Skip to main content

Hydrothermal Pretreatment of Lignocellulosic Biomass for Bioethanol Production

  • Chapter
  • First Online:
Hydrothermal Processing in Biorefineries

Abstract

The work of Overend and Chornet on pretreatment severity factors combined with major contributions by others in the field has consistently shown that pretreatment is both an important cost driver of lignocellulose conversion to ethanol and a critical step that enables enzyme hydrolysis. Different lignocellulose pretreatments have a common objective of enhancing hydrolysis by opening up the plant cell wall enabling hydrolytic enzymes to access cellulose and hemicellulose. The work reported in this chapter addresses liquid hot water pretreatment and mechanisms by which it enhances the rates and extents of enzyme hydrolysis of cellulose from different types of lignocellulosic materials. Maintaining pH between about 4 and 7 is an important process variable of liquid hot water pretreatment, since pH can directly influence the formation of aldehydes and other inhibitors from hemicellulose and affect lignin solubilization which in turn also releases molecules that inhibit or deactivate the enzymes. Pretreatment conditions and severities may also change both chemical structure and physical properties of the residual lignin itself, which in turn negatively affects the action of enzymes. This chapter will focus on a detailed review of our work on liquid hot water pretreatment of lignocellulosic materials and its implications for potential use in biorefineries for production of bioethanol and bioproducts with high added value. Correlation of severities to enzyme conversion of different biomass materials and an overview of the potential application of hydrothermally pretreated biomass as a renewable feedstock for enzyme production will also be presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alfani A, Gallifuoco F, Saporosi A, Spera A, Cantarella M (2000) Comparison of SHF and SSF process for the bioconversion of steam-exploded wheat straw. J Microbiol Biotechnol 25:184–192

    Article  Google Scholar 

  • Alvira P, Tomas-Pejo E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101(13):4851–4861

    Article  Google Scholar 

  • Athmanathan A, Sedlak M, Ho NWY, Mosier NS (2011) Effect of product inhibition on xylose fermentation to ethanol by Saccharomyces cerevisiae 424A (LNH-ST). J Biol Eng 3(2):111–124

    Article  Google Scholar 

  • Babcock LW 1932 Method of producing fermentable sugars and alcohol from wood. US Patent 1,825,464 (26 Apr 1932)

    Google Scholar 

  • Behera S, Arora R, Nandhagopal N, Kumar S (2014) Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renew Sust Energ Rev 36:91–106

    Article  Google Scholar 

  • Brasch DJ, Free KW (1965) Pre-hydrolysis-Kraft pulping of Pinus radiata grown in New Zealand. TAPPI 48(4):245–248

    Google Scholar 

  • Brownell HH, Saddler JN (1984) Steam explosion pretreatment for enzymatic hydrolysis. Biotechnol Bioeng Symp 14:55–68

    Google Scholar 

  • Cannella D, Mollers KB, Frigaard NU, Jensen PE, Bjerrum MJ, Johansen KS, Felby C (2016) Light-driven oxidation of polysaccharides by photosynthetic pigments and a metalloenzyme. Nat Commun 7:8

    Article  Google Scholar 

  • Cao G, Ximenes E, Nichols NN, Zhang L, Ladisch M (2013) Biological abatement of cellulase inhibitors. Bioresour Technol 146:604–610

    Article  Google Scholar 

  • Cao G, Ximenes EA, Nichols N, Frazer SE, Kim D, Cotta MA, Ladisch M (2015) Bioabatement with hemicellulase supplementation to reduce enzymatic hydrolysis inhibitors. Bioresour Technol 190:412–415

    Article  Google Scholar 

  • Carvalheiro F, Silva-Fernandes T, Duarte LC, Gírio FM (2009) Wheat straw autohydrolysis: process optimization and products characterization. Appl Biochem Biotechnol 153:84–93

    Article  Google Scholar 

  • Casey E, Sedlak M, Ho NWY, Mosier NS (2010) Effect of acetic acid and pH on the co-fermentation of glucose and xylose to ethanol by recombinant Saccharomyces cerevisiae. FEMS Yeast Res 10(4):385–393

    Article  Google Scholar 

  • Casey E, Mosier NS, Adamec J, Stockdale Z, Ho N, Sedlak M (2013) Effect of salts on the co-fermentation of glucose and xylose by a genetically engineered strain of Saccharomyces cerevisiae. Biotechnol Biofuels 6(83):1–10

    Google Scholar 

  • Chen H, Liu L, Yang X, Li Z (2005) New process of maize stalk amination treatment by steam explosion. Biomass Bioenergy 28:411–417

    Article  Google Scholar 

  • Chen S-F, Mowery RA, Chambliss CK, van Walsum GP (2007) Pseudo reaction kinetics of organic degradation products in dilute-acid-catalyzed corn stover pretreatment hydrolysates. Biotechnol Bioeng 98(6):1135–1145

    Google Scholar 

  • Chum HL, Johnson DK, Black SK, Overend RP (1990) Pretreatment-catalyst effects and the combined severity parameter. Appl Biochem Biotechnol 24(25):1–14

    Article  Google Scholar 

  • Chundawat S, Beckham G, Himmel M, Dale B, Prausnitz J (2011) Deconstruction of lignocellulosic biomass to fuels and chemicals. Annu Rev Chem Biomol Eng 2(2):121–145

    Article  Google Scholar 

  • Cunha FM, Esperanca MN, Zangirolami TC, Badino AC, Farinas CS (2012) Sequential solid-state and submerged cultivation of Aspergillus niger on sugarcane bagasse for the production of cellulase. Bioresour Technol 112:270–274

    Article  Google Scholar 

  • Cunha F, Badino A, Farinas CS, Ximenes E, Ladisch M (2014) Liquefaction of sugarcane bagasse for enzyme production. Bioresour Technol 172:249–252

    Article  Google Scholar 

  • Cunha F, Badino A, Farinas CS, Ximenes E, Ladisch M (2015) Liquid hot water and steam explosion pretreatment of sugarcane bagasse for enzyme production by a sequential solid-state and submerged method. In: XX Congresso Brasileiro de Engenharia Química, Florianópolis, Brazil. doi:10.5151/chemeng-cobeq2014-1284-20093-153536

  • de Souza AP, Leite DCC, Pattahil S, Hahn MG, Buckeridge MS (2013) Composition and structure of sugarcane cell wall polysaccharides: implications for second-generation bioethanol production. Bioenergy Res 6:564–579

    Article  Google Scholar 

  • Delabona P, Farinas C, da Silva M, Azzoni S, Pradella J (2012a) Use of a new Trichoderma harzianum strain isolated from the Amazon rainforest with pretreated sugar cane bagasse for on-site cellulase production. Bioresour Technol 107:517–521

    Article  Google Scholar 

  • Delabona P, Pirota R, Codima C, Tremacoldi C, Rodrigues A, Farinas C (2012b) Using Amazon forest fungi and agricultural residues as a strategy to produce cellulolytic enzymes. Biomass Bioenergy 37:243–250

    Article  Google Scholar 

  • Delabona PD, Cota J, Hoffmam ZB, Paixao DAA, Farinas CS, Cairo J, Lima DJ, Squina FM, Ruller R, Pradella JGD 2013a Understanding the cellulolytic system of Trichoderma harzianum P49P11 and enhancing saccharification of pretreated sugarcane bagasse by supplementation with pectinase and alpha-L-arabinofuranosidase Bioresour Technol 131: 500–507

    Google Scholar 

  • Delabona PD, Farinas CS, Lima DJD, Pradella JGD (2013b) Experimental mixture design as a tool to enhance glycosyl hydrolases production by a new Trichoderma harzianum P49P11 strain cultivated under controlled bioreactor submerged fermentation. Bioresour Technol 132:401–405

    Article  Google Scholar 

  • Dodd D, Cann I (2009) Enzymatic deconstruction of xylan for biofuel production. Glob Change Biol Bioenergy 1(1):2–17

    Article  Google Scholar 

  • Ewanick SM, Bura R, Saddler JN (2007) Acid-catalyzed steam pretreatment of lodgepole pine and subsequent enzymatic hydrolysis and fermentation to ethanol. Biotechnol Bioeng 98:737–746

    Article  Google Scholar 

  • Farinas CS (2015) Developments in solid-state fermentation for the production of biomass-degrading enzymes for the bioenergy sector. Renew Sust Energ Rev 52:179–188

    Article  Google Scholar 

  • Florencio C, Couri S, Farinas CS (2012) Correlation between agar plate screening and solid-state fermentation for the prediction of cellulase production by Trichoderma strains. Enzyme Res:1–7

