Y transmission in imidacloprid-treated potatoes. Am J Potato Res 79:255–262

    Article  Google Scholar 

  • Ameline A, Couty A, Martoub M, Giordanengo P (2009) Effects of mineral oil application on the orientation and feeding behaviour of Macrosiphum euphorbiae (Homoptera: Aphidae). Acta Entomol Sin 52:617–623

    Google Scholar 

  • Basky Z (2003) Virus vector aphid activity and seed potato tuber virus infection in Hungary. Anzeiger Fur Schadlingskunde-Journal of Pest Science 76:83–88

    Article  Google Scholar 

  • Basky Z, Almasi A (2005) Differences in aphid transmissibility and translocation between PVYN and PVY0 isolates. J Pest Sci 78:67–75

    Article  Google Scholar 

  • Bass C, Puinean AM, Zimmer CT et al (2014) The evolution of insecticide resistance in the peach potato aphid, Myzus persicae. Insect Biochem Mol Biol 51:41–51

    Article  CAS  PubMed  Google Scholar 

  • Beemster ABR (1972) Virus translocation in potato plants and mature plant resistance. In: De Bokx JA (ed) Viruses of potatoes and seed potato production. Pudoc, Wageningen, pp 144–151

    Google Scholar 

  • Bell AC (1980) The use of mineral oil to inhibit aphid transmission of potato veinal necrosis virus: a laboratory and field experiment. Record of agricultural Research, Northern Ireland Dept. Agric. Res. 28, 13–7

    Google Scholar 

  • Bell AC (1989) Use of oil and pyrethroid sprays to inhibit the spread of potato virus-Yn in the field. Crop Prot 8:37–39

    Article  Google Scholar 

  • Boiteau G (1997) Comparative propensity for dispersal of apterous and alate morphs of three potato-colonizing aphid species. Can J Zool 75:1396–1403

    Article  Google Scholar 

  • Boiteau G, Singh RP (1999) Field assessment of imidacloprid to reduce the spread of PVYO and PLRV in potato. Am J Potato Res 76:31–36

    Article  CAS  Google Scholar 

  • Boiteau G, Wood FA (1982) Persistence of mineral-oil spray deposits on potato leaves. Am Potato J 59:55–63

    Article  Google Scholar 

  • Boiteau G, King RR, Levesque D (1985) Lethal and sublethal effects of aldicarb on two potato aphids (Homoptera: Aphididae): Myzus persicae (Sulzer) and Macrosiphum euphorbiae (Thomas). J Econ Entomol 78:41–44

    Article  CAS  Google Scholar 

  • Boiteau G, Singh M, Lavoie J (2009) Crop border and mineral oil sprays used in combination as physical control methods of the aphid-transmitted potato virus Y in potato. Pest Manag Sci 65:255–259

    Article  CAS  PubMed  Google Scholar 

  • Boquel S, Giguere MA, Clark C, Nanayakkara U, Zhang JH, Pelletier Y (2013) Effect of mineral oil on potato virus Y acquisition by Rhopalosiphum padi. Entomol Exp Appl 148:48–55

    Article  Google Scholar 

  • Boquel S, Zhang J, Goyer C, Giguère M-A, Clark C, Pelletier Y (2014) Effect of insecticide-treated potato plants on aphid behavior and potato virus Y acquisition. Pest Manag Sci 71:1106–1112

    Article  PubMed  CAS  Google Scholar 

  • Boydston RA, D-Seymour M, Brown CR, Alva AK (2006) Freezing behavior of potato (Solanum tuberosum) tubers in soil. Am J Potato Res 83:305–315

    Article  Google Scholar 

  • Bradley RHE (1963) Some ways in which a paraffin oil impedes aphid transmission of potato virus Y. Can J Microbiol 9:369–380

    Article  Google Scholar 

  • Bradley RHE, Wood FA, Wade CV (1962) Aphid transmission of potato virus Y inhibitted by oils. Virology 18:327–329

    Article  CAS  PubMed  Google Scholar 

  • Bradley RHE, Moore CA, Pond DD (1966) Spread of potato virus Y curtailed by oil. Nature 209:1370–1371

    Article  Google Scholar 

  • Bragard C, Caciagli P, Lemaire O, et al. (2013) Status and prospects of plant virus control through interference with vector transmission. In: Vanalfen NK (ed) Annual review of phytopathology, Vol 51. Annual Reviews, 4139 El Camino Way, Po Box 10139, Palo Alto, Ca 94303-0897 USA, 177-201. (Annual Review of Phytopathology; vol. 51.)

