Skip to main content

Multi-scale Factors and Processes Controlling Selenium Distributions in Soils

  • Chapter
  • First Online:
Selenium in plants

Part of the book series: Plant Ecophysiology ((KLEC,volume 11))

Abstract

Selenium (Se) is an essential trace element for maintaining homeostasis in humans and is characterized by a narrow range of recommended dietary intake levels. The main dietary sources of Se are food crops and therefore human intake levels largely depend on total concentrations and forms of Se in those food products. Important factors controlling Se uptake by plants are concentrations and speciation of Se in soils. Generally, Se concentrations in soils are driven by gradients in chemical and physical variables, which are in turn controlled by multiple biotic and abiotic processes that simultaneously span multiple spatial and temporal scales. This chapter discusses the factors and processes that control soil Se distributions on different spatial scales (i.e. from molecular to global scales) and how these gradients can be affected over time. In addition, it discusses how increased environmental scales lead to increased interactions among multi-scale factors and processes as well as to non-linear patterns between soil Se concentrations and environmental variables. Finally, it will be discussed how these patterns can be analyzed using sophisticated statistical techniques and how multi-scale variables and their interactions can be used to make predictions of soil Se concentrations in areas where this information is not available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abrams MM, Shennan C, Zasoski RJ et al (1990) Selenomethionine uptake by wheat seedlings. Agron J 82:1127–1130

    Article  CAS  Google Scholar 

  • Alemi MH, Goldhamer DA, Nielsen DR (1991) Modeling selenium transport in steady-state, unsaturated soil columns. J Environ Qual 20:89–95

    Article  CAS  Google Scholar 

  • Amini M, Abbaspour KC, Berg M et al (2008) Statistical modeling of global geogenic arsenic contamination in groundwater. Environ Sci Technol 42:3669–3675

    Article  CAS  PubMed  Google Scholar 

  • Amundson R, Chadwick O, Sowers J (1989) A comparison of soil climate and biological activity along an elevation gradient in the eastern Mojave Desert. Oecologia 80:395–400

    Article  CAS  PubMed  Google Scholar 

  • Arthur JR, Mckenzie RC, Beckett GJ (2003) Selenium in the immune system. J Nutr 133:1457S–1459S

    CAS  PubMed  Google Scholar 

  • Balistrieri LS, Chao TT (1990) Adsorption of selenium by amorphous iron oxyhydroxide and manganese-dioxide. Geochim Cosmochim Acta 54:739–751

    Article  CAS  Google Scholar 

  • Barrow NJ, Whelan BR (1989) Testing a mechanistic model. VIII. The effects of time and temperature of incubation on the sorption and subsequent desorption of selenite and selenate by a soil. J Soil Sci 40:29–37

    Article  CAS  Google Scholar 

  • Bar-Yosef B, Meek D (1987) Selenium sorption by kaolinite and montmorillonite. Soil Sci 144:11–19

    Article  CAS  Google Scholar 

  • Baumann F, He JS, Schmidt K et al (2009) Pedogenesis, permafrost, and soil moisture as controlling factors for soil nitrogen and carbon contents across the Tibetan Plateau. Glob Chang Biol 15:3001–3017

    Article  Google Scholar 

  • Baumann F, Schmidt K, Dorfer C et al (2014) Pedogenesis, permafrost, substrate and topography: plot and landscape scale interrelations of weathering processes on the central-eastern Tibetan Plateau. Geoderma 226:300–316

    Article  CAS  Google Scholar 

  • Blazina T, Sun Y, Voegelin A et al (2014) Terrestrial selenium distribution in China is potentially linked to monsoonal climate. Nat Commun 5:1–7

    Article  CAS  Google Scholar 

  • Boulding JR, Ginn JS (2003) Practical handbook of soil, vadose zone, and ground-water contamination: assessment, prevention, and remediation. CRC Press, London