    Google Scholar 

  • Florencio C, Cunha FM, Badino AC, Farinas CS (2015) Validation of a novel sequential cultivation method for the production of enzymatic cocktails from Trichoderma strains. Appl Biochem Biotechnol 175(3):1389–1402

    Article  Google Scholar 

  • Florencio C, Cunha FM, Badino AC, Farinas CS, Ximenes E, Ladisch MR (2016a) Secretome analysis of Trichoderma reesei and Aspergillus niger cultivated by submerged and sequential fermentation processes: enzyme production for sugarcane bagasse hydrolysis. Enzym Microb Technol 90:53–60

    Article  Google Scholar 

  • Florencio C, Badino AC, Farinas CS (2016b) Soybean protein as a cost-effective lignin-blocking additive for the saccharification of sugarcane bagasse. Bioresour Technol 221:172–180

    Article  Google Scholar 

  • Foody P (1984) Method for obtaining superior yields of accessible cellulose and hemicellulose from lignocellulosic materials. Canadian Patent no. 1163058

    Google Scholar 

  • Gao DH, Uppugundla N, Chundawat SPS, Yu XR, Hermanson S, Gowda K, Brumm P, Mead D, Balan V, Dale BE (2011) Hemicellulases and auxiliary enzymes for improved conversion of lignocellulosic biomass to monosaccharides. Biotechnol Biofuels 4:1–11

    Article  Google Scholar 

  • Guerriero G, Hausman JF, Strauss J, Ertan H, Siddiqui KS (2016) Lignocellulosic biomass: biosynthesis, degradation, and industrial utilization. Eng Life Sci 16(1):1–16

    Article  Google Scholar 

  • Halliwell G (1965) Catalytic decomposition of cellulose under biological conditions. Biochem J 95(35):35–40

    Article  Google Scholar 

  • Harris PV, Welne D, McFarland KC, Re E, Poulsen JCN, Brown K, Salbo R, Ding HS, Vlasenko E, Merino S, Xu F, Cherry J, Larsen S, Lo Leggio L (2010) Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family. Biochemistry 49(15):3305–3316

    Article  Google Scholar 

  • Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100(1):10–18

    Article  Google Scholar 

  • Hong J, Ladisch MR, Gong CS, Wankat PC, Tsao GT (1981) Combined product and substrate inhibition equation for cellobiase. Biotechnol Bioeng 23(12):2779–2788

    Article  Google Scholar 

  • Huang T, Sturgis J, Gomez R, Geng T, Bashir R, Bhunia AK, Robinson JP, Ladisch MR (2003) Composite surface for blocking bacterial adsorption on protein biochips. Biotechnol Bioeng 81(5):618–624

    Article  Google Scholar 

  • Johnson E (2016) Integrated enzyme production lowers the cost of cellulosic ethanol. Biofuels Bioprod Biorefin 10(2):164–174

    Article  Google Scholar 

  • Jonsson LJ, Martin C (2016) Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour Technol 199:103–112

    Article  Google Scholar 

  • Kamm B, Kamm M (2004) Principles of biorefineries. Appl Microbiol Biotechnol 64:137–145

    Article  Google Scholar 

  • Kim Y, Hendrickson R, Mosier N, Ladisch MR (2005) Plug-flow reactor for continuous hydrolysis of glucans and xylans from pretreated corn fiber. Energy Fuel 19:2189–2200

    Article  Google Scholar 

  • Kim Y, Mosier NS, Ladisch MR (2009a) Enzymatic digestion of liquid hot water pretreated hybrid poplar. Biotechnol Prog 25:340–348

    Article  Google Scholar 

  • Kim Y, Hendrickson R, Mosier NS, Ladisch MR (2009b) Liquid hot water pretreatment of cellulosic biomass. In: Mielenz JR (ed) Methods in molecular biology: biofuels, vol 581. The Humana Press, Totowa, pp 93–102

    Google Scholar 

  • Kim Y, Ximenes E, Mosier NS, Ladisch MR (2011) Soluble inhibitors/deactivators of cellulase enzymes from lignocellulosic biomass. Enzym Microb Technol 48(4–5):408–415

    Article  Google Scholar 

  • Kim Y, Kreke T, Ladisch MR (2013) Reaction mechanisms and kinetics of xylooligosaccharide hydrolysis by dicarboxylic acids. AICHE J 59(1):188–199