    Google Scholar 

  • Broadbent L, Gregory PH, Tinsley TW (1950) Roguing potato crops for virus diseases. Ann Appl Biol 37:640–650

    Article  Google Scholar 

  • Cho S-R, Koo H-N, Yoon C, Kim G-H (2011) Sublethal effects of flonicamid and thiamethoxam on green peach aphid, Myzus persicae and feeding behavior analysis. J Korean Soc Appl Biol Chem 54:889–898

    Article  CAS  Google Scholar 

  • Cip IPC (1979) Insect vector transmission of potato viruses. CIP, International Potato Center

    Google Scholar 

  • Collar JL, Avilla C, Duque M, Fereres A (1997) Behavioral response and virus vector ability of Myzus persicae (Homoptera : aphididae) probing on pepper plants treated with aphicides. J Econ Entomol 90:1628–1634

    Article  CAS  Google Scholar 

  • Cooke LR, HTaM S, Hermansen A et al (2011) Epidemiology and integrated control of potato late blight in Europe. Potato Res 54:183–222

    Article  Google Scholar 

  • Crump NS, (2008) Seed potato certification and its role in soilborne disease management. In: Vispa VCSPA (ed) ViSPA, Voctoria, 1

    Google Scholar 

  • Crutzen F, Moreau V, Francis F, Bragard C (2014) The alarm pheromone E-β-Farnesene as biocontrol semiochemical to reduce the propagation of potato virus Y in potato fields. In: Research EaFP, ed. 19th Triennial Conference of the European Association for Potato Research. Brussels, European Association for Potato Research, 65. 1

    Google Scholar 

  • Cui LL, Dong J, Francis F et al (2012) E-beta-farnesene synergizes the influence of an insecticide to improve control of cabbage aphids in China. Crop Prot 35:91–96

    Article  CAS  Google Scholar 

  • Davis JA, Radcliffe EB, Ragsdale DW (2009) Planter skips and impaired stand favors potato virus Y spread in potato. Am J Potato Res 86:203–208

    Article  Google Scholar 

  • Dawson G, Anderson F, Bain R, et al. (2015) Effectiveness of mineral and vegetable oils in minimising the spread of non-persistent viruses in potato seed crops in Great Britain. In Potato Council project R449 final report. Potato Council

    Google Scholar 

  • Demeulemeester K (2013) Control of potato virus Y spread in seed potatoes. In: Virology E (ed) Proceedings of the EAPR Section Virology Meeting, Antalya, 57

    Google Scholar 

  • Dewijs JJ (1980) The caracteristics of mineral-oils in relation to their inhibitory activity on the aphid transmission of potato virus Y. In. Netherlands. J Plant Pathol 86:291–300

    CAS  Google Scholar 

  • Dewijs JJ, Sturm E, Schwinn FJ (1979) Viscosity of mineral-oils in relation to their ability to inhibit the transmission of stylet-borne viruses. In. Netherlands. J Plant Pathol 85:19–22

    Google Scholar 

  • Difonzo CD, Ragsdale DW, Radcliffe EB, Gudmestad NC, Secor GA (1996) Crop borders reduce potato virus Y incidence in seed potato. Ann Appl Biol 129:289–302

    Article  Google Scholar 

  • Dodds JH (1988) Tissue culture technology: practical application of sophisticated methods. Am J Potato Res 65:167–180

    Article  CAS  Google Scholar 

  • Donnelly DJ, Coleman WK, Coleman SE (2003) Potato microtuber production and performance: a review. Am J Potato Res 80:103–115

    Article  Google Scholar 

  • Döring TF (2014) How aphids find their host plants, and how they don't. Ann Appl Biol 165:3–26

    Article  Google Scholar 

  • Döring TF, Schmidt T (2007) Response of apterous potato aphids to visual contrasts (Hemiptera : Aphididae). Entomologia Generalis 30:190–191

    Article  Google Scholar 

  • Draper MD, Pasche JS, Gudmestad NC (2002) Factors influencing PVY development and disease expression in three potato cultivars. Am J Potato Res 79:155–165

    Article  Google Scholar 

  • Dupuis B (2016) The movement of potato virus Y (PVY) in tehe vascular system of potato plants. Eur J Plant Pathol:1–9

    Google Scholar 

  • Dupuis B, Schwaerzel R (2011) Impact of Haulm killing on potato virus Y (PVY) spread. Proceedings of the The 18th Triennial Conference of the European Association for Potato Research, . Oulu, 167

    Google Scholar 

  • Dupuis B, Schwaerzel R, Goy G, Tallant M, Derron J (2010) Stepwise development of an efficient method to control potato virus Y spread in seed potato fields. In: Focus B (ed) Proceedings of the EAPR virology. Bioforsk Focus, Hamar, 22

    Google Scholar 

  • Dupuis B, Schwaerzel R, Derron J (2014) Efficacy of three strategies based on insecticide, oil and elicitor treatments in controlling aphid populations and potato virus Y epidemics in potato fields. J Phytopathol 162:14–18

    Article  CAS  Google Scholar 

  • Duvauchelle S, Dubois L, Nguyen N (1997) Aphids and viruses on ware potatoes in northern France particularly in 1995 and 1996. Mededelingen Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen Universiteit Gent 62:545–546

    Google Scholar 

  • Edwardson JR, Christie RG (1997) Potyviruses. University of Florida, Gainesville

    Google Scholar 

  • Eppo (1999) EPPO standard PM 4/28, certification schemes – seed potatoes. Bull OEPP/EPPO 29:253–267

    Article  Google Scholar 

  • Espinoza N, Estrada R, Tovar P, Bryan J, Dodds JH, (1984) Tissue culture micropropagation, conservation, and export of potato germplasm. Lima, Peru: International Potato Center (CIP)

    Google Scholar 

  • Eu (2002) Council Directive 2002/56/EC of 13 June 2002 on the marketing of seed potatoes. In: Eu (ed) Union TCOTE

    Google Scholar 

  • Fageria M, Boquel S, Leclair G, Pelletier Y (2014a) Quantification of mineral oil accumulation and movement in potato plants and its significance in potato virus Y management. Pest Manag Sci 70:1243–1248

    Article  CAS  PubMed  Google Scholar 

  • Fageria MS, Boquel S, Leclair G, Pelletier Y (2014b) The use of mineral oil in potato protection: dynamics in the plant and effect on potato virus Y spread. Am J Potato Res 91:476–484

    Article  CAS  Google Scholar 

  • Fereres A, Moreno A (2009) Behavioural aspects influencing plant virus transmission by homopteran insects. Virus Res 141:158–168

    Article  CAS  PubMed  Google Scholar 

  • Foster SP, Hackett B, Mason N, et al (2002) Resistance to carbamate, organophosphate and pyrethroid insecticides in the potato aphid (Macrosiphum euphorbiae). Proceedings of the Brighton crop conference: Pests and diseases Brighton, 811–816

    Google Scholar 

  • Foster SP, Paul VL, Slater R et al (2014) A mutation (L1014F) in the voltage-gated sodium channel of the grain aphid, Sitobion avenae, is associated with resistance to pyrethroid insecticides. Pest Manag Sci 70:1249–1253

    Article  CAS  PubMed  Google Scholar 

  • Franc GD (2001) Seed certification as a virus management tool. Virus and virus-like diseases of potatoes and production of seed-potatoes. Kluwer, Dordrecht, pp 407–420

    Google Scholar 

  • Frost KE, Groves RL, Charkowski AO (2013) Integrated control of potato pathogens through seed potato certification and provision of clean seed potatoes. Plant Dis 97:1268–1280

    Article  Google Scholar 

  • Gabriel W (1965) Influence of temperature on spread of aphid-borne potato virus diseases. Ann Appl Biol 56:461

    Article  Google Scholar 

  • Gibson RW (1991) The development of mature plant-resistance in 4 potato cultivars against aphid-inoculated potato-virus Yo and Yn in 4 potato cultivars. Potato Res 34:205–210

    Article  Google Scholar 

  • Gibson RW, Cayley GR (1984) Improved control of potato virus-Y by mineral-oil plus the pyrethroid cypermethrin applied electrostatically. Crop Prot 3:469–478

    Article  CAS  Google Scholar 

  • Gibson RW, Rice AD (1986) The combined use of mineral-oils and Pyrethroids to control plant-viruses transmitted nonpersistently and semi-persistently by Myzus persicae. Ann Appl Biol 109:465–472

    Article  CAS  Google Scholar 

  • Gibson RW, Rice AD, Sawicki RM (1982) Effect of the pyrethroid deltamethrin on the acquisition and inoculation of viruses by Myzus persicae. Ann Appl Biol 100:49–54

    Article  CAS  Google Scholar 

  • Gibson RW, Pickett JA, Dawson GW, Rice AD, Stribley MF (1984) Effects of aphid alarm pheromone derivatives and related compounds on non-persistent and semi-persistent plant virus transmission by Mysus persicae. Ann Appl Biol 104:203–209

    Article  CAS  Google Scholar 

  • Gildemacher PR, Schulte-Geldermann E, Borus D et al (2011) Seed potato quality improvement through positive selection by smallholder farmers in Kenya. Potato Res 54:253–266

    Article  Google Scholar 

  • Gray S, De Boer S, Lorenzen J et al (2010) Potato virus Y: an evolving concern for potato crops in the United States and Canada. Plant Dis 94:1384–1397

    Article  Google Scholar 

  • Gugerli P, Fries P (1983) Characterization of monoconal antibodies to potato virus Y and their use for virus detection. J Gen Virol 64:2471–2477

    Article  Google Scholar 

  • Gugerli P, Gehriger W (1980) Enzyme-linked immunosorbent assay (ELISA) for the detection of potato leafroll virus and potato virus Y in potato tubers after artificial break of dormancy. Potato Res 23:353–359

    Article  Google Scholar 

  • Hall TD (1993) Seed potato certification in the UK. In: Council BCP (ed) Proceedings of the plant health and the Single European Market: British Crop Protection Council, pp 77–82

    Google Scholar 

  • Hansen LM, Nielsen SL (2012) Efficacy of mineral oil combined with insecticides for the control of aphid virus vectors to reduce potato virus Y infections in seed potatoes (Solanum tuberosum). Acta Agric Scand B Soil Plant Sci 62:132–137

    CAS  Google Scholar 

  • Heimbach U, Eggers C, Thieme T (2004) Effect of mulch on aphid populations and virus transmissions in some arable crops. In: Simon JC, Dedryver CA, Rispe C, Hulle M (eds) Proceedings of the Aphids in a new millennium. 2001 Rennes, France, pp 307–312

    Google Scholar 

  • Helson VA, Minshall W (1951) Effects of petroleum oils on the carbon dioxide output in respiration of parsnip and mustard. Plant Physiol 31:5–11

    Article  Google Scholar 

  • Hesler LS, Plapp FW (1986) Uses of oils in insect control. Southwest Entomol 11:1–8

    Google Scholar 

  • Hirpa A, Meuwissen MPM, Tesfaye A et al (2010) Analysis of seed potato systems in Ethiopia. Am J Potato Res 87:537–552