    Google Scholar 

  • Callaway RM (1995) Positive interactions among plants. Bot Rev 61:306–349

    Article  Google Scholar 

  • Chen ZS, Hsieh CF, Jiang FY et al (1997) Relations of soil properties to topography and vegetation in a subtropical rain forest in southern Taiwan. Plant Ecol 132:229–241

    Article  Google Scholar 

  • Chilimba ADC, Young SD, Black CR et al (2011) Maize grain and soil surveys reveal suboptimal dietary selenium intake is widespread in Malawi. Sci Rep 1:1–9

    Article  CAS  Google Scholar 

  • Combs GF (2001) Selenium in global food systems. Br J Nutr 85:517–547

    Article  CAS  PubMed  Google Scholar 

  • De Temmerman L, Waegeneers N, Thiry C et al (2014) Selenium content of Belgian cultivated soils and its uptake by field crops and vegetables. Sci Total Environ 468:77–82

    Article  PubMed  CAS  Google Scholar 

  • Dhillon KS, Dhillon SK (2014) Development and mapping of seleniferous soils in northwestern India. Chemosphere 99:56–63

    Article  CAS  PubMed  Google Scholar 

  • Dwire KA, Kauffman JB, Baham JE (2006) Plant species distribution in relation to water-table depth and soil redox potential in montane riparian meadows. Wetlands 26:131–146

    Article  Google Scholar 

  • EFSA (2014) Scientific opinion on dietary reference values for selenium. EFSA J 12:3846

    Article  CAS  Google Scholar 

  • Eiche E (2015) Microscale distribution and elemental associations of Se in seleniferous soils in Punjab, India. Environ Sci Pollut R 22:5425–5436

    Article  CAS  Google Scholar 

  • Ellis DR, Salt DE (2003) Plants, selenium and human health. Curr Opin Plant Biol 6:273–279

    Article  CAS  PubMed  Google Scholar 

  • Elrashidi M, Adriano D, Lindsay W (1989) Solubility, speciation, and transformations of selenium in soils. In: Jacobs LW (ed) Selenium in agriculture and the environment. SSSA, Madison, pp 51–63

    Google Scholar 

  • Fairweather-Tait SJ, Bao YP, Broadley MR et al (2011) Selenium in human health and disease. Antioxid Redox Signal 14:1337–1383

    Article  CAS  PubMed  Google Scholar 

  • FAO (2001) Human vitamin and mineral requirements: report of a joint FAO/WHO expert consultation. Food and Nutrition Division, Rome

    Google Scholar 

  • Fernández-Martínez A, Charlet L (2009) Selenium environmental cycling and bioavailability: a structural chemist point of view. Rev Environ Sci Biotechnol 8:81–110

    Article  CAS  Google Scholar 

  • Frankenberger WT, Arshad M (2001) Bioremediation of selenium-contaminated sediments and water. Biofactors 14:241–254

    Article  CAS  PubMed  Google Scholar 

  • Franzmeier D, Pedersen E, Longwell T et al (1969) Properties of some soils in the Cumberland plateau as related to slope aspect and position. Soil Sci Soc Am J 33:755–761

    Article  Google Scholar 

  • Frost RR, Griffin RA (1977) Effect of pH on adsorption of arsenic and selenium from landfill leachate by clay minerals. Soil Sci Soc Am J 41:53–57

    Article  CAS  Google Scholar 

  • Gambrell RP (1994) Trace and toxic metals in wetlands – a review. J Environ Qual 23:883–891

    Article  CAS  Google Scholar 

  • Gissel-Nielsen G (1971) Influence of pH and texture of the soil on plant uptake of added selenium. J Agric Food Chem 19:1165–1167

    Article  CAS  PubMed  Google Scholar 

  • Gottschalk P, Smith JU, Wattenbach M et al (2012) How will organic carbon stocks in mineral soils evolve under future climate? Global projections using RothC for a range of climate change scenarios. Biogeosciences 9:3151–3171

    Article  CAS  Google Scholar 

  • Greve P, Orlowsky B, Mueller B et al (2014) Global assessment of trends in wetting and drying over land. Nat Geosci 7:716–721

    Article  CAS  Google Scholar 

  • Hart D, Fairweather-Tait S, Broadley M et al (2011) Selenium concentration and speciation in biofortified flour and bread: retention of selenium during grain biofortification, processing and production of Se-enriched food. Food Chem 126:1771–1778

    Article  CAS  PubMed  Google Scholar 

  • Harvey A (2002) Factors influencing the geomorphology of dry-region alluvial fans: a review. Aportaciones a la Geomorfologıa de Espana en el inicio del tercer milenio. Publicaciones del Instituto Geológico y Minero de Espana, Serie: Geologıa 1: 59–75

    Google Scholar 

  • Hefting M, Clement JC, Dowrick D et al (2004) Water table elevation controls on soil nitrogen cycling in riparian wetlands along a European climatic gradient. Biogeochemistry 67:113–134

    Article  CAS  Google Scholar 

  • Hinsinger P, Plassard C, Tang CX et al (2003) Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review. Plant Soil 248:43–59

    Article  CAS  Google Scholar 

  • Hoffmann PR, Berry MJ (2008) The influence of selenium on immune responses. Mol Nutr Food Res 52:1273–1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hyun S, Burns PE, Murarka I et al (2006) Selenium(IV) and (VI) sorption by soils surrounding fly ash management facilities. Vadose Zone J 5:1110–1118

    Article  CAS  Google Scholar 

  • Ippolito JA, Scheckel KG, Barbarick KA (2009) Selenium adsorption to aluminum-based water treatment residuals. J Colloid Interface Sci 338:48–55

    Article  CAS  PubMed  Google Scholar 

  • Jobbagy EG, Jackson RB (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10:423–436

    Article  Google Scholar 

  • Johnsson L (1991) Selenium uptake by plants as a function of soil type, organic matter content and pH. Plant Soil 133:57–64

    Article  CAS  Google Scholar 

  • Jones GD, Droz B, Greve P et al. (2017) Selenium deficiency risk predicted to increase under future climate change. P Natl Acad Sci USA 114:2848–2853. DOI: 10.1073/pnas.1611576114

  • Karlson U, Frankenberger WT (1989) Accelerated rates of selenium volatilization from California soils. Soil Sci Soc Am J 53:749–753

    Article  CAS  Google Scholar 

  • Kausch MF, Pallud CE (2013) Modeling the impact of soil aggregate size on selenium immobilization. Biogeosciences 10:1323–1336

    Article  CAS  Google Scholar 

  • Kausch M, Ng P, Ha J et al (2012) Soil-aggregate-scale heterogeneity in microbial selenium reduction. Vadose Zone J 11

    Google Scholar 

  • Kikkert J, Berkelaar E (2013) Plant uptake and translocation of inorganic and organic forms of selenium. Arch Environ Contam Toxicol 65:458–465

    Article  CAS  PubMed  Google Scholar 

  • Knights JS, Zhao FJ, Spiro B et al (2000) Long-term effects of land use and fertilizer treatments on sulfur cycling. J Environ Qual 29:1867–1874

    Article  CAS  Google Scholar 

  • Lado LR, Polya D, Winkel L et al (2008) Modelling arsenic hazard in Cambodia: a geostatistical approach using ancillary data. Appl Geochem 23:3010–3018

    Article  CAS  Google Scholar 

  • LÃ¥g J, Steinnes E (1974) Soil selenium in relation to precipitation. Ambio:237–238

    Google Scholar 

  • LÃ¥g J, Steinnes E (1978) Regional distribution of selenium and arsenic in humus layers of Norwegian forest soils. Geoderma 20:3–14

