Skip to main content

Metamaterial-Based Antennas and a Metasurface-Based Terahertz Frequency Splitter

  • Chapter
  • First Online:
The World of Applied Electromagnetics

Abstract

Metamaterials and metasurfaces have become important research topics in the electromagnetics community because of their wide scopes. A double metamaterial-based line antenna radiates a linearly polarized broadside beam across a wide frequency range, and an open metamaterial-based loop antenna radiates a dual-band counter circularly polarized wave. A metamaterial-based spiral antenna shows a different maximum gain in the frequency response of the left-handed and right-handed circularly polarized waves.

An efficient implicit finite-difference time-domain method formulated in cylindrical coordinates and based on a locally one-dimensional scheme is devised to analyze the performance of a metasurface-based terahertz frequency splitter. The frequency splitting behavior at 1.0 and 1.5 THz is demonstrated with a radially polarized wave as an incident wave. The computation time for the analysis is reduced to approximately one-half of that for the explicit FDTD method while maintaining comparable accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. N. Engheta, R.W. Ziolkowski (Eds.), Metamaterials (Wiley, Hoboken, NJ, 2006)

    Google Scholar 

  2. C. Caloz, T. Itoh, Electromagnetic Metamaterials (Wiley, Hoboken, NJ 2006)

    Google Scholar 

  3. A. Sanada, M. Kimura, I. Awai, H. Kubo, C. Caloz, T. Itoh, A planar zeroth-order resonator antenna using left-handed transmission line, in Proceedings of the European Microwave Conference, Amsterdam, Oct 2004, pp. 1341–1344

    Google Scholar 

  4. A. Lai, K.M.K.H. Leong, T. Itoh, Infinite wavelength resonant antennas with monopolar radiation pattern based on periodic structures. IEEE Trans. Antennas Propag. 55(3), 868–876 (2007)

    Article  Google Scholar 

  5. D. Singh, A. Kumar, S. Meena, V. Agarwala, Analysis of frequency selective surfaces for radar absorbing materials. Prog. Electromagn. Res. B 38, 297–314 (2012)

    Article  Google Scholar 

  6. F. Yang, K. Yanghyo, Y. Ang, J. Huang, A. Elsherbeni, A single layer reflectarray antenna for C/X/Ka bands applications, in Proceedings of International Conference on Electromagnetics in Advanced Applications (ICEAA), Torino, Sept 2007, pp. 1058–1061

    Google Scholar 

  7. K. Watanabe, Spectral-domain analysis of electromagnetic scattering by periodically corrugated surfaces with local deformation, in Proceedings of the Asia-Pacific Microwave Conference, Seoul, 2013, pp. 301–303

    Google Scholar 

  8. A. Feresidis, G. Goussetis, S. Wang, J. Vardaxoglou, Artificial magnetic conductor surfaces and their application to low-profile high gain planar antennas. IEEE Trans. Antennas Propag. 53(1), 209–215 (2005)

    Article  Google Scholar 

  9. H. Nakano, S. Mitsui, J. Yamauchi, Tilted-beam high gain antenna system composed of a patch antenna and periodically arrayed loops. IEEE Trans. Antennas Propag. 62(6), 2917–2925 (2014)

    Article  Google Scholar 

  10. H. Nakano, Low-profile Natural and Metamaterial Antennas (Wiley-IEEE Press, Hoboken, NJ, 2016)

    Google Scholar 

  11. H. Nakano, Line, loop, and spiral antennas composed of metamaterial arms. IEICE Trans. Commun. J99-B(8), 563–571 (2016)

    Google Scholar 

  12. H. Nakano, K. Sakata, J. Yamauchi, Wide-band broadside radiation from a double metaline system, in Proceedings of the IEEE Antennas and Propagation Society International Symposium, Puerto Rico, 2016

    Google Scholar 

  13. H. Nakano, K. Yoshida, J. Yamauchi, Radiation characteristics of a metaloop antenna. IEEE Antennas Wirel. Propag. Lett. 12, 861–863 (2013)

    Article  Google Scholar 

  14. H. Nakano, J. Miyake, T. Sakurada, J. Yamauchi, Dual-band counter circularly polarized radiation from a single-arm metamaterial-based spiral antenna. IEEE Trans. Antennas Propag. 61(6), 2938–2947 (2013)

    Article  Google Scholar 

  15. H. Nakano, T. Shimizu, J. Yamauchi, Metaspiral antenna system, in Proceedings of the International Symposium on Antennas and Propagation, Tasmania, Nov 2015, pp. 1–3

    Google Scholar 

  16. G.V. Trentini, Partially reflecting sheet arrays. IRE Trans. Antennas Propag. 4, 666–671 (1956)

    Google Scholar 

  17. J. Shibayama, M. Itoh, J. Yamauchi, H. Nakano, Analysis of a metal disc-type terahertz surface wave splitter using the cylindrical LOD-FDTD method, in Proceedings of the 16th International Conference Numerical Simulation Optoelectronic Devices, Sydney, 2016, ThA3

    Google Scholar 

  18. J. Shibayama, M. Muraki, J. Yamauchi, H. Nakano, Efficient implicit FDTD algorithm based on locally one-dimensional scheme. Electron. Lett. 41(19), 1046–1047 (2005)

    Article  Google Scholar 

  19. J.W. Thomas, Numerical Partial Differential Equations: Finite Difference Methods (Springer, Berlin, 1995)

    Book  MATH  Google Scholar 

  20. J. Shibayama, R. Ando, J. Yamauchi, H. Nakano, An LOD-FDTD method for the analysis of periodic structures at normal incidence. IEEE Antennas Wirel. Propag. Lett. 8, 890–893 (2009)

    Article  Google Scholar 

  21. W.C. Tay, E.L. Tan, Implementations of PMC and PEC boundary conditions for efficient fundamental ADI- and LOD-FDTD. J. Electromagn. Waves Appl. 24(4), 565–573 (2010)

    Google Scholar 

  22. J. Shibayama, J. Yamauchi, H. Nakano, Metal disc-type splitter with radially placed gratings for terahertz surface waves. Electron. Lett. 51(4), 352–353 (2015)

    Article  Google Scholar 

  23. R.A. Depine, A. Lakhtakia, A new condition to identify isotropic dielectric-magnetic materials displaying negative phase velocity. Microw. Opt. Technol. Lett. 41, 315–316 (2004)

    Article  Google Scholar 

  24. J. Shibayama, Y. Uchizono, S. Ozaki, J. Yamauchi, H. Nakano, Treatment of metal for the FDTD analysis of terahertz devices. Opt. Quant. Electron. 46(2), 345–356 (2014)

    Article  Google Scholar 

  25. E.L. Tan, Fundamental schemes for efficient unconditionally stable implicit finite-difference time-domain methods. IEEE Trans. Antennas Propag. 56(1), 170–177 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgment

We thank V. Shkawrytko for his assistance in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisamatsu Nakano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Nakano, H., Shibayama, J., Yamauchi, J. (2018). Metamaterial-Based Antennas and a Metasurface-Based Terahertz Frequency Splitter. In: Lakhtakia, A., Furse, C. (eds) The World of Applied Electromagnetics. Springer, Cham. https://doi.org/10.1007/978-3-319-58403-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58403-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58402-7

  • Online ISBN: 978-3-319-58403-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics