Skip to main content

Structural, Physicochemical and Stereochemical Interpretation of QSAR Models Based on Simplex Representation of Molecular Structure

  • Chapter
  • First Online:
Advances in QSAR Modeling

Abstract

In this chapter we describe different structural, physicochemical and stereochemical approaches towards interpretation of QSAR models based on simplex representation of molecular structure (SiRMS). These techniques are feasible due to the flexible nature of SiRMS, which may encode not only structural and physicochemical features of molecules, but also stereochemical ones (to represent molecules with different types of chirality). The developed approaches to structural and physicochemical interpretation do not depend on used machine learning methods that makes it possible to easily interpret traditional “black box” models like Support Vector Machine and Random Forest. We demonstrated an applicability of the developed interpretation approaches in a number of case studies including classical Hammett and Free-Wilson analysis, as well as several data sets with various physical and biological end-points. A good correspondence of the interpretation results with classical Hammett and Free-Wilson approaches supports validity of the proposed approaches. The analysis of different data sets with different end-points showed three possible scenarios of QSAR models’ interpretation depending on the mechanisms of action for studied compounds that brings us to a conclusion that despite all models are interpretable, not all end-points are. The stereochemical interpretation was applied to the classical Cramer’s set of steroids and to the data set that includes compounds with mixed central and axial chirality. In both cases we demonstrated the substantial contribution of the chiral descriptors in 2.XD QSAR models and revealed certain stereochemical features, which have the biggest contributions to investigated properties. As SiRMS represents an attractive framework for developing predictive and interpretable models, we developed several open-source software tools to make it available for the community. They are discussed at the end of the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adenot, M., & Lahana, R. (2004). Blood-brain barrier permeation models: Discriminating between potential CNS and non-CNS drugs including P-glycoprotein substrates. Journal of Chemical Information and Computer Sciences, 44(1), 239–248. doi:10.1021/ci034205d.

    Article  CAS  Google Scholar 

  • Aires-de-Sousa, J., & Gasteiger, J. (2002). Prediction of enantiomeric selectivity in chromatography: Application of conformation-dependent and conformation-independent descriptors of molecular chirality. Journal of Molecular Graphics and Modelling, 20(5), 373–388. doi:10.1016/S1093-3263(01)00136-X.

  • Andrieux, A., et al. (1989). Amino acid sequences in fibrinogen mediating its interaction with its platelet receptor, GPIIbIIIa. Journal of Biological Chemistry, 264(16), 9258–9265.

    Google Scholar 

  • Avdeef, A. (2012). Absorption and drug development: Solubility, permeability, and charge state (2nd ed.). Hoboken, NJ: Wiley-Interscience.

    Book  Google Scholar 

  • Beechey, R. B. (1966). The uncoupling of respiratory-chain phosphorylation by 4,5,6,7-tetrachloro-2-trifluoromethylbenzimidazole. Biochemical Journal, 98(1), 284–289.

    Article  CAS  Google Scholar 

  • Besalú, E., Gironés, X., Amat, L., & Carbó-Dorca, R. (2002). Molecular quantum similarity and the fundamentals of QSAR. Accounts of Chemical Research, 35(5), 289–295. doi:10.1021/ar010048x.

    Article  Google Scholar 

  • Bikadi, Z., et al. (2011). Predicting P-glycoprotein-mediated drug transport based on support vector machine and three-dimensional crystal structure of P-glycoprotein. PLoS ONE, 6(10), e25815.

    Google Scholar 

  • Bringmann, G., & Rummey, C. (2003). 3D QSAR investigations on antimalarial naphthylisoquinoline alkaloids by comparative molecular similarity indices analysis (CoMSIA), based on different alignment approaches. Journal of Chemical Information and Computer Sciences, 43(1), 304–316. doi:10.1021/ci025570s.

    Article  CAS  Google Scholar 

  • Bukowska, B. (2006). Toxicity of 2,4-dichlorophenoxyacetic acid—Molecular mechanisms. Polish Journal of Environmental Studies, 15(3), 365–374.

    CAS  Google Scholar 

  • Carbonell, P., Carlsson, L., & Faulon, J.-L. (2013). Stereo signature molecular descriptor. Journal of Chemical Information and Modeling, 53(4), 887–897. doi:10.1021/ci300584r.

    Article  CAS  Google Scholar 

  • Casarett, L. J., & Klaassen, C. D. (2008). Casarett and Doull’s toxicology: The basic science of poisons (7th ed.). New York: McGraw-Hill Medical.

    Google Scholar 

  • Cherkasov, A., et al. (2014). QSAR modeling: Where have you been? Where are you going to? Journal of Medicinal Chemistry, 57(12), 4977–5010. doi:10.1021/jm4004285.

  • Čolović, M. B., Krstić, D. Z., Lazarević-Pašti, T. D., Bondžić, A. M., & Vasić, V. M. (2013). Acetylcholinesterase inhibitors: Pharmacology and toxicology. Current Neuropharmacology, 11(3), 315–335. doi:10.2174/1570159x11311030006.

    Article  Google Scholar 

  • Cramer, R. D., Patterson, D. E., & Bunce, J. D. (1988). Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. Journal of the American Chemical Society, 110(18), 5959–5967. doi:10.1021/ja00226a005.

    Article  CAS  Google Scholar 

  • cxcalc. 5.4 edn. Chemaxon, Budapest, Hungary.

    Google Scholar 

  • Davidson, B., Soodak, M., Strout, H. V., Neary, J. T., Nakamura, C., & Maloof, F. (1979) Thiourea and cyanamide as inhibitors of thyroid peroxidase: The role of iodide. Endocrinology, 104(4), 919–924. doi:10.1210/endo-104-4-919.

  • Dunn, J. F., Nisula, B. C., & Rodbard, D. (1981). Transport of steroid hormones: Binding of 21 endogenous steroids to both testosterone-binding globulin and corticosteroid-binding globulin in human plasma. The Journal of Clinical Endocrinology & Metabolism, 53(1), 58–68. doi:10.1210/jcem-53-1-58.

  • Egbertson, M. S., Chang, C. T. C., Duggan, M. E., Gould, R. J., Halczenko, W., Hartman, G. D., et al. (1994). Non-peptide fibrinogen receptor antagonists. 2. Optimization of a tyrosine template as a mimic for Arg-Gly-Asp. Journal of Medicinal Chemistry, 37(16), 2537–2551. doi:10.1021/jm00042a007.

    Article  CAS  Google Scholar 

  • Free, S. M., & Wilson, J. W. (1964). A mathematical contribution to structure-activity studies. Journal of Medicinal Chemistry, 7(4), 395–399. doi:10.1021/jm00334a001.

    Article  CAS  Google Scholar 

  • Fujita, T., & Winkler, D. A. (2016). Understanding the roles of the “Two QSARs”. Journal of Chemical Information and Modeling, 56(2), 269–274. doi:10.1021/acs.jcim.5b00229.

    Article  CAS  Google Scholar 

  • Gartner, T. K., & Bennett, J. S. (1985). The tetrapeptide analogue of the cell attachment site of fibronectin inhibits platelet aggregation and fibrinogen binding to activated platelets. Journal of Biological Chemistry, 260(22), 11891–11894.

    CAS  Google Scholar 

  • Gasteiger, J. (2016). Chemoinformatics: Achievements and challenges, a personal view. Molecules, 21(2), 151.

    Article  Google Scholar 

  • Gaulton, A., et al. (2012). ChEMBL: A large-scale bioactivity database for drug discovery. Nucleic Acids Research, 40(D1), D1100–D1107. doi:10.1093/nar/gkr777

  • Ghose, A. K., Herbertz, T., Hudkins, R. L., Dorsey, B. D., & Mallamo, J. P. (2012). Knowledge-based, central nervous system (CNS) lead selection and lead optimization for CNS drug discovery. ACS Chemical Neuroscience, 3(1), 50–68. doi:10.1021/cn200100h.

    Article  CAS  Google Scholar 

  • Golbraikh, A., Bonchev, D., & Tropsha, A. (2001). Novel chirality descriptors derived from molecular topology. Journal of Chemical Information and Computer Sciences, 41(1), 147–158. doi:10.1021/ci000082a.

    Article  CAS  Google Scholar 

  • Grundlingh, J., Dargan, P., El-Zanfaly, M., & Wood, D. (2011). 2,4-Dinitrophenol (DNP): A weight loss agent with significant acute toxicity and risk of death. Journal of Medical Toxicology, 7(3), 205–212. doi:10.1007/s13181-011-0162-6.

    Article  CAS  Google Scholar 

  • Guha, R. (2008). On the interpretation and interpretability of quantitative structure–activity relationship models. Journal of Computer-Aided Molecular Design, 22(12), 857–871. doi:10.1007/s10822-008-9240-5.

    Article  CAS  Google Scholar 

  • Hammett, L. P. (1937). The effect of structure upon the reactions of organic compounds. Benzene derivatives. Journal of the American Chemical Society, 59(1), 96–103. doi:10.1021/ja01280a022.

    Article  CAS  Google Scholar 

  • Hartman, G. D., et al. (1992). Non-peptide fibrinogen receptor antagonists. 1. Discovery and design of exosite inhibitors. Journal of Medicinal Chemistry, 35(24), 4640–4642. doi:10.1021/jm00102a020.

  • Hitchcock, S. A. (2012). Structural modifications that alter the P-glycoprotein efflux properties of compounds. Journal of Medicinal Chemistry, 55(11), 4877–4895. doi:10.1021/jm201136z.

    Article  CAS  Google Scholar 

  • Hitchcock, S. A., & Pennington, L. D. (2006). Structure—Brain exposure relationships. Journal of Medicinal Chemistry, 49(26), 7559–7583. doi:10.1021/jm060642i.

    Article  CAS  Google Scholar 

  • http://www2.epa.gov/chemical-research/toxicity-estimation-software-tool-test.

  • Joback, K. G., & Reid, R. C. (1987). Estimation of pure-component properties from group-contributions. Chemical Engineering Communications, 57(1–6), 233–243. doi:10.1080/00986448708960487.

    Article  CAS  Google Scholar 

  • Kansy, M., Senner, F., & Gubernator, K. (1998). Physicochemical high throughput screening: Parallel artificial membrane permeation assay in the description of passive absorption processes. Journal of Medicinal Chemistry, 41(7), 1007–1010. doi:10.1021/jm970530e.

    Article  CAS  Google Scholar 

  • Kazius, J., McGuire, R., & Bursi, R. (2005). Derivation and validation of toxicophores for mutagenicity prediction. Journal of Medicinal Chemistry, 48(1), 312–320. doi:10.1021/jm040835a.

    Article  CAS  Google Scholar 

  • Kuz’min, V. E., Artemenko, A. G., & Muratov, E. N. (2008), Hierarchical QSAR technology based on the simplex representation of molecular structure. The Journal of Computer-Aided Molecular Design, 22(6–7), 403–421. doi:10.1007/s10822-008-9179-6.

  • Kuz’min, V. E., et al. (2005). Hierarchic system of QSAR models (1D-4D) on the base of simplex representation of molecular structure. Journal of Molecular Modelling, 11, 457–467.

    Google Scholar 

  • Leach, A. G., et al. (2006). Matched molecular pairs as a guide in the optimization of pharmaceutical properties; a study of aqueous solubility, plasma protein binding and oral exposure. Journal of Medicinal Chemistry, 49(23), 6672–6682. doi:10.1021/jm0605233.

  • Lindberg, B., Svensson, S., Malmquist, P. Å., Basilier, E., Gelius, U., & Siegbahn, K. (1976). Correlation of ESCA shifts and Hammett substituent constants in substituted benzene derivatives. Chemical Physics Letters, 40(2), 175–179. doi:10.1016/0009-2614(76)85053-1.

    Article  CAS  Google Scholar 

  • Littin, K. E., O’Connor, C. E., & Eason, C. T. (2000). Comparative effects of brodifacoum on rats and possums. New Zealand Plant Protection, 53, 310–315.

    CAS  Google Scholar 

  • Liu, S.-S., Yin, C.-S., & Wang, L.-S. (2002). Combined MEDV-GA-MLR method for QSAR of three panels of steroids, dipeptides, and COX-2 inhibitors. Journal of Chemical Information and Computer Sciences, 42(3), 749–756. doi:10.1021/ci010245a.

    Article  CAS  Google Scholar 

  • Lobato, M., Amat, L., Besalú, E., & Carbó-Dorca, R. (1997). Structure-activity relationships of a steroid family using quantum similarity measures and topological quantum similarity indices. Quantitative Structure-Activity Relationships, 16(6), 465–472. doi:10.1002/qsar.19970160605.

    Article  CAS  Google Scholar 

  • Lukovits, I., & Linert, W. (2001). A topological account of chirality. Journal of Chemical Information and Computer Sciences, 41(6), 1517–1520. doi:10.1021/ci0100346.

    Article  CAS  Google Scholar 

  • Ma, X.-L., Chen, C., & Yang, J. (2005). Predictive model of blood-brain barrier penetration of organic compounds. Acta Pharmacologica Sinica, 26(4), 500–512.

    Article  CAS  Google Scholar 

  • Marrero-Morejón, J., & Pardillo-Fontdevila, E. (1999). Estimation of pure compound properties using group-interaction contributions. AIChE Journal, 45(3), 615–621. doi:10.1002/aic.690450318.

    Article  Google Scholar 

  • Marrero-Ponce, Y., Castillo-Garit, J. A., Castro, E. A., Torrens, F., & Rotondo, R. (2008). 3D-chiral (2.5) atom-based TOMOCOMD-CARDD descriptors: Theory and QSAR applications to central chirality codification. Journal of Mathematical Chemistry, 44(3), 755–786. doi:10.1007/s10910-008-9386-3.

    Article  CAS  Google Scholar 

  • Medina, M. A. (1963). The in vivo effects of hydrazines and vitamin B6 on the metabolism of gamma-aminobutyric acid. Journal of Pharmacology and Experimental Therapeutics, 140(2), 133–137.

    CAS  Google Scholar 

  • O’Brien, R. D., Kirkpatrick, M., & Miller, P. S. (1964). Poisoning of the rat by hydrazine and alkylhydrazines. Toxicology and Applied Pharmacology, 6(4), 371–377. doi:10.1016/S0041-008X(64)80001-6.

    Article  Google Scholar 

  • Parretti, M. F., Kroemer, R. T., Rothman, J. H., & Richards, W. G. (1997). Alignment of molecules by the Monte Carlo optimization of molecular similarity indices. Journal of Computational Chemistry, 18(11), 1344–1353. doi:10.1002/(sici)1096-987x(199708)18:11<1344:aid-jcc2>3.0.co;2-l.

    Article  CAS  Google Scholar 

  • Polishchuk, P., et al. (2016). Structural and physico-chemical interpretation (SPCI) of QSAR models and its comparison with matched molecular pair analysis. Journal of Chemical Information and Modeling. doi:10.1021/acs.jcim.6b00371.

  • Polishchuk, P. G., Kuz’min, V. E., Artemenko, A. G., & Muratov, E. N. (2013). Universal approach for structural interpretation of QSAR/QSPR models. Molecular Informatics, 32(9–10), 843–853. doi:10.1002/minf.201300029.

    Article  CAS  Google Scholar 

  • Polishchuk, P. G., et al. (2015). Design, virtual screening, and synthesis of antagonists of αIIbβ3 as antiplatelet agents. Journal of Medicinal Chemistry, 58(19), 7681–7694. doi:10.1021/acs.jmedchem.5b00865.

  • Proudfoot, A., Bradberry, S., & Vale, J. A. (2006). Sodium fluoroacetate poisoning. Toxicological Reviews, 25(4), 213–219. doi:10.2165/00139709-200625040-00002.

    Article  CAS  Google Scholar 

  • Reid, R. C., Prausnitz, J. M., & Poling, B. E. (1987). The properties of gases and liquids (4th ed.). New York: McGraw-Hill.

    Google Scholar 

  • Riniker, S., & Landrum, G. (2013). Similarity maps—A visualization strategy for molecular fingerprints and machine-learning methods. Journal of Cheminformatics, 5(1), 43.

    Article  CAS  Google Scholar 

  • Scarborough, R. M., et al. (1993). Design of potent and specific integrin antagonists. Peptide antagonists with high specificity for glycoprotein IIb-IIIa. Journal of Biological Chemistry, 268(2), 1066–1073

    Google Scholar 

  • Silverman, B. D., & Platt, D. E. (1996). Comparative molecular moment analysis (CoMMA): 3D-QSAR without molecular superposition. Journal of Medicinal Chemistry, 39(11), 2129–2140. doi:10.1021/jm950589q.

    Article  CAS  Google Scholar 

  • Springer, T. A., Zhu, J., & Xiao, T. (2008). Structural basis for distinctive recognition of fibrinogen γC peptide by the platelet integrin αIIbβ3. The Journal of Cell Biology., 182(4), 791–800. doi:10.1083/jcb.200801146.

    Article  CAS  Google Scholar 

  • Sushko, Y., Novotarskyi, S., Korner, R., Vogt, J., Abdelaziz, A., & Tetko, I. (2014). Prediction-driven matched molecular pairs to interpret QSARs and aid the molecular optimization process. Journal of Cheminformatics, 6(1), 48.

    Article  Google Scholar 

  • Takahata, Y., & Chong, D. P. (2005). Estimation of Hammett sigma constants of substituted benzenes through accurate density-functional calculation of core-electron binding energy shifts. International Journal of Quantum Chemistry, 103(5), 509–515. doi:10.1002/qua.20533.

    Article  CAS  Google Scholar 

  • Terada, H. (1990). Uncouplers of oxidative phosphorylation. Environmental Health Perspectives, 87, 213–218.

    Article  CAS  Google Scholar 

  • Thermodynamics Research Center, NIST Boulder Laboratories, M. Frenkel director (2013). Thermodynamics source database. In P. J. Linstrom & W. G. Mallard (Eds.), NIST chemistry WebBook, NIST standard reference database number 69. National Institute of Standards and Technology, Gaithersburg MD, 20899.

    Google Scholar 

  • Valchev, I., Binev, R., Yordanova, V., & Nikolov, Y. (2008). Anticoagulant rodenticide intoxication in animals—A review. Turkish Journal of Veterinary and Animal, 32(4), 237–243.

    CAS  Google Scholar 

  • Wager, T. T., et al. (2010a). Defining desirable central nervous system drug space through the alignment of molecular properties, in vitro ADME, and safety attributes. ACS Chemical Neuroscience, 1(6), 420–434. doi:10.1021/cn100007x.

  • Wager, T. T., Hou, X., Verhoest, P. R., & Villalobos, A. (2010b). Moving beyond rules: The development of a central nervous system multiparameter optimization (CNS MPO) approach to enable alignment of drug like properties. ACS Chemical Neuroscience, 1(6), 435–449. doi:10.1021/cn100008c.

    Article  CAS  Google Scholar 

  • Wassermann, A. M., Haebel, P., Weskamp, N., & Bajorath, J. (2012). SAR matrices: Automated extraction of information-rich SAR tables from large compound data sets. Journal of Chemical Information and Modeling, 52(7), 1769–1776. doi:10.1021/ci300206e.

    Article  CAS  Google Scholar 

  • Weininger, D., Weininger, A., & Weininger, J. L. (1989). SMILES. 2. Algorithm for generation of unique SMILES notation. Journal of Chemical Information and Computer Sciences, 29(2), 97–101. doi:10.1021/ci00062a008.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. Polishchuk or V. Kuz’min .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Polishchuk, P. et al. (2017). Structural, Physicochemical and Stereochemical Interpretation of QSAR Models Based on Simplex Representation of Molecular Structure. In: Roy, K. (eds) Advances in QSAR Modeling. Challenges and Advances in Computational Chemistry and Physics, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-319-56850-8_4

Download citation

Publish with us

Policies and ethics