    Article  Google Scholar 

  • Le Hécho I, Tolu J, Thiry Y et al (2012) Influence of selenium speciation and fractionation on its mobility in soils. In: Selim HM (ed) Competitive sorption and transport of heavy metals in soils and geological media. CRC Press, Boca Raton, pp 215–230

    Chapter  Google Scholar 

  • Lenz M, Smit M, Binder P et al (2008) Biological alkylation and colloid formation of selenium in methanogenic UASB reactors. J Environ Qual 37:1691–1700

    Article  CAS  PubMed  Google Scholar 

  • Lenz M, Enright AM, O’flaherty V et al (2009) Bioaugmentation of UASB reactors with immobilized Sulfurospirillum barnesii for simultaneous selenate and nitrate removal. Appl Microbiol Biotechnol 83:377–388

    Article  CAS  PubMed  Google Scholar 

  • Li HF, Lombi E, Stroud JL et al (2010) Selenium speciation in soil and rice: influence of water management and Se fertilization. J Agric Food Chem 58:11837–11843

    Article  CAS  PubMed  Google Scholar 

  • Macyk TM, Pawluk S, Lindsay JD (1978) Relief and microclimate as related to soil properties. Can J Soil Sci 58:421–438

    Article  CAS  Google Scholar 

  • Martin A, Turnbull R, Rattenbury M et al (2016) The regional geochemical baseline soil survey of southern New Zealand: design and initial interpretation. J Geochem Explor 167:70–82

    Article  CAS  Google Scholar 

  • Masscheleyn PH, Patrick WH (1993) Biogeochemical processes affecting selenium cycling in wetlands. Environ Toxicol Chem 12:2235–2243

    Article  CAS  Google Scholar 

  • Masscheleyn PH, Delaune RD, Patrick WH (1990) Transformations of selenium as affected by sediment oxidation reduction potential and pH. Environ Sci Technol 24:91–96

    Article  CAS  Google Scholar 

  • Mclatchey GP, Reddy KR (1998) Regulation of organic matter decomposition and nutrient release in a wetland soil. J Environ Qual 27:1268–1274

    Article  CAS  Google Scholar 

  • Moore ID, Gessler PE, Nielsen GA et al (1993) Soil attribute prediction using terrain analysis. Soil Sci Soc Am J 57:443–452

    Article  Google Scholar 

  • Moronta A (2004) Catalytic and adsorption properties of modified clay surfaces. Interface Sci Technol 1:321–344

    Article  CAS  Google Scholar 

  • Nakamaru YM, Altansuvd J (2014) Speciation and bioavailability of selenium and antimony in non-flooded and wetland soils: a review. Chemosphere 111:366–371

    Article  CAS  PubMed  Google Scholar 

  • Nothstein AK, Eiche E, Riemann M et al (2016) Tracking Se assimilation and speciation through the rice plant – nutrient competition, toxicity and distribution. PLoS One 11:e0152081

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Olivie-Lauquet G, Gruau G, Dia A et al (2001) Release of trace elements in wetlands: role of seasonal variability. Water Res 35:943–952

    Article  CAS  PubMed  Google Scholar 

  • Oremland RS, Herbel MJ, Blum JS et al (2004) Structural and spectral features of selenium nanospheres produced by Se-respiring bacteria. Appl Environ Microbiol 70:52–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Otterstedt J-E, Brandreth DA (1998) Clays and colloidal silicas. In: Small particles technology. Springer, New York, pp 155–183

    Chapter  Google Scholar 

  • Padilla FM, Pugnaire FI (2006) The role of nurse plants in the restoration of degraded environments. Front Ecol Environ 4:196–202

    Article  Google Scholar 

  • Ravi S, Breshears DD, Huxman TE, D’Odorico P (2010) Land degradation in drylands: interactions among hydrologic–aeolian erosion and vegetation dynamics. Geomorphology 116:236–245

    Article  Google Scholar 

  • Rawlins B, Mcgrath S, Scheib A et al (2012) The advanced soil geochemical atlas of England and Wales. British Geological Survey, Nottingham