    Article  Google Scholar 

  • Irag (2008) Guidelines for preventing and managing insecticide resistance in aphids on potatoes. In: Council P (ed) Oxford, 4

    Google Scholar 

  • Irag (2014) Guidelines for preventing and managing insecticide resistance in aphids on potatoes. In: Board AaHD (ed) 8

    Google Scholar 

  • Jeffries CJ (1986) The Scottish seed potato classification scheme and the production of nucleus stocks using micropropagation. In: Council BCP (ed) Proceedings of the symposium on healthy planting material, British Crop Protection Council, 239–247

    Google Scholar 

  • Jones DC, Woodford JT, Main SC, Pallett D, Barker H (1996) The role of volunteer potatoes in the spread of potato virus Y-N in ware crops of cv. record. Ann Appl Biol 129:471–478

    Article  Google Scholar 

  • Kachroo P, Shanklin J, Shah J, Whittle EJ, Klessig DF (2001) A fatty acid desaturase modulates the activation of defense signaling pathways in plants. Proc Natl Acad Sci U S A 98:9448–9453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaliciak A, Syller J (2009) New hosts of potato virus Y (PVY) among common wild plants in Europe. Eur J Plant Pathol 124:707–713

    Article  Google Scholar 

  • Karasev AV, Gray SM (2013) Continuous and emerging challenges of potato virus Y in potato. Annu Rev Phytopathol 51(51):571–586

    Article  CAS  PubMed  Google Scholar 

  • Kazinczi G, Horvath J, Takacs AP, Gaborjanyi R, Beres I (2004) Experimental and natural weed host-virus relations. Commun Agric Appl Biol Sci 69:53–60

    CAS  PubMed  Google Scholar 

  • Kerlan C, Robert Y, Perennec P, Guillery E (1987) Survey of the level of infection by PVYo and control methods developed in France for potato seed production. Potato Res 30:651–667

    Article  Google Scholar 

  • Kessmann H, Staub T, Hofmann C, et al (1994) Induction of systemic acquired disease resistance in plants by chemicals. In: Cook RJ, (ed) Annual Review of Phytopathology. Annual Reviews Inc. {a}, P.O. Box 10139, 4139 El Camino Way, Palo Alto, California 94306, USA, 439–59. (Annual Review of Phytopathology; vol. 32.)

    Google Scholar 

  • Kirchner SM, Hiltunen LH, Santala J et al (2014) Comparison of straw mulch, insecticides, mineral oil, and birch extract for control of transmission of potato virus Y in seed potato crops. Potato Res 57:59–75

    Article  CAS  Google Scholar 

  • Kislow CJ, Edwards LJ (1972) Repellent odours in aphids. Nature 235:108–109

    Article  Google Scholar 

  • Klueken AM, Hau B, Ulber B, Poehling HM (2009) Forecasting migration of cereal aphids (Hemiptera: Aphididae) in autumn and spring. J Appl Entomol 133:328–344

    Article  Google Scholar 

  • Le Romancer M, Kerlan C (1991) Superficial ringspot necrosis of potato tubers, a recent disease caused by potato virus Y. Agronomie 11:889–900

    Article  Google Scholar 

  • Lin K, Bushnell W, Szabo L, Smith A (1996) Isolation and expression of a host response gene family encoding thaumatinlike proteins in incompatible oat-stem rust fungus interactions. Mol Plant-Microbe Interact 9:511–522

    Article  CAS  PubMed  Google Scholar 

  • Lin FJ, Bosquee E, Liu YJ, Chen JL, Liu Y, Francis F (2016) Impact of aphid alarm pheromone release on virus transmission efficiency: when pest control strategy could induce higher virus dispersion. J Virol Methods 235:34–40

    Article  CAS  PubMed  Google Scholar 

  • Lindner K, Trautwein F, Kellermann A, Bauch G (2015) Potato virus Y (PVY) in seed potato certification. J Plant Dis Protect 122:109–119

    Article  Google Scholar 

  • Loebenstein G, Deutsch M, Alper M (1964) Preventing aphid-spread cucumber mosaic virus with oils. Phytopathology 54:960

    Google Scholar 

  • Lutman PJ (1977) Investigations into some aspects of the biology of potatoes as weeds. Weed Res 17:123–132

    Article  Google Scholar 

  • Mackenzie TDB, Fageria MS, Nie XZ, Singh M (2014) Effects of crop management practices on current-season spread of potato virus Y. Plant Dis 98:213–222

    Article  Google Scholar 

  • Mackenzie TDB, Nie X, Singh M (2016) Crop management practices and reduction of on-farm spread of potato virus Y: a 5-Year study in commercial potato fields in New Brunswick., Canada. Am J Potato Res 93:552–563

    Article  Google Scholar 

  • Malloch G, Foster S, Williamson M (2016) Monitoring pyrethroid resistance (kdr) and genetic diversity in UK populations of the grain aphid, Sitobion avenae during 2015. In: Council P (ed) Kenilworth, 26

    Google Scholar 

  • Margaritopoulos JT, Tsamandani K, Kanavaki OM, Katis NI, Tsitsipis JA (2010) Efficacy of pymetrozine against Myzus persicae and in reducing potato virus Y transmission on tobacco plants. J Appl Entomol 134:323–332

    Article  CAS  Google Scholar 

  • Martin-Lopez B, Varela I, Marnotes S, Cabaleiro C (2006) Use of oils combined with low doses of insecticide for the control of Myzus persicae and PVY epidemics. Pest Manag Sci 62:372–378

    Article  CAS  PubMed  Google Scholar 

  • Martoub M (2010) Impact global de l’huile minerale blanche sur le pathosysteme plante - puceron-virus: Universite de Picardie Jule Verne PhD thesis

    Google Scholar 

  • Maunder HB, (2005) The history of seed potato certification in New Zealand 1927–2000. Wellington, New-Zealand: Vegfed, the New Zealand Vegetable and Potato Growers’ Federation

    Google Scholar 

  • Milosevic D (1996) Efficacy of oils and insecticides in potato plant protection against infection by potato virus Y and leaf roll virus (PV and PLRV). Zaštita Bilja 47:333–342

    Google Scholar 

  • Morita M, Ueda T, Yoneda T, Koyanagi T, Haga T (2007) Flonicamid, a novel insecticide with a rapid inhibitory effect on aphid feeding. Pest Manag Sci 63:969–973

    Article  CAS  PubMed  Google Scholar 

  • Nakayama M, Matsuura K, Okuno T (1996) Production of salicylic acid in tobacco and cowpea plants by a systemic fungicide ferimzone and induction of resistance to virus infection. J Pestic Sci 21:69–72

    Article  CAS  Google Scholar 

  • Narayandas GK, Alyokhin AV (2006) Interplant movement of potato aphid (Homoptera : aphididae) in response to environmental stimuli. Environ Entomol 35:733–739

    Article  Google Scholar 

  • Nault LR, Edwards JL, Styer WE (1973) Aphid alarm pheromones: secretion and reception. Environ Entomol 2:101–105

    Article  CAS  Google Scholar 

  • Naylor M, Murphy AM, Berry JO, Carr JP (1998) Salicylic acid can induce resistance to plant virus movement. Mol Plant-Microbe Interact 11:860–868

    Article  CAS  Google Scholar 

  • Nivap (2016) Clonal selection – Netherlands. In: Nivap, ed. (2016.)

    Google Scholar 

  • Perring TM, Gruenhagen NM, Farrar CA (1999) Management of plant viral diseases through chemical control of insect vectors. Annu Rev Entomol 44:457–481

    Article  CAS  PubMed  Google Scholar 

  • Peters D, Lebbink G (1973) Effect of oil on transmission of pea enation mosaic-virus during short inoculation probes. Entomol Exp Appl 16:185–190

    Article  Google Scholar 

  • Petrov N, Andonova R (2012) Bion and exin as sar elicitors against potato virus Y infection in tomato. Plant Stud 2:46–49

    Google Scholar 

  • Pickett JA, Wadhams LJ, Woodcock CM (1992) The chemical ecology of aphids. Annu Rev Entomol 37:67–90

    Article  CAS  Google Scholar 

  • Powell G (1992) The effect of mineral-oil on stylet activities and potato virus-Y tramsmission by aphids. Entomol Exp Appl 63:237–242

    Article  Google Scholar 

  • Ragsdale DW, Landis DA, Brodeur J, Heimpel GE, Desneux N, (2011) Ecology and management of the soybean aphid in North America. In: Berenbaum MR, Carde RT, Robinson GE, (eds) Annual Review of Entomology, Vol 56. Annual Reviews, 4139 El Camino Way, Po Box 10139, Palo Alto, Ca 94303-0897 USA, 375–399. (Annual Review of Entomology; vol. 56.)

    Google Scholar 

  • Rakotonindraina T, Corbière R, Chatot C, et al. (2011) Analysis of volunteer density under the influence of cropping practices: a contribution to the modelling of primary inoculum of Phytophthora infestans in potato crops. Proceedings of the Thirteenth EuroBlight workshop. St. Petersburg: PPO-Special Report, 67–74

    Google Scholar 

  • Rice AD, Gibson RW, Stirbley MF (1983) Effects of deltamethin on walking flight and potato virus Y-transmission by pyrethroid-resistant Myzus persicae. Ann Appl Biol 102:224–236

    Article  Google Scholar 

  • Robert Y, Woodford JT, Ducray-Bourdin DG (2000) Some epidemiological approaches to the control of aphid-borne virus diseases in seed potato crops in northern Europe. Virus Res 71:33–47

    Article  CAS  PubMed  Google Scholar 

  • Rolot J-L (2005) Analyse des facteurs régulant la dissémination du virus Y de la pomme de terre (PVY) en vue de stratégies de lutte raisonnées. Gembloux: Faculté des Sciences agronomiques de Gembloux, PhD thesis

    Google Scholar 

  • Rolot J-L, Seutin H, Georges G, Deveux L (2006) Evaluation de l’efficacité du nouvel insecticide Plenum pour le contrôle de la dissémination des infections à virus Y dans une parcelle de plants

    Google Scholar 

  • Rousselle P, Robert Y, Crosnier JC (1996) La pomme de terre. INRA, Paris

    Google Scholar 

  • Saucke H, Doring TF (2004) Potato virus Y reduction by straw mulch in organic potatoes. Ann Appl Biol 144:347–355

    Article  Google Scholar 

  • Schramm S, Frost K, Charkowski A, Gray S, Crockford A, Groves RL (2011) Management of potato virus Y (PVY) in Wisconsin seed potato production. University of Wisconsin. Extension (A3951),Madison 8

    Google Scholar 

  • Schulte-Geldermann E, Gildemacher PR, Struik PC (2012) Improving seed health and seed performance by positive selection in three kenyan potato varieties. Am J Potato Res 89:429–437

    Article  Google Scholar 

  • Shepard JF, Claflin LE (1975) Critical analyses of the principles of seed potato certification. Annu Rev Phytopathol 13:271–293

    Article  Google Scholar 

  • Sigvald R (1984) The relative efficiency of some aphid species as vectors of potato virus Yo (PVYo). Potato Res 27:285–290

    Article  Google Scholar 

  • Sigvald R (1985) Mature-plant resistance of potato plants against potato-virus Yo (PVYo). Potato Res 28:135–143

    Article  Google Scholar 

  • Simons JN (1957) Effect of insecticides and physical barriers on field spread of pepper veinbanding mosaic virus. Phytopathology 47:139–145

    Google Scholar 

  • Simons J, Mclean D, Kinsey M (1977) Effects of mineral oil on probing behavior and transmission of stylet-borne viruses by Myzus persicae. J Econ Entomol 70:6

    Google Scholar 

  • Slater R, Paul VL, Andrews M, Garbay M, Camblin P (2012) Identifying the presence of neonicotinoidresistant peach-potato aphid (Myzus persicae) in the peach-growing regions of southern France and northern Spain. Pest Manag Sci 68:634–638

    Article  CAS  PubMed  Google Scholar 

  • Steinger T, Gilliand H, Hebeisen T (2014) Epidemiological analysis of risk factors for the spread of potato viruses in Switzerland. Ann Appl Biol 164:200–207

    Article  Google Scholar 

  • Su JW, Zhu SR, Zhang ZN, Ge F (2006) Effect of synthetic aphid alarm pheromone (E)-beta-farnesene on development and reproduction of Aphis gossypii (Homoptera : Aphididae). J Econ Entomol 99:1636–1640

    Article  CAS  PubMed  Google Scholar 

  • Tan BL, Sarafis V, Beattie GC, White R, Darley EM, Spooner-Hart R (2005) Localization and movement of mineral oil in plants by fluorescence and confocal microscopy. J Exp Bot 56:2755–2763

    Article  CAS  PubMed  Google Scholar 

  • Thomas-Sharma S, Abdurahman A, Ali S et al (2016) Seed degeneration in potato: the need for an integrated seed health strategy to mitigate the problem in developing countries. Plant Pathol 65:3–16

    Article  Google Scholar 

  • Unece (2014) Virus tolerances, proposals by the United States. In: Unece (ed) Proceedings of the meeting of the extended bureau of the specialized section on standardization of seed potatoes, Melbourne, UNECE, 5

    Google Scholar 

  • Unece (2015) United Nations international standard for certification and marketing of seed potatoes. In: Unece (ed) Geneva, Switzerland, 2

    Google Scholar 

  • Van Toor RF, Drayton GM, Lister RA, Teulon DJ (2009) Targeted insecticide regimes perform as well as a calendar regime for control of aphids that vector viruses in seed potatoes in New Zealand. Crop Prot 28:599–607

    Article  CAS  Google Scholar 

  • Vasyukova NI, Ozeretskovskaya OL (2007) Induced plant resistance and salicylic acid: a review. Appl Biochem Microbiol 43:367–373

    Article  CAS  Google Scholar 

  • Walsh D (2000) Horticultural spray oils: useful year-round tactic for IPM systems. Agrichem Environ News 165:5–7

    Google Scholar 

  • Walters KFA, Dixon AFG (1984) The effect of temperature and wind on the flight activity of cereal aphids. Ann Appl Biol 104:17–26

    Article  Google Scholar 

  • Wedding RT, Riehl LA, Rhaods WA (1952) Effect of petroleum oil spray on photosynthesis and respiration in citrus leaves. Plant Physiol 60:3–12

    Google Scholar 

  • Whitworth JL, Hamm PB, Mcintosh CS (2010) Effect of potato virus Y on yield of a clonal selection of russet norkotah. Am J Potato Res 87:310–314

    Article  Google Scholar 

  • Wróbel S (2009) The retention of PVY in the stylet of Myzus persicae Sulz. After the application of mineral oil on potato plants. Plant Breed Seed Sci 60:3–12

    Google Scholar 

  • Wrobel S (2012) Comparison of mineral oil and rapeseed oil used for the protection of seed potatoes against pvy and pvm infections. Potato Res 55:83–96

    Article  CAS  Google Scholar 

  • Zhang Z, Tu M, Du Y et al (1997) Behavioral and electrophysiological response of Myzus persicae to stimulus of (E)- beta -farnesene. Acta Entomol Sin 40:40–44

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brice Dupuis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Crown Copyright

About this chapter

Cite this chapter

Dupuis, B. et al. (2017). Potato virus Y: Control, Management and Seed Certification Programmes. In: Lacomme, C., Glais, L., Bellstedt, D., Dupuis, B., Karasev, A., Jacquot, E. (eds) Potato virus Y: biodiversity, pathogenicity, epidemiology and management. Springer, Cham. https://doi.org/10.1007/978-3-319-58860-5_7

Download citation

Publish with us

Policies and ethics