Skip to main content

Anticonvulsant Agents: Pharmacology and Biochemistry

NeuroPsychopharmacotherapy
  • 26 Accesses

Abstract

Anticonvulsant drugs, often referred to as antiepileptic drugs or, more recently, antiseizure drugs (ASDs), are the main form of symptomatic treatment for patients with epilepsy. Currently, about 30 ASDs are available for epilepsy therapy. Most ASDs are small, lipophilic, and uncharged, which enables them to penetrate into the brain and reach their targets. Most ASDs have elimination half-lives in the range of 5–15 h, so twice-daily administration is sufficient to maintain effective drug levels. Most ASDs act by modulation of voltage-gated ion channels; by enhancement of GABA-mediated inhibition; through interactions with elements of the synaptic release machinery; by blockade of ionotropic glutamate receptors; or by combinations of these mechanisms. As a consequence of differences in their mechanisms of action, most ASDs do not suppress all types of seizures, so appropriate treatment choices are important. The goal of epilepsy therapy is the complete elimination of seizures, which, however, is not achievable in about a third of patients. Both in vivo and in vitro models of seizures and epilepsy are used to discover ASDs that are more effective in patients with yet drug-resistant seizures. In addition to epilepsy, ASDs are used in the treatment of acute symptomatic seizures, cluster seizures, and status epilepticus. Furthermore, several ASDs are important therapies in nonepileptic conditions, including neuropathic pain, migraine, and bipolar disorders. Most ASDs are relatively well tolerated, but rare and unpredictable idiosyncratic adverse drug reactions, particularly skin reactions, may occur. Furthermore, some older ASDs induce liver drug metabolism and act as teratogens. Detailed knowledge of the adverse effect profiles of ASDs is an essential component of treating epilepsy successfully and maintaining a high quality of life for every patient, particularly those receiving polypharmacy for drug-resistant seizures.

I dedicate this work to my late friend and colleague, Professor Dieter Schmidt, who inspired me throughout my scientific career.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alles SRA, Smith PA. Etiology and pharmacology of neuropathic pain. Pharmacol Rev. 2018;70(2):315–47.

    Article  CAS  PubMed  Google Scholar 

  • Baraban SC, Löscher W. What new modeling approaches will help us identify promising drug treatments? Adv Exp Med Biol. 2014;813:283–94.

    Article  PubMed  Google Scholar 

  • Beghi E, Carpio A, Forsgren L, Hesdorffer DC, Malmgren K, Sander JW, et al. Recommendation for a definition of acute symptomatic seizure. Epilepsia. 2010;51(4):671–5.

    Article  PubMed  Google Scholar 

  • Bialer M. Why are antiepileptic drugs used for nonepileptic conditions? Epilepsia. 2012;53(Suppl 7):26–33.

    Article  CAS  PubMed  Google Scholar 

  • Bialer M, Perucca E. Does cannabidiol have antiseizure activity independent of its interactions with clobazam? An appraisal of the evidence from randomized controlled trials. Epilepsia. 2020;61(6):1082–9.

    Article  CAS  PubMed  Google Scholar 

  • Bialer M, White HS. Key factors in the discovery and development of new antiepileptic drugs. Nat Rev Drug Discov. 2010;9(1):68–82.

    Article  CAS  PubMed  Google Scholar 

  • Blaszczyk B, Miziak B, Czuczwar P, Wierzchowska-Cioch E, Pluta R, Czuczwar SJ. A viewpoint on rational and irrational fixed-drug combinations. Expert Rev Clin Pharmacol. 2018;11(8):761–71.

    Article  CAS  PubMed  Google Scholar 

  • Boada CM, French JA, Dumanis SB. Proceedings of the 15th antiepileptic drug and device trials meeting: state of the science. Epilepsy Behav. 2020;111:107189.

    Article  PubMed  Google Scholar 

  • Brennan GP, Baram TZ, Poolos NP. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in epilepsy. Cold Spring Harb Perspect Med. 2016;6(3):a022384.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brodie MJ. Tolerability and safety of commonly used antiepileptic drugs in adolescents and adults: a Clinician's overview. CNS Drugs. 2017;31(2):135–47.

