Skip to main content

One-Layer and Dual-Polarized Metamaterial Inspired Antenna Using Dodecagon Split Ring Resonator Mushroom and Metasurface for Terahertz Applications

  • Conference paper
  • First Online:
Advanced Computational Techniques for Renewable Energy Systems (IC-AIRES 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 591))

  • 550 Accesses

Abstract

We investigate in this work Terahertz metamaterial resonators which can provide a high gain and directivity. We demonstrate that a metamaterial behavior can be realized from the proposed terahertz metamaterial called metasurface structure, a linearly polarized wave is converted to circularly polarized waves. The proposed structure consists of 25 unit cells arranged in a 5 × 5 layout. Each unit cell present a Dodecagon Split Ring Resonator (D-SRR) and offert double circular polarisation in the right- and left-handed (RHCPs and LHCP). To enhance the antenna performances in terms of coefficient reflexion, directivity and gain an effective method based on metasurface cavity is presented. The metasurface increase the directivity and the gain to be 5.04 dB and 8.19 dB respectively and to enhance the bandwith to be 93%. Based on these results and good performance, proposed antenna may be a candidate for several applications such as the defence industry to medical, education, or communication areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nejati, A., Sadeghzadeh, R.A., Geran, F.: Effect of photonic crystal and frequency selective surface implementation on gain enhancement in the microstrip patch antenna at terahertz frequency. Phys. B 449, 113–120 (2014)

    Article  Google Scholar 

  2. Mendgudle, S.D., Chakraborty, S.A., Bhanushali, J.Y., Bhatia, M., Umbarkar, S.B.: Design and comparison of electromagnetically coupled patch antenna arrays at 30 GHz. In: Saeed, K., Chaki, N., Pati, B., Bakshi, S., Mohapatra, D.P. (eds.) Progress in Advanced Computing and Intelligent Engineering. AISC, vol. 564, pp. 619–628. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-6875-1_61

    Chapter  Google Scholar 

  3. Nasr eddine Temmara, M., Hocinib, A., Khedrouchec, D., Denidni, T.A.: Enhanced flexible terahertz microstrip antenna based on modified silicon-air photonic crystal. Int. J. Light Electron Opt. 217, 164897 (2020)

    Google Scholar 

  4. Liu, W., Chen, Z.N., Qing, X.: Metamaterial-based low-profile broadband aperture coupled grid-slotted patch antenna. IEEE Trans. Antennas Propag. 63, 3325–3329 (2015)

    Article  Google Scholar 

  5. Milias, C., et al.: Metamaterial-inspired antennas: a review of the state of the art and future design challenges. digital object identifier. https://doi.org/10.1109/ACCESS.2021

  6. Dai, G.¸ Xu, X., Deng, X.: Miniaturized semicircular disc patch antenna designed with sector-shaped metamaterials. In: Proceedings of ISAP 2020 (2020)

    Google Scholar 

  7. Rothwell, E.J., Ouedraogo, R.O.: Antenna miniaturization: definitions concepts and a review with emphasis on metamaterials. J. Electromagn. Waves Appl. 28(17), 2089–2123 (2014)

    Article  Google Scholar 

  8. Xu, X., Wei, J.: Miniaturisation design of patch antenna using a low-profile mushroom type meta-substrate tailored with high permittivity. IET Microw. Antennas Propag. 12(7), 1216–1221 (2018)

    Article  Google Scholar 

  9. Simon, S.K., Chakyar, S.P., Sebastian, A., Jose, J., Andrews, J., Joseph, V.P.: Broadside coupled split ring resonator as a sensitive tunable sensor for efficient detection of mechanical vibrations. Sens. Imaging 20(1), 1–11 (2019). https://doi.org/10.1007/s11220-019-0240-4

    Article  Google Scholar 

  10. Pendry, J.B., Holden, A.J., Robbins, D.J., Stewart, W.J.: Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999)

    Article  Google Scholar 

  11. Rajo-Iglesias, E., Quevedo-Teruel, O., NgMouKehn, M.: Multiband SRR loaded rectangular waveguide. IEEE Trans. Antennas Propag. 57(5), 1571–1575 (2009)

    Article  Google Scholar 

  12. Quevedo-Teruel, O., Rajo-Iglesias, E., NgMouKehn, M.: Numerical and experimental studies of split ring resonators loaded on the side walls of rectangular waveguides. Microw. Antennas Propag. 3(8), 1262–1270 (2009)

    Article  Google Scholar 

  13. Islam, M.T., Ashraf, F.B., Alam, T., Misran, N., Mat, K.B.: A compact ultrawideband antenna based on hexagonal split-ring resonator for pH sensor application. Antenna Technol. Microw. Sens. 18(9), 2959 (2018)

    Google Scholar 

  14. Saha, C., Siddiqui, J.Y.: Estimation of the resonance frequency of conventional & rotational circular split ring resonators. In: IEEE Applied Electromagnetics Conference (AEMC), Kolkata (2009)

    Google Scholar 

  15. Singh, A., Sharma, S.K.: Calculation of resonant frequency of Hexagonal split ring resonator using ANN. IJRET Int. J. Res. Eng. Technol. (2014)

    Google Scholar 

  16. da Silva, J.L., Chaves Fernandes, H.C., de Andrade, H.D.: Study of microstrip antenna behavior with metamaterial substrate of SRR type combined with TW. Int. J. Commun. (2016)

    Google Scholar 

  17. Younssi, M., Jaoujal, A., Yaccoub, M.D., El Moussaoui, A., Aknin, N.: Study of a microstrip antenna with and without superstrate for terahertz frequency. Int. J. Innov. Appl. Stud. 2(4), 369–371 (2013)

    Google Scholar 

  18. Li, C.H., Chiu, T.Y.: 340-GHz low-cost and high-gain on-chip higher order mode dielectric resonator antenna for THz applications. IEEE Trans. Terahertz Sci. Technol. 7(3), 284–294 (2017)

    Article  Google Scholar 

  19. Labidi, M., Choubani, F.: Performances enhancement of metamaterial loop antenna for terahertz applications. Opt. Mater. 82, 116–122 (2018)

    Article  Google Scholar 

  20. Efazat, S.S., Basiri, R., Jam, S.: Optimization based design of a wideband near zero refractive index metasurface for gain improvement of planar antennas in the terahertz band. Opt. Quant. Electron. 52, 520 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bendaoudi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bendaoudi, A., Benkhallouk, K., Berka, M., Mahdjoub, Z. (2023). One-Layer and Dual-Polarized Metamaterial Inspired Antenna Using Dodecagon Split Ring Resonator Mushroom and Metasurface for Terahertz Applications. In: Hatti, M. (eds) Advanced Computational Techniques for Renewable Energy Systems. IC-AIRES 2022. Lecture Notes in Networks and Systems, vol 591. Springer, Cham. https://doi.org/10.1007/978-3-031-21216-1_26

Download citation

Publish with us

Policies and ethics