Skip to main content

Continuous, Discrete and Ultradiscrete Painlevé Equations

  • Chapter
  • First Online:
Symmetries and Integrability of Difference Equations

Part of the book series: CRM Series in Mathematical Physics ((CRM))

  • 708 Accesses

Abstract

We give an introductory lecture on the theory of Painlevé equations, which are one of the most important objects in the theory of integrable systems, and their discrete counterparts. The lecture is divided into three parts: the Painlevé equations, discrete Painlevé equations and ultradiscrete Painlevé equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.S. Fokas, B. Grammaticos, A. Ramani, From continuous to discrete Painlevé equations. J. Math. Anal. Appl. 180(2), 342–360 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. R. Fuchs, Sur quelques équations différentielles linéaires du second ordre. C. R. Acad. Sci. Paris 141(1), 555–558 (1905)

    MATH  Google Scholar 

  3. B. Gambier, Sur les équations différentielles du second ordre et du premier degré dont l’intégrale générale est à points critiques fixes. Acta Math. 33(1), 1–55 (1910)

    Article  MathSciNet  MATH  Google Scholar 

  4. G. Gasper, M. Rahman, Basic Hypergeometric Series, vol. 35. Encyclopedia of Mathematics and Its Applications (Cambridge University Press, Cambridge, 1990)

    MATH  Google Scholar 

  5. B. Grammaticos, Y. Ohta, A. Ramani, H. Sakai, Degeneration through coalescence of the q-Painlevé VI equation. J. Phys. A 31(15), 3545–3558 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. B. Grammaticos, Y. Ohta, A. Ramani, D. Takahashi, K.M. Tamizhmani, Cellular automata and ultra-discrete Painlevé equations. Phys. Lett. A 226(1–2), 53–58 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. B. Grammaticos, A. Ramani, V. Papageorgiou, Do integrable mappings have the Painlevé property? Phys. Rev. Lett. 67(14), 1825–1828 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. B. Grammaticos, A. Ramani, J. Satsuma, R. Willox, A. Carstea, Reductions of integrable lattices. J. Nonlinear Math. Phys. 12(Suppl. 1), 363–371 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  9. R. Hirota, Discrete analogue of a generalized Toda equation. J. Phys. Soc. Jpn. 50(11), 3785–3791 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  10. R. Hirota, S. Tsujimoto, T. Imai, Difference scheme of soliton equations. Sūrikaisekikenkyūsho Kōkyūroku 822, 144–152 (1993)

    MathSciNet  MATH  Google Scholar 

  11. J.E. Humphreys, Reflection Groups and Coxeter Groups. Cambridge Studies in Advanced Mathematics, vol. 29 (Cambridge University Press, Cambridge, 1990)

    Google Scholar 

  12. K. Iwasaki, H. Kimura, S. Shimomura, M. Yoshida, From Gauss to Painlevé, vol. E16. Aspects of Mathematics (Friedrich Vieweg & Sohn, Braunschweig, 1991)

    Google Scholar 

  13. M. Jimbo, T. Miwa, Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II. Phys. D 2(3), 407–448 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Jimbo, H. Sakai, A q-analog of the sixth Painlevé equation. Lett. Math. Phys. 38(2), 145–154 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. N. Joshi, S. Lafortune, How to detect integrability in cellular automata. J. Phys. A 38(28), L499–L504 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. N. Joshi, N. Nakazono, Y. Shi, Reflection groups and discrete integrable systems. J. Intell. Syst. 1(1), xyw006 (2016)

    Google Scholar 

  17. K. Kajiwara, N. Nakazono, Hypergeometric solutions to the symmetric q-Painlevé equations. Int. Math. Res. Not. 2015(4), 1101–1140 (2015)

    MATH  Google Scholar 

  18. K. Kajiwara, Y. Ohta, Determinant structure of the rational solutions for the Painlevé IV equation. J. Phys. A 31(10), 2431–2446 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. K. Kajiwara, M. Noumi, Y. Yamada, A study on the fourth q-Painlevé equation. J. Phys. A 34(41), 8563–8581 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. K. Kajiwara, T. Masuda, M. Noumi, Y. Ohta, Y. Yamada, 10 E 9 solution to the elliptic Painlevé equation. J. Phys. A 36, L263–L272 (2003)

    Google Scholar 

  21. K. Kajiwara, T. Masuda, Noumi, M., Ohta, Y., Yamada, Y.: Hypergeometric solutions to the q-Painlevé equations. Int. Math. Res. Not. 2004(47), 2497–2521 (2004)

    Google Scholar 

  22. K. Kajiwara, T. Masuda, M. Noumi, Y. Ohta, Y. Yamada, Construction of hypergeometric solutions to the q-Painlevé equations. Int. Math. Res. Not. 2005(24), 1441–1463 (2005)

    Article  MATH  Google Scholar 

  23. K. Kajiwara, M. Noumi, Yamada, Y.: Geometric aspects of Painlevé equations. J. Phys. A 50(7), 073001, 164 (2017)

    Google Scholar 

  24. M. Kanki, J. Mada, T. Tokihiro, Conserved quantities and generalized solutions of the ultradiscrete KdV equation. J. Phys. A 44(14), 145202, 13 (2011)

    Google Scholar 

  25. R. Koekoek, R.F. Swarttouw, The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue. Online notes (1998)

    Google Scholar 

  26. D.J. Korteweg, G. de Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philos. Mag. (5) 39(240), 422–443 (1895)

    Google Scholar 

  27. T. Masuda, Classical transcendental solutions of the Painlevé equations and their degeneration. Tohoku Math. J. (2) 56(4), 467–490 (2004)

    Google Scholar 

  28. N. Mimura, S. Isojima, M. Murata, J. Satsuma, Singularity confinement test for ultradiscrete equations with parity variables. J. Phys. A 42(31), 315206, 7 (2009)

    Google Scholar 

  29. M. Murata, Exact solutions with two parameters for an ultradiscrete Painlevé equation of type A6 (1). SIGMA Symmetry Integrability Geom. Methods Appl. 7, 15 pp. (2011). Paper 059

    Google Scholar 

  30. F.W. Nijhoff, V.G. Papageorgiou, Similarity reductions of integrable lattices and discrete analogues of the Painlevé II equation. Phys. Lett. A 153(6), 337–344 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  31. F.W. Nijhoff, A. Ramani, B. Grammaticos, Y. Ohta, On discrete Painlevé equations associated with the lattice KdV systems and the Painlevé VI equation. Stud. Appl. Math. 106(3), 261–314 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  32. M. Noumi, Painlevé Equations Through Symmetry, vol. 223. Translations of Mathematical Monograph (American Mathematical Society, Providence, RI, 2004)

    MATH  Google Scholar 

  33. Y. Ohyama, H. Kawamuko, H. Sakai, K. Okamoto, Studies on the Painlevé equations. V. Third Painlevé equations of special type Piii(D7) and Piii(D8). J. Math. Sci. Univ. Tokyo 13(2), 145–204 (2006)

    Google Scholar 

  34. K. Okamoto, Sur les feuilletages associés aux équations du second ordre à points critiques fixes de P. Painlevé. Jpn. J. Math. (N.S.) 5(1), 1–79 (1979)

    Google Scholar 

  35. K. Okamoto, Studies on the Painlevé equations. III. Second and fourth Painlevé equations, Pii and Piv. Math. Ann. 275(2), 221–255 (1986)

    Google Scholar 

  36. K. Okamoto, Studies on the Painlevé equations. I. Sixth Painlevé equation Pvi. Ann. Mat. Pura Appl. (4) 146, 337–381 (1987)

    Google Scholar 

  37. K. Okamoto, Studies on the Painlevé equations. II. Fifth Painlevé equation Pv. Jpn. J. Math. (N.S.) 13(1), 47–76 (1987)

    Google Scholar 

  38. K. Okamoto, Studies on the Painlevé equations. IV. Third Painlevé equation Piii. Funkcial. Ekvac. 30(2–3), 305–332 (1987)

    Google Scholar 

  39. C.M. Ormerod, Hypergeometric solutions to an ultradiscrete Painlevé equation. J. Nonlinear Math. Phys. 17(1), 87–102 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. C.M. Ormerod, Tropical geometric interpretation of ultradiscrete singularity confinement. J. Phys. A 46(30), 305204, 15 (2013)

    Google Scholar 

  41. C.M. Ormerod, Y. Yamada, From polygons to ultradiscrete Painlevé equations. SIGMA Symmetry Integrability Geom. Methods Appl. 11, 36 pp. (2015). Paper 056

    Google Scholar 

  42. P. Painlevé, Sur les équations différentielles du second ordre et d’ordre supérieur dont l’intégrale générale est uniforme. Acta Math. 25(1), 1–85 (1902)

    Article  MathSciNet  MATH  Google Scholar 

  43. G.R.W. Quispel, J.A.G. Roberts, C.J. Thompson, Integrable mappings and soliton equations. Phys. Lett. A 126(7), 419–421 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. A. Ramani, B. Grammaticos, J. Hietarinta, Discrete versions of the Painlevé equations. Phys. Rev. Lett. 67(14), 1829–1832 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. A. Ramani, D. Takahashi, B. Grammaticos, Y. Ohta, The ultimate discretisation of the Painlevé equations. Phys. D 114(3–4), 185–196 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  46. H. Sakai, Rational surfaces associated with affine root systems and geometry of the Painlevé equations. Commun. Math. Phys. 220(1), 165–229 (2001)

    Article  ADS  MATH  Google Scholar 

  47. D. Takahashi, On some soliton systems defined by using boxes and balls, in International Symposium on Nonlinear Theory and its Applications (NOLTA ’ 93 ), pp. 555–558 (1993)

    Google Scholar 

  48. D. Takahashi, J. Matsukidaira, Box and ball system with a carrier and ultradiscrete modified KdV equation. J. Phys. A 30(21), L733–L739 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. D. Takahashi, J. Satsuma, A soliton cellular automaton. J. Phys. Soc. Japan 59(10), 3514–3519 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  50. D. Takahashi, T. Tokihiro, B. Grammaticos, Y. Ohta, A. Ramani, Constructing solutions to the ultradiscrete Painlevé equations. J. Phys. A 30(22), 7953–7966 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. K. Takemura, T. Tsutsui, Ultradiscrete Painlevé VI with parity variables. SIGMA Symmetry Integrability Geom. Methods Appl. 9, 12 pp. (2013). Paper 070

    Google Scholar 

  52. T. Tokihiro, D. Takahashi, J. Matsukidaira, J. Satsuma, From soliton equations to integrable cellular automata through a limiting procedure. Phys. Rev. Lett. 76, 3247–3250 (1996)

    Article  ADS  Google Scholar 

  53. T. Tokihiro, D. Takahashi, J. Matsukidaira, Box and ball system as a realization of ultradiscrete nonautonomous KP equation. J. Phys. A 33(3), 607–619 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. N.J. Zabusky, M.D. Kruskal, Interaction of solitons in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15, 240–243 (1965)

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

Authors thank Profs. Tetsuji Tokihiro, Masatoshi Noumi and Akane Nakamura for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masataka Kanki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Nakazono, N., Shi, Y., Kanki, M. (2017). Continuous, Discrete and Ultradiscrete Painlevé Equations. In: Levi, D., Rebelo, R., Winternitz, P. (eds) Symmetries and Integrability of Difference Equations. CRM Series in Mathematical Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-56666-5_1

Download citation

Publish with us

Policies and ethics