    Article  CAS  PubMed  Google Scholar 

  • Brodie MJ, Kwan P. Current position of phenobarbital in epilepsy and its future. Epilepsia. 2012;53(Suppl 8):40–6.

    Article  CAS  PubMed  Google Scholar 

  • Brodie MJ, Sills GJ. Combining antiepileptic drugs--rational polytherapy? Seizure. 2011;20(5):369–75.

    Article  PubMed  Google Scholar 

  • Brodie MJ, Yuen AWC. Lamotrigine substitution study: evidence for synergism with sodium valproate? Epilepsy Res. 1997;26:423–32.

    Article  CAS  PubMed  Google Scholar 

  • Browne TR. Drug therapy reviews: clinical pharmacology of antiepileptic drugs. Am J Hosp Pharm. 1978;35(9):1048–56.

    CAS  PubMed  Google Scholar 

  • Brunson KL, Avishai-Eliner S, Baram TZ. ACTH treatment of infantile spasms: mechanisms of its effects in modulation of neuronal excitability. Int Rev Neurobiol. 2002;49:185–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campos MSA, Ayres LR, Morelo MRS, Carizio FAM, Pereira LRL. Comparative efficacy of antiepileptic drugs for patients with generalized epileptic seizures: systematic review and network meta-analyses. Int J Clin Pharm. 2018;40(3):589–98.

    Article  CAS  PubMed  Google Scholar 

  • Carvill GL, Dulla CG, Lowenstein DH, Brooks-Kayal AR. The path from scientific discovery to cures for epilepsy. Neuropharmacology. 2020;167:107702.

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Brodie MJ, Kwan P. What has been the impact of new drug treatments on epilepsy? Curr Opin Neurol. 2020;33(2):185–90.

    Article  PubMed  Google Scholar 

  • Cramer JA. Tolerability of antiepileptic drugs: can we determine differences? Epilepsy Behav. 2012;23(3):187–92.

    Article  PubMed  Google Scholar 

  • Deckers CL, Czuczwar SJ, Hekster YA, Keyser A, Kubova H, Meinardi H, et al. Selection of antiepileptic drug polytherapy based on mechanisms of action: the evidence reviewed. Epilepsia. 2000;41:1364–74.

    Article  CAS  PubMed  Google Scholar 

  • Demarest ST, Brooks-Kayal A. From molecules to medicines: the dawn of targeted therapies for genetic epilepsies. Nat Rev Neurol. 2018;14(12):735–45.

    Article  PubMed  Google Scholar 

  • Devinsky O, Vezzani A, O'Brien TJ, Jette N, Scheffer IE, De Curtis M, et al. Epilepsy. Nat Rev Dis Primers. 2018;4:18024.

    Article  PubMed  Google Scholar 

  • Donovan MD, Griffin BT, Kharoshankaya L, Cryan JF, Boylan GB. Pharmacotherapy for neonatal seizures: current knowledge and future perspectives. Drugs. 2016;76(6):647–61.

    Article  CAS  PubMed  Google Scholar 

  • Franz DN, Weiss BD. Molecular therapies for tuberous sclerosis and neurofibromatosis. Curr Neurol Neurosci Rep. 2012;12(3):294–301.

    Article  CAS  PubMed  Google Scholar 

  • French JA. Cenobamate for focal seizures - a game changer? Nat Rev Neurol. 2020;16(3):133–4.

    Article  CAS  PubMed  Google Scholar 

  • Gayatri NA, Livingston JH. Aggravation of epilepsy by anti-epileptic drugs. Dev Med Child Neurol. 2006;48(5):394–8.

    Article  CAS  PubMed  Google Scholar 

  • Gidal B, Klein P, Hirsch LJ. Seizure clusters, rescue treatments, seizure action plans: unmet needs and emerging formulations. Epilepsy Behav. 2020;112:107391.

    Article  PubMed  Google Scholar 

  • Glauser T, Shinnar S, Gloss D, Alldredge B, Arya R, Bainbridge J, et al. Evidence-based guideline: treatment of convulsive status epilepticus in children and adults: report of the guideline Committee of the American Epilepsy Society. Epilepsy Curr. 2016;16(1):48–61.

    Article  PubMed  PubMed Central  Google Scholar 

  • Guignet M, Campbell A, White HS. Cenobamate (XCOPRI®): can preclinical and clinical evidence provide insight into its mechanism of action? Epilepsia 2020.; in press.

    Google Scholar 

  • Gunawardane N, Fields M. Acute symptomatic seizures and provoked seizures: to treat or not to treat? Curr Treat Options Neurol. 2018;20(10):41.

    Article  PubMed  Google Scholar 

  • Jafarpour S, Hirsch LJ, Gaínza-Lein M, Kellinghaus C, Detyniecki K. Seizure cluster: Definition, prevalence, consequences, and management. Seizure. 2019;68:9–15.

    Article  PubMed  Google Scholar 

  • Janmohamed M, Brodie MJ, Kwan P. Pharmacoresistance - epidemiology, mechanisms, and impact on epilepsy treatment. Neuropharmacology. 2020;168:107790.

    Article  CAS  PubMed  Google Scholar 

  • Jeong A, Wong M. mTOR inhibitors in children: current indications and future directions in neurology. Curr Neurol Neurosci Rep. 2016;16(12):102.

    Article  PubMed  CAS  Google Scholar 

  • Jozwiak S, Kotulska-Jozwiak K, Bebin M, Wong M. Modifying genetic epilepsies – results from studies on tuberous sclerosis complex and their potential mpact. Neuropharmacology. 2020;166:107908.

    Article  CAS  PubMed  Google Scholar 

  • Kehne JH. National Institute of Neurological Disorders and Stroke (NINDS) epilepsy therapy screening program (ETSP). Neurochem Res. 2017;42:1894–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keppel Hesselink JM, Kopsky DJ. Phenytoin: 80 years young, from epilepsy to breast cancer, a remarkable molecule with multiple modes of action. J Neurol. 2017;264(8):1617–21.

    Article  CAS  PubMed  Google Scholar 

  • Klitgaard H, Matagne A, Lamberty Y. Use of epileptic animals for adverse effect testing. Epilepsy Res. 2002;50:55–65.

    Article  CAS  PubMed  Google Scholar 

  • Kwan P, Brodie MJ. Early identification of refractory epilepsy. N Engl J Med. 2000;342(5):314–9.

    Article  CAS  PubMed  Google Scholar 

  • Kwan P, Brodie MJ. Combination therapy in epilepsy: when and what to use. Drugs. 2006;66(14):1817–29.

    Article  CAS  PubMed  Google Scholar 

  • Lattanzi S, Zaccara G, Giovannelli F, Grillo E, Nardone R, Silvestrini M, et al. Antiepileptic monotherapy in newly diagnosed focal epilepsy. A network meta-analysis. Acta Neurol Scand. 2019;139(1):33–41.

    Article  CAS  PubMed  Google Scholar 

  • Löscher W. The pharmacokinetics of antiepileptic drugs in rats: consequences for maintaining effective drug levels during prolonged drug Administration in rat Models of epilepsy. Epilepsia. 2007;48:1245–58.

    Article  PubMed  CAS  Google Scholar 

  • Löscher W. Fit for purpose application of currently existing animal models in the discovery of novel epilepsy therapies. Epilepsy Res. 2016;126:157–84.

    Article  PubMed  Google Scholar 

  • Löscher W. Animal models of seizures and epilepsy: past, present, and future role for the discovery of Antiseizure drugs. Neurochem Res. 2017;42(7):1873–88.

    Article  PubMed  CAS  Google Scholar 

  • Löscher W. The holy grail of epilepsy prevention: preclinical approaches to antiepileptogenic treatments. Neuropharmacology. 2020;167:107605.

    Article  PubMed  CAS  Google Scholar 

  • Löscher W, Friedman A. Structural, molecular and functional alterations of the blood-brain barrier during epileptogenesis and epilepsy: a cause, consequence or both? Int J Mol Sci. 2020;21:591.

    Article  PubMed Central  CAS  Google Scholar 

  • Löscher W, Hönack D. The novel competitive N-methyl-D-aspartate (NMDA) antagonist CGP 37849 preferentially induces phencyclidine-like behavioral effects in kindled rats: attenuation by manipulation of dopamine, alpha-1 and serotonin1A receptors. J Pharmacol Exp Ther. 1991;257:1146–53.

    PubMed  Google Scholar 

  • Löscher W, Hönack D. Profile of ucb L059, a novel anticonvulsant drug, in models of partial and generalized epilepsy in mice and rats. Eur J Pharmacol. 1993;232:147–58.

    Article  PubMed  Google Scholar 

  • Löscher W, Schmidt D. Which animal models should be used in the search for new antiepileptic drugs? A proposal based on experimental and clinical considerations. Epilepsy Res. 1988;2:145–81.

    Article  PubMed  Google Scholar 

  • Löscher W, Schmidt D. Strategies in antiepileptic drug development: is rational drug design superior to random screening and structural variation? Epilepsy Res. 1994;17:95–134.

    Article  PubMed  Google Scholar 

  • Löscher W, Schmidt D. Experimental and clinical evidence for loss of effect (tolerance) during prolonged treatment with antiepileptic drugs. Epilepsia. 2006;47(8):1253–84.

    Article  PubMed  CAS  Google Scholar 

  • Löscher W, Schmidt D. Modern antiepileptic drug development has failed to deliver: ways out of the current dilemma. Epilepsia. 2011;52(4):657–78.

    Article  PubMed  Google Scholar 

  • Löscher W, Schmidt D. Epilepsy: Perampanel-new promise for refractory epilepsy? Nat Rev Neurol. 2012;8:661–2.

    Article  PubMed  Google Scholar 

  • Löscher W, Rundfeldt C, Hönack D. Pharmacological characterization of phenytoin-resistant amygdala-kindled rats, a new model of drug-resistant partial epilepsy. Epilepsy Res. 1993;15:207–19.

    Article  PubMed  Google Scholar 

  • Löscher W, Klitgaard H, Twyman RE, Schmidt D. New avenues for antiepileptic drug discovery and development. Nat Rev Drug Discov. 2013;12:757–76.

    Article  PubMed  CAS  Google Scholar 

  • Löscher W, Gillard M, Sands ZA, Kaminski RM, Klitgaard H. Synaptic vesicle glycoprotein 2A ligands in the treatment of epilepsy and beyond. CNS Drugs. 2016;30(11):1055–77.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Löscher W, Potschka H, Sisodiya SM, Vezzani A. Drug resistance in epilepsy: clinical impact, potential mechanisms, and new innovative treatment options. Pharmacol Rev. 2020;72:606–38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lowenstein DH. The management of refractory status epilepticus: an update. Epilepsia. 2006;47(Suppl 1):35–40.

    Article  PubMed  Google Scholar 

  • McTague A, Martland T, Appleton R. Drug management for acute tonic-clonic convulsions including convulsive status epilepticus in children. Cochrane Database Syst Rev. 2018;1(1):CD001905.

    PubMed  Google Scholar 

  • Meldrum B. Do preclinical seizure models preselect certain adverse effects of antiepileptic drugs. Epilepsy Res. 2002;50(1–2):33–40.

    Article  CAS  PubMed  Google Scholar 

  • Millar LJ, Shi L, Hoerder-Suabedissen A, Molnár Z. Neonatal Hypoxia Ischaemia: Mechanisms, Models, and Therapeutic Challenges. Front Cell Neurosci 2017; 11:78.

    Google Scholar 

  • Nair AB, Jacob S. A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm. 2016;7(2):27–31.

    Article  PubMed  PubMed Central  Google Scholar 

  • Niu W, Parent JM. Modeling genetic epilepsies in a dish. Dev Dyn. 2020;249(1):56–75.

    Article  PubMed  Google Scholar 

  • Overwater IE, Rietman AB, van Eeghen AM, de Wit MCY. Everolimus for the treatment of refractory seizures associated with tuberous sclerosis complex (TSC): current perspectives. Ther Clin Risk Manag. 2019;15:951–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patsalos PN, Berry DJ, Bourgeois BF, Cloyd JC, Glauser TA, Johannessen SI, et al. Antiepileptic drugs--best practice guidelines for therapeutic drug monitoring: a position paper by the subcommission on therapeutic drug monitoring. ILAE Commission on Therapeutic Strategies Epilepsia. 2008;49(7):1239–76.

    CAS  PubMed  Google Scholar 

  • Patsalos PN, Spencer EP, Berry DJ. Therapeutic drug monitoring of antiepileptic drugs in epilepsy: a 2018 update. Ther Drug Monit. 2018;40(5):526–48.

    Article  CAS  PubMed  Google Scholar 

  • Perucca E. Antiepileptic drugs: evolution of our knowledge and changes in drug trials. Epileptic Disord. 2019;21(4):319–29.

    PubMed  Google Scholar 

  • Perucca E, Meador KJ. Adverse effects of antiepileptic drugs. Acta Neurol Scand Suppl. 2005;181:30–5.

    Article  CAS  PubMed  Google Scholar 

  • Perucca E, Gram L, Avanzini G, Dulac O. Antiepileptic drugs as a cause of worsening seizures. Epilepsia. 1998;39:5–17.

    Article  CAS  PubMed  Google Scholar 

  • Pisani F, Oteri G, Russo MF, Di Perri R, Perucca E, Richens A. The efficacy of valproate-lamotrigine comedication in refractory complex partial seizures: evidence for a pharmacodynamic interaction. Epilepsia. 1999;40:1141–1146.

    Google Scholar 

  • Pitkänen A, Buckmaster PS, Galanopoulou AS, Moshé SL. Models of seizures and epilepsy. 2nd ed. London: Academic Press; 2017.

    Google Scholar 

  • Porter RJ, Kupferberg HJ. The anticonvulsant screening program of the National Institute of Neurological Disorders and Stroke, NIH: history and contributions to clinical Care in the Twentieth Century and beyond. Neurochem Res. 2017;42:1889–93.

    Article  CAS  PubMed  Google Scholar 

  • Porter RJ, Dhir A, Macdonald RL, Rogawski MA. Mechanisms of action of antiseizure drugs. In: Stefan H, Theodore WH, editors. Handbook of clinical neurology, vol. 108. Amsterdam: Elsevier; 2012. p. 663–81.

    Google Scholar 

  • Putnam TJ, Merritt HH. Experimental determination of the anticonvulsant properties of some phenyl derivatives. Science. 1937;85:525–6.

    Article  CAS  PubMed  Google Scholar 

  • Rogawski MA, Löscher W. The neurobiology of antiepileptic drugs. Nat Rev Neurosci. 2004a;5:553–64.

    Article  CAS  PubMed  Google Scholar 

  • Rogawski MA, Löscher W. The neurobiology of antiepileptic drugs for the treatment of nonepileptic conditions. Nature Med. 2004b;10:685–92.

    Article  CAS  PubMed  Google Scholar 

  • Rogawski MA, Löscher W, Rho JM. Mechanisms of action of Antiseizure drugs and the Ketogenic diet. Cold Spring Harb Perspect Med. 2016;6(5):a022780.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rossetti AO, Lowenstein DH. Management of refractory status epilepticus in adults: still more questions than answers. Lancet Neurol. 2011;10(10):922–30.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sato M, Racine RJ, McIntyre DC. Kindling: basic mechanisms and clinical validity. Electroencephalogr Clin Neurophysiol. 1990;76:459–72.

    Article  CAS  PubMed  Google Scholar 

  • Sharpe C, Reiner GE, Davis SL, Nespeca M, Gold JJ, Rasmussen M et al. Levetiracetam Versus Phenobarbital for Neonatal Seizures: A Randomized Controlled Trial. Pediatrics 2020; 145(6).

    Google Scholar 

  • Shorvon SD. Drug treatment of epilepsy in the century of the ILAE: the second 50 years, 1959–2009. Epilepsia. 2009;50(Suppl 3):93–130.

    Google Scholar 

  • Shorvon S, Perucca E, Engel JJ. The treatment of epilepsy. 3rd ed. Oxford: Wiley-Blackwell; 2020.

    Google Scholar 

  • Sills GJ, Rogawski MA. Mechanisms of action of currently used Antiseizure drugs. Neuropharmacology. 2020;168:107966.

    Article  CAS  PubMed  Google Scholar 

  • Silverstein FS, Jensen FE. Neonatal seizures. Ann Neurol. 2007;62(2):112–20.

    Article  PubMed  Google Scholar 

  • Sisodiya SM. Precision medicine and therapies of the future. Epilepsia. 2020;

    Google Scholar 

  • Smith DK, Sadler KP, Benedum M. Febrile seizures: risks, evaluation, and prognosis. Am Fam Physician. 2019;99(7):445–50.

    PubMed  Google Scholar 

  • Somerville ER. Some treatments cause seizure aggravation in idiopathic epilepsies (especially absence epilepsy). Epilepsia. 2009;50(Suppl 8):31–6.

    Article  CAS  PubMed  Google Scholar 

  • Sommerfeld-Klatta K, Zielinska-Psuja B, Karazniewcz-Lada M, Glowka FK. New Methods Used in Pharmacokinetics and Therapeutic Monitoring of the First and Newer Generations of Antiepileptic Drugs (AEDs). Molecules 2020; 25(21).

    Google Scholar 

  • Srivastava AK, Alex AB, Wilcox KS, White HS. Rapid loss of efficacy to the antiseizure drugs lamotrigine and carbamazepine: a novel experimental model of pharmacoresistant epilepsy. Epilepsia. 2013;54(7):1186–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephen LJ, Brodie MJ. Selection of antiepileptic drugs in adults. Neurol Clin. 2009;27:967–992.

    Google Scholar 

  • Swinyard EA, Kupferberg HJ. Antiepileptic drugs: detection, quantification, and evaluation. Fed Proc. 1985;44(10):2629–33.

    CAS  PubMed  Google Scholar 

  • Tomson T, Battino D. Teratogenic effects of antiepileptic drugs. Lancet Neurol. 2012;11(9):803–13.

    Article  CAS  PubMed  Google Scholar 

  • van der Poest CE, Jansen FE, Braun KPJ, Peters JM. Update on drug Management of Refractory Epilepsy in tuberous sclerosis complex. Paediatr Drugs. 2020;22(1):73–84.

    Article  Google Scholar 

  • Verrotti A, Lattanzi S, Brigo F, Zaccara G. Pharmacodynamic interactions of antiepileptic drugs: from bench to clinical practice. Epilepsy Behav. 2020;104(Pt A):106939.

    Article  PubMed  Google Scholar 

  • Wilcox KS, West PJ, Metcalf CS. The current approach of the epilepsy therapy screening program contract site for identifying improved therapies for the treatment of Pharmacoresistant seizures in epilepsy. Neuropharmacology. 2020;166:107811.

    Article  CAS  PubMed  Google Scholar 

  • Wirrell EC, Nabbout R. Recent advances in the drug treatment of Dravet syndrome. CNS Drugs. 2019;33(9):867–81.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Löscher .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Löscher, W. (2021). Anticonvulsant Agents: Pharmacology and Biochemistry. In: Riederer, P., Laux, G., Nagatsu, T., Le, W., Riederer, C. (eds) NeuroPsychopharmacotherapy. Springer, Cham. https://doi.org/10.1007/978-3-319-56015-1_466-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56015-1_466-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56015-1

  • Online ISBN: 978-3-319-56015-1

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Anticonvulsant Agents: Pharmacology and Biochemistry
    Published:
    30 July 2021

    DOI: https://doi.org/10.1007/978-3-319-56015-1_466-2

  2. Original

    Anticonvulsant Agents: Pharmacology and Biochemistry
    Published:
    21 April 2021

    DOI: https://doi.org/10.1007/978-3-319-56015-1_466-1