    Google Scholar 

  • Rayman MP (2000) The importance of selenium to human health. Lancet 356:233–241

    Article  CAS  PubMed  Google Scholar 

  • Reimann C, Demetriades A, Birke M et al (2014) Distribution of elements/parameters in agricultural and grazing land soil in Europe. In: Reimann C, Birke M, Demetriades A, Filzmoser P, O’Connor P (eds) Chemistry of Europe’s agricultural soils. Part a: methodology and interpretation of the GEMAS data set. Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover, pp 103–474

    Google Scholar 

  • Rovira M, Gimenez J, Martinez M et al (2008) Sorption of selenium(IV) and selenium(VI) onto natural iron oxides: goethite and hematite. J Hazard Mater 150:279–284

    Article  CAS  PubMed  Google Scholar 

  • Saeki K, Matsumoto S (1994) Selenite adsorption by a variety of oxides. Commun Soil Sci Plant Anal 25:2147–2158

    Article  CAS  Google Scholar 

  • Seby F, Potin-Gautier M, Giffaut E et al (2001) A critical review of thermodynamic data for selenium species at 25 degrees C. Chem Geol 171:173–194

    Article  CAS  Google Scholar 

  • Sexstone AJ, Revsbech NP, Parkin TB et al (1985) Direct measurement of oxygen profiles and denitrification rates in soil aggregates. Soil Sci Soc Am J 49:645–651

    Article  CAS  Google Scholar 

  • Shand CA, Eriksson J, Dahlin AS et al (2012) Selenium concentrations in national inventory soils from Scotland and Sweden and their relationship with geochemical factors. J Geochem Explor 121:4–14

    Article  CAS  Google Scholar 

  • Sharmasarkar S, Vance GF (2002) Selenite-selenate sorption in surface coal mine environment. Adv Environ Res 7:87–95

    Article  CAS  Google Scholar 

  • Singh M, Singh N, Relan PS (1981) Adsorption and desorption of selenite and selenate selenium on different soils. Soil Sci 132:134–141

    Article  CAS  Google Scholar 

  • Smith DB, Cannon WF, Woodruff LG et al. (2014) Geochemical and mineralogical maps for soils of the conterminous United States. US Geological Survey No. 2014–1082.

    Google Scholar 

  • Steinnes E (2009) Soils and geomedicine. Environ Geochem Health 31:523–535

    Article  CAS  PubMed  Google Scholar 

  • Stolz JF, Oremland RS (1999) Bacterial respiration of arsenic and selenium. FEMS Microbiol Rev 23:615–627

    Article  CAS  PubMed  Google Scholar 

  • Stolz JE, Basu P, Santini JM et al (2006) Arsenic and selenium in microbial metabolism. Annu Rev Microbiol 60:107–130

    Article  CAS  PubMed  Google Scholar 

  • Stone R (2009) A medical mystery in middle China. Science 324:1378–1381

    Article  CAS  PubMed  Google Scholar 

  • Stroud JL, Mcgrath SP, Zhao FJ (2012) Selenium speciation in soil extracts using LC-ICP-MS. Int J Environ Anal Chem 92:222–236

    Article  CAS  Google Scholar 

  • Sun G-X, Meharg AA, Li G et al (2016) Distribution of soil selenium in China is potentially controlled bydeposition and volatilization? Sci Rep 6:1–9

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP-5 and the experiment design. B Am Meteorol Soc 93:485–498

    Article  Google Scholar 

  • Terry N, Zayed AM, De Souza MP et al (2000) Selenium in higher plants. Annu Rev Plant Physiol Plant Mol Biol 51:401–432

    Article  CAS  PubMed  Google Scholar 

  • Tokunaga TK, Pickering IJ, Brown GE (1996) Selenium transformations in ponded sediments. Soil Sci Soc Am J 60:781–790

    Article  CAS  Google Scholar 

  • Tolu J, Le Hecho I, Bueno M et al (2011) Selenium speciation analysis at trace level in soils. Anal Chim Acta 684:126–133

    Article  CAS  PubMed  Google Scholar 

  • Tolu J, Thiry Y, Bueno M et al (2014) Distribution and speciation of ambient selenium in contrasted soils, from mineral to organic rich. Sci Total Environ 479:93–101

    Article  PubMed  CAS  Google Scholar 

  • Tsui CC, Chen ZS, Hsieh CF (2004) Relationships between soil properties and slope position in a lowland rain forest of Southern Taiwan. Geoderma 123:131–142

    Article  Google Scholar 

  • Velde BB, Meunier A (2008) The origin of clay minerals in soils and weathered rocks. Springer, Heidelberg

    Book  Google Scholar 

  • Vriens B, Lenz M, Charlet L et al (2014) Natural wetland emissions of methylated trace elements. Nat Commun 5:1–8

    Article  CAS  Google Scholar 

  • Vriens B, Behra R, Voegelin A et al (2016) Selenium uptake and methylation by the microalga Chlamydomonas reinhardtii. Environ Sci Technol 50:711–720

    Article  CAS  PubMed  Google Scholar 

  • Wen H, Carignan J (2007) Reviews on atmospheric selenium: emissions, speciation and fate. Atmos Environ 41:7151–7165

    Article  CAS  Google Scholar 

  • Weng LP, Vega FA, Supriatin S et al (2011) Speciation of Se and DOC in soil solution and their relation to se bioavailability. Environ Sci Technol 45:262–267

    Article  CAS  PubMed  Google Scholar 

  • Winkel L, Berg M, Amini M et al (2008) Predicting groundwater arsenic contamination in Southeast Asia from surface parameters. Nat Geosci 1:536–542

    Article  CAS  Google Scholar 

  • Winkel LHE, Johnson CA, Lenz M et al (2011a) Environmental selenium research: from microscopic processes to global understanding. Environ Sci Technol 46:571–579

    Article  PubMed  CAS  Google Scholar 

  • Winkel LHE, Pham TKT, Vi ML et al (2011b) Arsenic pollution of groundwater in Vietnam exacerbated by deep aquifer exploitation for more than a century. Proc Natl Acad Sci U S A 108:1246–1251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winkel LHE, Vriens B, Jones GD et al (2015) Selenium cycling across soil-plant-atmosphere interfaces: a critical review. Forum Nutr 7:4199–4239

    CAS  Google Scholar 

  • Wu XF, Lag J (1988) Selenium in Norwegian farmland soils. Acta Agric Scand 38:271–276

    Article  CAS  Google Scholar 

  • Yang NF, Winkel LHE, Johannesson KH (2014) Predicting geogenic arsenic contamination in shallow groundwater of South Louisiana, United States. Environ Sci Technol 48:5660–5666

    Article  CAS  PubMed  Google Scholar 

  • Yimer F, Ledin S, Abdelkadir A (2006) Soil organic carbon and total nitrogen stocks as affected by topographic aspect and vegetation in the Bale Mountains, Ethiopia. Geoderma 135:335–344

    Article  CAS  Google Scholar 

  • Zayed A, Lytle CM, Terry N (1998) Accumulation and volatilization of different chemical species of selenium by plants. Planta 206:284–292

    Article  CAS  Google Scholar 

  • Zheng C (1994) Atlas of soil environmental background value in the People’s Republic of China. China Environmental Science Press, Beijing

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lenny H. E. Winkel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Jones, G.D., Winkel, L.H.E. (2017). Multi-scale Factors and Processes Controlling Selenium Distributions in Soils. In: Pilon-Smits, E., Winkel, L., Lin, ZQ. (eds) Selenium in plants. Plant Ecophysiology, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-56249-0_1

Download citation

Publish with us

Policies and ethics