    Article  Google Scholar 

  • Kim IJ, Lee HJ, Choi IG, Kim KH (2014a) Synergistic proteins for the enhanced enzymatic hydrolysis of cellulose by cellulase. Appl Microbiol Biotechnol 98(20):8469–8480

    Article  Google Scholar 

  • Kim Y, Kreke T, Mosier NS, Ladisch MR (2014b) Severity factor coefficients for subcritical liquid hot water pretreatment of hardwood chips. Biotechnol Bioeng 111(2):254–263

    Article  Google Scholar 

  • Kim Y, Kreke T, Ko JK, Ladisch MR (2015) Hydrolysis-determining substrate characteristics in liquid hot water pretreated hardwood. Biotechnol Bioeng 112(4):677–687

    Article  Google Scholar 

  • Kim D, Ximenes EA, Nichols NN, Cao G, Frazer SE, Ladisch MR (2016) Maleic acid treatment of biologically detoxified corn stover liquor. Bioresour Technol 216:437–445

    Article  Google Scholar 

  • Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons BA, Blanch HW (2012) The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol Bioeng 109(4):1083–1087

    Article  Google Scholar 

  • Klinke HB, Thomsen AB, Ahring BK (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66:10–26

    Article  Google Scholar 

  • Ko JK, Kim Y, Ximenes E, Ladisch MR (2015a) Effect of liquid hot water pretreatment severity on properties of hardwood lignin and enzymatic hydrolysis of cellulose. Biotechnol Bioeng 112(2):252–262

    Article  Google Scholar 

  • Ko JK, Um Y, Park YC, Seo JH, Kim KH (2015b) Compounds inhibiting the bioconversion of hydrothermally pretreated lignocellulose. Appl Microbiol Biotechnol 99(10):4201–4212

    Article  Google Scholar 

  • Ko JK, Ximenes E, Kim Y, Ladisch MR (2015c) Adsorption of enzyme onto lignins of liquid hot water pretreated hardwoods. Biotechnol Bioeng 112(3):447–456

    Article  Google Scholar 

  • Kohlmann K, Westgate PJ, Weil J, Ladisch MR (1994) Biological-based systems for waste processing. SAE technical paper 932251, SAE transactions (102–1) (Aerospace Transactions, Section 1) 1476–1483

    Google Scholar 

  • Kohlmann KL, Sarikaya A, Westgate PJ, Weil J, Velayudhan A, Hendrickson R, Ladisch MR (1995) Enhanced enzyme activities on hydrated lignocellulosic substrates. In: Penner M, Saddler J (eds) Enzymatic degradation of insoluble carbohydrates, 207th American Chemical Society National Meeting, ACS symposium series no. 618. American Chemical Society, Washington, DC, pp 237–255

    Google Scholar 

  • Kumar R, Wyman CE (2009) Cellulose adsorption and relationship to features of corn stover solids produced by leading pretreatments. Biotechnol Bioeng 103:252–267

    Article  Google Scholar 

  • Ladisch MR (2001) Bioseparations engineering: principles, practice, and economics. Wiley, New York, 735 pages

    Google Scholar 

  • Ladisch MR, Hong J, Voloch M, Tsao GT (1981) Cellulase kinetics. In: Hollaender A, Rabson R, Rodgers P, Pietro AS, Valentine R, Wolfe R (eds) Trends in the biology of fermentations for fuels and chemicals, basic life sciences, vol 18. Wiley, New York, pp 55–83

    Chapter  Google Scholar 

  • Ladisch MR, Lin KW, Voloch M, Tsao GT (1983) Process considerations in enzymatic hydrolysis of biomass. Enzym Microb Technol 5(2):82–102

    Article  Google Scholar 

  • Ladisch MR, Kohlmann K, Westgate P, Weil J, Yang Y (1998) Processes for treating cellulosic material. US Patent 5,846,787.14

    Google Scholar 

  • Ladisch M, Dale B, Tyner W, Mosier N, Kim Y, Cotta M, Dien B, Blaschek V, Laurenas E, Shanks B, Verkade J, Schell C, Petersen G (2008) Cellulose conversion in dry grind ethanol plants. Bioresour Technol 99:5157–5159

    Article  Google Scholar 

  • Ladisch MR, Mosier NS, Kim Y, Ximenes E, Hogsett D (2010) Converting cellulose to biofuels. Chem Eng Prog 106(3):56–63

    Google Scholar 

  • Ladisch M, Ximenes E, Kim Y, Mosier N (2013) Biomass chemistry and pretreatment for biological processing. In: Behrens M, Datye A (eds) Catalysis for the conversion of biomass and its derivatives. Max Planck Research Library for the History and Development of Knowledge, Proceedings 2, Berlin, Edition Open Access (ISBN 978–3–8442-4282-9), pp 131–158

    Google Scholar 

  • Ladisch M, Ximenes E, Engelberth A, Mosier N (2014) Biological engineering and the emerging cellulose ethanol industry. Chem Eng Prog 110(11):59–62

    Google Scholar 

  • Ladisch M, Mosier N, Kim YK, van Rooyen J (2016) Biomass liquefaction processes and uses of same. US 9359619 (7 June 2016)

    Google Scholar 

  • Larsen J, Petersen MØ, Thirup L, Li HW, Iversen FK (2008) The IBUS process—lignocellulosic bioethanol close to a commercial reality. Chem Eng Technol 31:765–772

    Article  Google Scholar 

  • Larsson S, Quintana-Sáinz A, Nilvebrant NO, Jönsson LJ (2000) Influence of lignocellulose-derived aromatic compounds on oxygen-limited growth and ethanolic fermentation by Saccharomyces cerevisiae. Appl Biochem Biotechnol 84–86:617–632

    Article  Google Scholar 

  • Laser M, Schulman D, Allen SG, Lichwa J, Antal MJ, Lynd LR (2002) A comparison of liquid hot water and steam pretreatments of sugar cane bagasse for bioconversion to ethanol. Bioresour Technol 81(1):33–44

    Article  Google Scholar 

  • Levasseur A, Drula E, Lombard V, Coutinho PM, Henrissat B (2013) Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol Biofuels 6:1–14

    Article  Google Scholar 

  • Li H, Pu Y, Kumar R, Ragauskas AJ, Wyman CE (2014) Investigation of lignin deposition on cellulose during hydrothermal pretreatment, its effect on cellulose hydrolysis, and underlying mechanisms. Biotechnol Bioeng 111(3):485–492

    Article  Google Scholar 

  • López MJ, Nichols NN, Dien BS, Moreno J, Bothast RJ (2004) Isolation of microorganisms for biological detoxification of lignocellulosic hydrolysates. Appl Microbiol Biotechnol 64:125–131

    Article  Google Scholar 

  • Lu Y, Warner R, Sedlak M, Ho N, Mosier NS (2009) Comparison of glucose/xylose cofermentation of poplar hydrolysates processed by different pretreatment technologies. Biotechnol Prog 25(2):349–356

    Article  Google Scholar 

  • Lynd LR, Cushman JH, Nichols RJ, Wyman CE (1991) Fuel ethanol from cellulosic biomass. Science 251(4999):1318–1323

    Article  Google Scholar 

  • Lynd LR, van Zyl WH, McBride JH, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16:577–583

    Article  Google Scholar 

  • Makela MR, Donofrio N, de Vries RP (2014) Plant biomass degradation by fungi. Fungal Genet Biol 72:2–9

    Article  Google Scholar 

  • Mandels M, Reese ET (1957) Induction of cellulase in Trichoderma viride as influenced by carbon sources and metal. J Bacteriol 73(2):269–278

    Google Scholar 

  • Mansfield SD, de Jong E, Saddler JN (1997) Cellobiose dehydrogenase, an active agent in cellulose depolymerization. Appl Environ Microbiol 63(10):3804–3809

    Google Scholar 

  • Marriott PE, Gomez LD, McQueen-Mason SJ (2016) Unlocking the potential of lignocellulosic biomass through plant science. New Phytol 209(4):1366–1381

    Article  Google Scholar 

  • Mason WH (1928) Apparatus for and process of explosion fibration of lignocellulosic material. US Patent 16,556,18 (10 Jan 1928)

    Google Scholar 

  • McMillan JD (1994) Pretreatment of lignocellulosic biomass. In: Himmel ME, Baker JO, Overend RP (eds) Enzymatic conversion of biomass for fuels production. American Chemical Society, Washington, DC, pp 292–324

    Chapter  Google Scholar 

  • Mok WSL, Antal MJ (1992) Uncatalyzed solvolysis of whole biomass hemicellulose by hot compressed liquid water. Ind Eng Chem Res 31:1157–1161

    Article  Google Scholar 

  • Mosier NS, Sarikaya A, Ladisch CM, Ladisch MR (2001) Characterization of di-carboxylic acids for cellulose hydrolysis. Biotechnol Prog 17(3):474–480

    Article  Google Scholar 

  • Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96(6):673–686

    Article  Google Scholar 

  • Nichols NN, Dien BS, Guisado GM, López MJ (2005) Bioabatement to remove inhibitors from biomass-derived sugar hydrolysates. Appl Biochem Biotechnol 121:379–390

    Article  Google Scholar 

  • Nichols NN, Sharma LN, Mowery RA, Chambliss CK, van Walsum GP, Dien BS, Iten LB (2008) Fungal metabolism of fermentation inhibitors present in corn stover dilute acid hydrolysate. Enzym Microb Technol 42:624–630

    Article  Google Scholar 

  • Nichols NN, Dien BS, Cotta MA (2010) Fermentation of bioenergy crops into ethanol using biological abatement for removal of inhibitors. Bioresour Technol 101:7545–7550

    Article  Google Scholar 

  • Overend RP, Chornet E (1987) Fractionation of lignocellulosics by steamaqueous pretreatments. Philos Trans R Soc Lond A 321:523–536

    Article  Google Scholar 

  • Palmqvist E, Hahn-Hägerdal B (2000a) Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresour Technol 74:17–24

    Article  Google Scholar 

  • Palmqvist E, Hahn-Hägerdal B (2000b) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol 74:25–33

    Article  Google Scholar 

  • Pauly M, Keegstra K (2010) Plant cell wall polymers as precursors for biofuels. Curr Opin Plant Biol 13(3):305–312

    Article  Google Scholar 

  • Payne CM, Knott BC, Mayes HB, Hansson H, Himmel ME, Sandgren M, Stahlberg J, Beckham GT (2015) Fungal cellulases. Chem Rev 115(3):1308–1448

    Article  Google Scholar 

  • Pedersen M, Meyer AS (2010) Lignocellulose pretreatment severity-relating pH to biomatrix opening. New Biotechnol 27(6):739–750

    Article  Google Scholar 

  • Pedersen M, Viksø-Nielsen A, Meyer AS (2010) Monosaccharide yields and lignin removal from wheat straw in response to catalyst type and pH during mild thermal pretreatment. Process Biochem 45:1181–1186

    Article  Google Scholar 

  • Pensupa N, Jin M, Kokolski M, Archer DB, Du CY (2013) A solid state fungal fermentation-based strategy for the hydrolysis of wheat straw. Bioresour Technol 149:261–267

    Article  Google Scholar 

  • Pérez JA, Ballesteros I, Ballesteros M, Sáez F, Negro MJ, Manzanares P (2008) Optimizing liquid hot water pretreatment conditions to enhance sugar recovery from wheat straw for fuel-ethanol production. Fuel 87:3640–3647

    Article  Google Scholar 

  • Petersen MØ, Larsen J, Thomsen MH (2009) Optimization of hydrothermal pretreatment of wheat straw for production of bioethanol at low water consumption without addition of chemicals. Biomass Bioenergy 33:340–834

    Article  Google Scholar 

  • Pihlajaniemi V, Sipponena MH, Liimatainen H, Sirviö JA, Nyyssöläa A, Laaksoa S (2016) Weighing the factors behind enzymatic hydrolyzability of pretreated lignocellulose. Green Chem 18:1295–1305

    Article  Google Scholar 

  • Pinto Braga CM, Delabona PDS, Lima DJDS, Alvaredo Paixao DA, da Cruz Pradella JG, Farinas CS (2014) Addition of feruloyl esterase and xylanase produced on-site improves sugarcane bagasse hydrolysis. Bioresour Technol 170:316–324

    Article  Google Scholar 

  • Playne MJ (1984) Increased digestibility of bagasses by pretreatment with alkalis and steam explosion. Biotechnol Bioeng 1(26):426–433

    Article  Google Scholar 

  • Polizeli M, Rizzatti ACS, Monti R, Terenzi HF, Jorge JA, Amorim DS (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67(5):577–591

    Article  Google Scholar 

  • Pu YQ, Hu F, Huang F, Davison BH, Ragauskas AJ (2013) Assessing the molecular structure basis for biomass recalcitrance during dilute acid and hydrothermal pretreatments. Biotechnol Biofuels 6:1–13

    Article  Google Scholar 

  • Qing Q, Wyman CE (2011) Supplementation with xylanase and b-xylosidase to reduce xylo-oligomer and xylan inhibition of enzymatic hydrolysis of cellulose and pretreated corn stover. Biotechnol Biofuels 4:1–18

    Article  Google Scholar 

  • Qing Q, Yang B, Wyman CE (2010) Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes. Bioresour Technol 101:9624–9630

    Article  Google Scholar 

  • Rabemanolontsoa H, Saka S (2016) Various pretreatments of lignocellulosics. Bioresour Technol 199:83–91

    Article  Google Scholar 

  • Rana V, Eckard AD, Teller P, Ahring BK (2014) On-site enzymes produced from Trichoderma reesei RUT-C30 and Aspergillus saccharolyticus for hydrolysis of wet exploded corn stover and loblolly pine. Bioresour Technol 154:282–289

    Article  Google Scholar 

  • Ranatunga TD, Jervis J, Helm RF, McMillan JD, Hatzis C (1997) Toxicity of hardwood extractives toward Saccharomyces cerevisiae glucose fermentation. Biotechnol Lett 19:1125–1127

    Article  Google Scholar 

  • Rodriguez-Zuniga UF, Neto VB, Couri S, Crestana S, Farinas CS (2014) Use of spectroscopic and imaging techniques to evaluate pretreated sugarcane bagasse as a substrate for cellulase production under solid-state fermentation. Appl Biochem Biotechnol 172(5):2348–2362

    Article  Google Scholar 

  • Rogowski A, Basle A, Farinas CS, Solovyova A, Mortimer JC, Dupree P, Gilbert HJ, Bolam DN (2014) Evidence that GH115 alpha-glucuronidase activity, which is required to degrade plant biomass, is dependent on conformational flexibility. J Biol Chem 289(1):53–64

    Article  Google Scholar 

  • Ruiz HA, Rodriguez-Jasso RM, Fernandes BD, Vicente AA, Teixeira JA (2013) Hydrothermal processing, as an alternative for upgrading agriculture residues and marine biomass according to the biorefinery concept: a review. Renew Sust Energ Rev 21:35–51

    Article  Google Scholar 

  • Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30(5):279–291

    Article  Google Scholar 

  • Sarikaya A, Ladisch MR (1997a) An unstructured mathematical model for growth of Pleurotus ostreatus on lignocellulosic material in solid-state fermentation systems. Appl Biochem Biotechnol 62:71–85

    Article  Google Scholar 

  • Sarikaya A, Ladisch MR (1997b) Mechanism and potential applications of bio-lignolytic systems in a CELSS. Appl Biochem Biotechnol 62(2–3):131–149

    Article  Google Scholar 

  • Sarikaya A, Ladisch MR (1999) Solid state fermentation of lignocellulosic plant residues from Brassica napus by Pleurotus ostreatus 1999. Appl Biochem Biotechnol 82(1):1–16

    Article  Google Scholar 

  • Sheldon RA (2014) Green and sustainable manufacture of chemicals from biomass: state of the art. Green Chem 16:950–963

    Article  Google Scholar 

  • Silverstein RA, Chen Y, Sharma-Shivappa RR, Boyette MD, Osborne J (2007) A comparison of chemical pretreatment methods for improving saccharification of cotton stalks. Bioresour Technol 98:3000–3011

    Article  Google Scholar 

  • Singhania RR, Sukumaran RK, Patel AK, Larroche C, Pandey A (2010) Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzym Microb Technol 46(7):541–549

    Article  Google Scholar 

  • Sorensen A, Andersen JJ, Ahring BK, Teller PJ, Lubeck M (2014) Screening of carbon sources for beta-glucosidase production by Aspergillus saccharolyticus. Int Biodeter Biodegr 93:78–83

    Article  Google Scholar 

  • Sousa LD, Chundawat SPS, Balan V, Dale BE (2009) ‘Cradle-to-grave’ assessment of existing lignocellulose pretreatment technologies. Curr Opin Biotechnol 20(3):339–347

    Article  Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11

    Article  Google Scholar 

  • Trajano HL, Engle NL, Foston M, Ragauskas AJ, Tschaplinski TJ, Wyman CE (2013a) The fate of lignin during hydrothermal Pretreatment. Biotechnol Biofuels 6:110

    Article  Google Scholar 

  • Trajano HL, DeMartini JD, Studer MH, Wyman CE (2013b) Comparison of the effectiveness of a fluidized sand bath and a steam chamber for reactor heating. Ind Eng Chem Res 52:4932–4938

    Article  Google Scholar 

  • van den Brink J, Maitan-Alfenas GP, Zou G, Wang CS, Zho ZH, Guimaraes VM, de Vries R (2014) Synergistic effect of Aspergillus niger and Trichoderma reesei enzyme sets on the saccharification of wheat straw and sugarcane bagasse. Biotechnol J 9(10):1329–1338

    Article  Google Scholar 

  • Vasconcellos VM, Tardioli PW, Giordano RLC, Farinas CS (2015) Production efficiency versus thermostability of (hemi)cellulolytic enzymatic cocktails from different cultivation systems. Process Biochem 50(11):1701–1709

    Article  Google Scholar 

  • Weil J, Westgate PJ, Kohlmann KL, Ladisch MR (1994) Cellulose pretreatments of lignocelluosic substrates. Enzym Microb Technol 16:1002–1004

    Article  Google Scholar 

  • Weil J, Sarikaya A, Rau S-L, Goetz J, Ladisch C, Brewe M, Hendrickson R, Ladisch MR (1997) Pretreatment of yellow poplar sawdust by pressure cooking in water. Appl Biochem Biotechnol 68:21–40

    Article  Google Scholar 

  • Weil JR, Sarikaya A, Rau S-L, Goetz J, Ladisch CM, Brewer M, Hendrickson R, Ladisch MR (1998a) Pretreatment of corn fiber by pressure cooking in water. Appl Biochem Biotechnol 73:1–17

    Article  Google Scholar 

  • Weil JR, Brewer M, Hendrickson R, Sarikaya A, Ladisch MR (1998b) Continuous pH monitoring during pretreatment of yellow poplar wood sawdust by pressure cooking in water. Appl Biochem Biotechnol 70–72:99–111

    Article  Google Scholar 

  • Wyman CW (ed) (2013) Aqueous pretreatment of plant biomass for biological and chemical conversion, Section 21.4. Wiley, New York

    Google Scholar 

  • Ximenes E, Kim Y, Mosier N, Dien B, Ladisch M (2010) Inhibition of cellulases by phenols. Enzym Microb Technol 46(3–4):170–176

    Article  Google Scholar 

  • Ximenes E, Kim Y, Mosier N, Dien B, Ladisch M (2011) Deactivation of cellulases by phenols. Enzym Microb Technol 48(1):54–60

    Article  Google Scholar 

  • Ximenes E, Kim Y, Ladisch M (2013) Biological conversion of plants to fuels and chemicals. In: Wyman CE (ed) Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals. Wiley, Hoboken (ISBN-13: 9780470972021), pp 39–60

    Google Scholar 

  • Yang B, Wyman CE (2006) BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates. Biotechnol Bioeng 94(4):611–617

    Article  Google Scholar 

  • Yang B, Wyman CE (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofpr 2:26–40

    Google Scholar 

  • Zeng M, Mosier NS, Huang C-P, Sherman DM, Ladisch MR (2006) Microscopic examination of changes of plant cell structure in corn stover due to hot water pretreatment and enzymatic hydrolysis. Biotechnol Bioeng 97:265–278

    Article  Google Scholar 

  • Zhang Y, Himmel M, Mielenz J (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 24(5):452–481

    Article  Google Scholar 

Download references

Acknowledgments

The material in this work was supported by Hatch Act 10677 and 10646, Purdue University Agricultural Research Programs, and the Department of Agricultural and Biological Engineering. We are grateful to Antonio Carlos Freitas dos Santos and Leyu Zhang for internal review of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Ladisch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ximenes, E., Farinas, C.S., Kim, Y., Ladisch, M.R. (2017). Hydrothermal Pretreatment of Lignocellulosic Biomass for Bioethanol Production. In: Ruiz, H., Hedegaard Thomsen, M., Trajano, H. (eds) Hydrothermal Processing in Biorefineries. Springer, Cham. https://doi.org/10.1007/978-3-319-56457-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56457-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56456-2

  • Online ISBN: 978-3-319-56457-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics