Skip to main content

Laser Keyhole Welding: The Vapour Phase

  • Chapter
  • First Online:
The Theory of Laser Materials Processing

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 119))

Abstract

Several aspects of the properties of the keyhole and its relationship to the weld pool in laser keyhole welding are considered. The aspect of most immediate importance is the exchange of energy between the laser beam itself and the molten material of the weld pool. Many mechanisms are involved, but the two considered here are the process of direct absorption at the keyhole wall (Fresnel absorption) and the two-stage process of absorption of energy by inverse bremsstrahlung into the ionised vapour that forms in the case of the longer-wavelength lasers such as the CO2 laser, followed by thermal conduction to the wall. Consideration is given to the role of the Knudsen layer at the boundary. The possibility that the exchange may be influenced by the vapour flow in the keyhole is considered. More generally, the dynamics of the flow is investigated and the balances necessary to keep the keyhole open are investigated. A simple model of the interaction of the vapour with the molten material in the weld pool is proposed which can be used to investigate their interaction. Order of magnitude estimates suggest that it is far from simple but that some simplifying approximations are possible. The chapter ends with some basic models of electromagnetic effects in an ionised vapour as an introduction to the more comprehensive analysis provided in Chap. 7.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.en.wikipedia.org.wiki/Routh-Hurwitz_stability_criterion.

References

  1. Dowden JM (2001) The mathematics of thermal modeling: an introduction to the theory of laser material processing. Chapman Hall/CRC, Boca Raton

    Book  MATH  Google Scholar 

  2. Dowden JM (2005) Analytical modelling of energy transfer through the vapour in laser keyhole welding. In: Proceedings of the 10th NOLAMP conference, Luleå University of Technology, pp 127–138

    Google Scholar 

  3. Dowden JM (2006) Convection of energy in partially ionised vapour in laser keyhole welding. In: Brandt M, Harvey E (eds) Proceedings of the 2nd pacific international conference on application of lasers and optics, Melbourne, paper No 402

    Google Scholar 

  4. Hughes TP (1975) Plasmas and laser light. Adam Hilger, London

    Google Scholar 

  5. Hirschfelder JO, Curtis CF, Bird RB (1954) Molecular theory of gases and liquids. Wiley, New York

    MATH  Google Scholar 

  6. Emsley J (1998) The elements. Clarendon Press, Oxford

    Google Scholar 

  7. Knudsen M (1909) Die Molecularströmung der Gase durch Öffnungen und die Effusion. Annalen der Physik (Leipzig) 28(5):999–1016

    Article  ADS  MATH  Google Scholar 

  8. Anisimov SI (1968) Vaporization of metal absorbing laser radiation. Sov Phys JETP 27(1):182–183

    ADS  Google Scholar 

  9. Finke BR, Simon G (1990) On the gas kinetics of laser-induced evaporation of metals. J Phys D Appl Phys 23:67–74

    Article  ADS  Google Scholar 

  10. Finke BR, Finke M, Kapadia PD, Dowden JM, Simon G (1990) Numerical investigation of the Knudsen-layer, appearing in the laser induced evaporation of metals. In: Proceedings of the European congress on optics, The Hague

    Google Scholar 

  11. Knight CJ (1979) Theoretical modeling of rapid surface vaporization with back pressure. AIAA J 17(5):519–523

    Article  ADS  Google Scholar 

  12. Sharipov F (2004) Heat transfer in the Knudsen layer. Phys Rev E60(061201):1–4

    Google Scholar 

  13. Abramowitz A, Stegun IA (1965) Handbook of mathematical functions. Dover, New York, p 297

    Google Scholar 

  14. Anisimov et al. (1971) Effects of high power radiation on metals. Reproduced by National Technical Information Services, US Department of Commerce

    Google Scholar 

  15. Finke BR (1981) Untersuchung des Erosionjets bei der Destrahlung von Metallen mit Laserlicht hoher Intensität. Diploma Thesis, TU Braunschweig

    Google Scholar 

  16. Sone Y (2002) Kinetic theory and fluid dynamics. Birkhäuser, Boston Ch 3–6

    Google Scholar 

  17. Bayazitoglu Y, Tunc G (2002) An extension to the first order slip boundary conditions to be used in early transient regime. In: Proceedings of the 8th AIAA/ASME joint thermophysics and heat transfer conference 24–26 June 2002, St Louis, Missouri. Paper no AIAA 2002-2779

    Google Scholar 

  18. Sharipov F (2003) Application of the Cercignani-Lampis scattering kernel to calculations of rarefied gas flows. II. Slip and jump coefficients. Eur J Mech B/Fluids 22:133–143

    Article  MathSciNet  MATH  Google Scholar 

  19. Sharipov F, Seleznev V (1998) Data on internal rarefied gas flows. J Phys Chem Ref Data 27:657–706

    Article  ADS  Google Scholar 

  20. Stratton JA (1941) Electromagnetic theory. McGraw-Hill, New York, pp 500–511

    MATH  Google Scholar 

  21. Schulz W, Simon G, Urbassek HM, Decker I (1987) On laser fusion cutting of metals. J Phys D Appl Phys 20:481–488

    Article  ADS  Google Scholar 

  22. Olsen FO (1980) Cutting with polarised laser beams. DVS-Berichte 63:197–200

    Google Scholar 

  23. Amara EH, Fabbro R, Bendib A (2003) Modeling of the compressible vapour flow induced in a keyhole during laser welding. J Appl Phys 93(7):4289–4296

    Article  ADS  Google Scholar 

  24. Amara EH, Bendib A (2002) Modeling of vapour flow in deep penetration laser welding. J Phys D Appl Phys 35(3):272–280

    Article  ADS  Google Scholar 

  25. Matsunawa A, Semak V (1997) The simulation of front keyhole wall dynamics during laser welding. J Phys D: Appl Phys 30:798–809

    Google Scholar 

  26. Dowden JM, Kapadia PD (1996) The instabilities of the keyhole and the formation of pores in the weld in laser keyhole welding. In: Mazumder J, Matsunawa A, Magnusson C (eds.) Proceedings of the ICALEO’95. Laser Institute of America, Orlando, vol 80, pp 961–968

    Google Scholar 

  27. Dowden JM, Kapadia PD, Clucas A, Ducharme R, Steen WM (1996) Laser welding: on the relation between fluid dynamic pressure and the formation of pores in laser keyhole welding. J Laser Appl 8:183–190

    Article  Google Scholar 

  28. Kinoshita K, Mizutani M, Kawahito Y, Katayama S (2006) Phenomena of welding with high-power fiber laser. In: Ostendorf A, Hilton P, Lu Y (eds) Proceedings of the ICALEO 2007, Orlando USA, paper 902

    Google Scholar 

  29. Matsunawa A (2000) Possible motive forces of liquid motion in laser weld pool. IIW Doc IV-770-2000/212-917-00. International Institute of Welding, Paris

    Google Scholar 

  30. Klein T, Vicanek M, Kroos J, Decker I, Simon G (1994) Oscillations of the keyhole in penetration laser beam welding. J Phys D Appl Phys 27:2023–2030

    Article  ADS  Google Scholar 

  31. Dowden JM, Kapadia P (1998) Acoustic oscillations in the keyhole in laser welding. Int J Joining Mater 10(1/2):25–32

    Google Scholar 

  32. Ducharme R, Kapadia P, Dowden JM (1994) The collapse of the keyhole in the laser welding of materials. In: Denny P, Miyamoto I, Mordike BL (eds.) Proceedings of the ICALEO’93: Laser Institute of America, vol 77, LIA, Orlando, pp 177–183

    Google Scholar 

  33. Hopkins JA, McCay TD, McCay MH, Eraslan A (1994) Transient predictions of CO2 spot welds in Iconel 718. In: Denny P, Miyamoto I, Mordike BL (eds.) Proceedings of the ICALEO’93: Laser Institute of America, vol 77, LIA, Orlando, pp. 106–11

    Google Scholar 

  34. Pan Y, Richardson IM (2011) Keyhole behaviour during laser welding of zinc-coated steel. J Phys D: Appl Phys 44:045502

    Google Scholar 

  35. Pan Y (2011) Laser welding of zinc coated steel without a pre-set gap. Doctoral dissertation TU Delft

    Google Scholar 

  36. Fabbro R, Coste F, Goebels D, Kielwasser M (2006) Study of CW Nd–Yag laser welding of Zn-coated steel sheets. J Phys D Appl Phys 39:401–409

    Article  ADS  Google Scholar 

  37. Dasgupta AK, Mazumder J (2008) Laser welding of zinc coated steel: an alternative to resistance spot welding. Sci Technol Weld Joining 13:289–293

    Article  Google Scholar 

  38. Batchelor GK (1967) An introduction to fluid dynamics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  39. Rosenthal D (1941) Mathematical theory of heat distribution during welding and cutting. Weld J 20(5):220s–234s

    Google Scholar 

  40. Rosenthal D (1946) The theory of moving sources of heat and its application to metal treatments. Trans ASME 48:849–866

    Google Scholar 

  41. Tritton DJ (1977) Physical fluid dynamics. Van Nostrand Reinhold, London

    Book  MATH  Google Scholar 

  42. Ambrosy G, Berger P, Hügel H (2004) Electro-magnetically supported deep-penetration laser beam welding—calculation of generated forces. In: Kaplan A (ed) Proceedings of the M4PL 17. Luleå TU, paper 3

    Google Scholar 

  43. Vollertsen F, Thomy C (2006) Magnetic stirring during laser welding of aluminium. J Laser Appl 18(1):28–34

    Google Scholar 

  44. Kern M, Berger P, Hügel H (2000) Magneto-fluid dynamic control of seam quality in CO2 laser beam welding. Weld J 79(3):72s–78s

    Google Scholar 

  45. Ambrosy G, Avilov V, Berger P (2007) Laser-induced plasma as a source for an electrical current in the weld pool. In: Kaplan A (ed) Proceedings of the M4PL 20. Luleå TU, paper 2

    Google Scholar 

  46. Metzbower EA (1997) On the formation of the keyhole and its temperature. J Laser Appl 9(1):23–33

    Article  Google Scholar 

  47. Lide DR (1997) CRC handbook of chemistry and physics, 78th edn. CRC Press, Boca Ratan, pp 12–124

    Google Scholar 

  48. Dowden JM, Kapadia PD (1998) A mathematical model of the use of a high-power laser to provide an electrical path of low resistance. In: Fabbro R, Kar A, Matsunawa A (eds) Proceedings of the ICALEO’97, Laser Institute of America, Orlando, vol 83e, pp C206–C215

    Google Scholar 

  49. Dowden JM, Kapadia PD (1998) The use of a high-power laser to provide an electrical path of low resistance. J Laser Appl 10(5):219–223

    Article  Google Scholar 

  50. Guinnessy P (1997) Set phasers to shock. New Sci 156:6

    Google Scholar 

  51. Dowden JM, Kapadia PD (1994) Plasma arc welding: a mathematical model of the arc. J Phys D: Appl Phys 27:902–910, Appendix 4

    Google Scholar 

  52. Devoto RS (1967) Simplified expressions for the transport properties of ionized monatomic gases. Phys Fluids 10(10):2105–2112

    Article  ADS  Google Scholar 

  53. Devoto RS (1973) Transport coefficients of ionized argon. Phys Fluids 16(5):616–623

    Article  ADS  Google Scholar 

  54. Palmer GE, Wright ML (2003) Comparison of methods to compute high-temperature gas viscosity. J Thermophys Heat Transf 17(2):232–239

    Article  Google Scholar 

  55. Gupta RN, Yos JM, Thompson RA, Lee K-P (1990) A review of reaction rates and thermodynamic and transport properties for an 11-species air model for chemical and thermal non-equilibrium calculations at 30000K. NASA RP-1232

    Google Scholar 

  56. Armaly BF, Sutton L (1980) Viscosity of multicomponent partially ionised gas mixtures. AIAA Paper 80-1495

    Google Scholar 

  57. Wilke CR (1950) A viscosity equation for gas mixtures. J Chem Phys 18(4):517–519

    Article  ADS  Google Scholar 

  58. Murphy AB (1995) Transport coefficients of air, argon-air, nitrogen-air and oxygen-air plasmas. Plasma Chem Plasma Process 15(2):279–307

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Dowden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Dowden, J. (2017). Laser Keyhole Welding: The Vapour Phase. In: Dowden, J., Schulz, W. (eds) The Theory of Laser Materials Processing. Springer Series in Materials Science, vol 119. Springer, Cham. https://doi.org/10.1007/978-3-319-56711-2_5

Download citation

Publish with us

Policies and ethics