Skip to main content

Beyond Intracellular Signaling: The Ins and Outs of Second Messengers Microdomains

  • Chapter
  • First Online:
Membrane Dynamics and Calcium Signaling

Abstract

A typical characteristic of eukaryotic cells compared to prokaryotes is represented by the spatial heterogeneity of the different structural and functional components: for example, most of the genetic material is surrounded by a highly specific membrane structure (the nuclear membrane), continuous with, yet largely different from, the endoplasmic reticulum (ER); oxidative phosphorylation is carried out by organelles enclosed by a double membrane, the mitochondria; in addition, distinct domains, enriched in specific proteins, are present in the plasma membrane (PM) of most cells. Less obvious, but now generally accepted, is the notion that even the concentration of small molecules such as second messengers (Ca2+ and cAMP in particular) can be highly heterogeneous within cells. In the case of most organelles, the differences in the luminal levels of second messengers depend either on the existence on their membrane of proteins that allow the accumulation/release of the second messenger (e.g., in the case of Ca2+, pumps, exchangers or channels), or on the synthesis and degradation of the specific molecule within the lumen (the autonomous intramitochondrial cAMP system). It needs stressing that the existence of a surrounding membrane does not necessarily imply the existence of a gradient between the cytosol and the organelle lumen. For example, the nuclear membrane is highly permeable to both Ca2+ and cAMP (nuclear pores are permeable to solutes up to 50 kDa) and differences in [Ca2+] or [cAMP] between cytoplasm and nucleoplasm are not seen in steady state and only very transiently during cell activation. A similar situation has been observed, as far as Ca2+ is concerned, in peroxisomes.

Riccardo Filadi and Emy Basso have contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Petersen OH (2012) Specific mitochondrial functions in separate sub-cellular domains of pancreatic acinar cells. Pflugers Arch 464(1):77–87. https://doi.org/10.1007/s00424-012-1099-6

    Article  CAS  PubMed  Google Scholar 

  2. Lioudyno MI, Kozak JA, Penna A et al (2008) Orai1 and STIM1 move to the immunological synapse and are up-regulated during T cell activation. Proc Natl Acad Sci USA 105(6):2011–2016. https://doi.org/10.1073/pnas.0706122105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Berridge MJ (2006) Calcium microdomains: organization and function. Cell Calcium 40(5–6):405–412

    Article  CAS  PubMed  Google Scholar 

  4. Samanta K, Parekh AB (2016) Spatial Ca2+ profiling: decrypting the universal cytosolic Ca2+ oscillation. J Physiol 595(10):3053–3062. https://doi.org/10.1113/JP272860

    Article  CAS  PubMed  Google Scholar 

  5. Calcraft PJ, Ruas M, Pan Z et al (2009) NAADP mobilizes calcium from acidic organelles through two-pore channels. Nature 459(7246):596–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rizzuto R, Pozzan T (2006) Microdomains of intracellular Ca2+: molecular determinants and functional consequences. Physiol Rev 86(1):369–408

    Article  CAS  PubMed  Google Scholar 

  7. Heidelberger R, Heinemann C, Neher E et al (1994) Calcium dependence of the rate of exocytosis in a synaptic terminal. Nature 371(6497):513–515

    Article  CAS  PubMed  Google Scholar 

  8. Beutner D, Voets T, Neher E et al (2001) Calcium dependence of exocytosis and endocytosis at the cochlear inner hair cell afferent synapse. Neuron 29(3):681–690

    Article  CAS  PubMed  Google Scholar 

  9. Roberts WM, Jacobs RA, Hudspeth AJ (1990) Colocalization of ion channels involved in frequency selectivity and synaptic transmission at presynaptic active zones of hair cells. J Neurosci 10(11):3664–3684

    CAS  PubMed  Google Scholar 

  10. Robitaille R, Adler EM, Charlton MP (1990) Strategic location of calcium channels at transmitter release sites of frog neuromuscular synapses. Neuron 5(6):773–779

    Article  CAS  PubMed  Google Scholar 

  11. Prakriya M, Solaro CR, Lingle CJ (1996) [Ca2+]i elevations detected by BK channels during Ca2+ influx and muscarine-mediated release of Ca2+ from intracellular stores in rat chromaffin cells. J Neurosci 16(14):4344–4359

    CAS  PubMed  Google Scholar 

  12. Naraghi M, Neher E (1997) Linearized buffered Ca2+ diffusion in microdomains and its implications for calculation of [Ca2+] at the mouth of a calcium channel. J Neurosci 17(18):6961–6973

    CAS  PubMed  Google Scholar 

  13. Carafoli E, Santella L, Branca D et al (2001) Generation, control, and processing of cellular calcium signals. Crit Rev Biochem Mol Biol 36(2):107–260

    Article  CAS  PubMed  Google Scholar 

  14. Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4(7):517–529

    Article  CAS  PubMed  Google Scholar 

  15. Eggermann E, Jonas P (2011) How the ‘slow’ Ca(2+) buffer parvalbumin affects transmitter release in nanodomain-coupling regimes. Nat Neurosci 15(1):20–22. https://doi.org/10.1038/nn.3002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mori MX, Erickson MG, Yue DT (2004) Functional stoichiometry and local enrichment of calmodulin interacting with Ca2+ channels. Science 304(5669):432–435. https://doi.org/10.1126/science.1093490

    Article  CAS  PubMed  Google Scholar 

  17. Nagerl UV, Novo D, Mody I et al (2000) Binding kinetics of calbindin-D(28k) determined by flash photolysis of caged Ca(2+). Biophys J 79(6):3009–3018. https://doi.org/10.1016/S0006-3495(00)76537-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Faas GC, Schwaller B, Vergara JL et al (2007) Resolving the fast kinetics of cooperative binding: Ca2+ buffering by calretinin. PLoS Biol 5(11):e311. https://doi.org/10.1371/journal.pbio.0050311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Faas GC, Raghavachari S, Lisman JE et al (2011) Calmodulin as a direct detector of Ca2+ signals. Nat Neurosci 14(3):301–304. https://doi.org/10.1038/nn.2746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nowycky MC, Pinter MJ (1993) Time courses of calcium and calcium-bound buffers following calcium influx in a model cell. Biophys J 64(1):77–91. https://doi.org/10.1016/S0006-3495(93)81342-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Augustine GJ, Neher E (1992) Neuronal Ca2+ signalling takes the local route. Curr Opin Neurobiol 2(3):302–307

    Article  CAS  PubMed  Google Scholar 

  22. Strautman AF, Cork RJ, Robinson KR (1990) The distribution of free calcium in transected spinal axons and its modulation by applied electrical fields. J Neurosci 10(11):3564–3575

    CAS  PubMed  Google Scholar 

  23. Gabso M, Neher E, Spira ME (1997) Low mobility of the Ca2+ buffers in axons of cultured Aplysia neurons. Neuron 18(3):473–481

    Article  CAS  PubMed  Google Scholar 

  24. Sabatini BL, Oertner TG, Svoboda K (2002) The life cycle of Ca2+ ions in dendritic spines. Neuron 33(3):439–452

    Article  CAS  PubMed  Google Scholar 

  25. Augustine GJ, Santamaria F, Tanaka K (2003) Local calcium signaling in neurons. Neuron 40(2):331–346

    Article  CAS  PubMed  Google Scholar 

  26. Naraghi M (1997) T-jump study of calcium binding kinetics of calcium chelators. Cell Calcium 22(4):255–268

    Article  CAS  PubMed  Google Scholar 

  27. Adler EM, Augustine GJ, Duffy SN et al (1991) Alien intracellular calcium chelators attenuate neurotransmitter release at the squid giant synapse. J Neurosci 11(6):1496–1507

    CAS  PubMed  Google Scholar 

  28. Plant TD, Standen NB, Ward TA (1983) The effects of injection of calcium ions and calcium chelators on calcium channel inactivation in Helix neurones. J Physiol 334:189–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tay LH, Dick IE, Yang W et al (2012) Nanodomain Ca(2)(+) of Ca(2)(+) channels detected by a tethered genetically encoded Ca(2)(+) sensor. Nat Commun 3:778. https://doi.org/10.1038/ncomms1777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bers DM (2002) Cardiac excitation-contraction coupling. Nature 415(6868):198–205. https://doi.org/10.1038/415198a

    Article  CAS  PubMed  Google Scholar 

  31. Hong T, Yang H, Zhang SS et al (2014) Cardiac BIN1 folds T-tubule membrane, controlling ion flux and limiting arrhythmia. Nat Med 20(6):624–632. https://doi.org/10.1038/nm.3543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fu Y, Shaw SA, Naami R et al (2016) Isoproterenol promotes rapid ryanodine receptor movement to bridging integrator 1 (BIN1)-organized dyads. Circulation 133(4):388–397. https://doi.org/10.1161/CIRCULATIONAHA.115.018535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sacconi L, Ferrantini C, Lotti J et al (2012) Action potential propagation in transverse-axial tubular system is impaired in heart failure. Proc Natl Acad Sci USA 109(15):5815–5819. https://doi.org/10.1073/pnas.1120188109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hayashi T, Martone ME, Yu Z et al (2009) Three-dimensional electron microscopy reveals new details of membrane systems for Ca2+ signaling in the heart. J Cell Sci 122(Pt 7):1005–1013. https://doi.org/10.1242/jcs.028175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Takagishi Y, Rothery S, Issberner J et al (1997) Spatial distribution of dihydropyridine receptors in the plasma membrane of guinea pig cardiac myocytes investigated by correlative confocal microscopy and label-fracture electron microscopy. J Electron Microsc (Tokyo) 46(2):165–170

    Article  CAS  Google Scholar 

  36. Takagishi Y, Yasui K, Severs NJ et al (2000) Species-specific difference in distribution of voltage-gated L-type Ca(2+) channels of cardiac myocytes. Am J Physiol Cell Physiol 279(6):C1963–C1969

    Article  CAS  PubMed  Google Scholar 

  37. Glukhov AV, Balycheva M, Sanchez-Alonso JL et al (2015) Direct evidence for microdomain-specific localization and remodeling of functional L-type calcium channels in rat and human atrial myocytes. Circulation 132(25):2372–2384. https://doi.org/10.1161/CIRCULATIONAHA.115.018131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Quintana A, Schwindling C, Wenning AS et al (2007) T cell activation requires mitochondrial translocation to the immunological synapse. Proc Natl Acad Sci USA 104(36):14418–14423. https://doi.org/10.1073/pnas.0703126104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Quintana A, Pasche M, Junker C et al (2011) Calcium microdomains at the immunological synapse: how ORAI channels, mitochondria and calcium pumps generate local calcium signals for efficient T-cell activation. EMBO J 30(19):3895–3912. https://doi.org/10.1038/emboj.2011.289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hoth M, Fanger CM, Lewis RS (1997) Mitochondrial regulation of store-operated calcium signaling in T lymphocytes. J Cell Biol 137:633–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tarlowe MH, Kannan KB, Itagaki K et al (2003) Inflammatory chemoreceptor cross-talk suppresses leukotriene B4 receptor 1-mediated neutrophil calcium mobilization and chemotaxis after trauma. J Immunol 171(4):2066–2073

    Article  CAS  PubMed  Google Scholar 

  42. Levin KR, Page E (1980) Quantitative studies on plasmalemmal folds and caveolae of rabbit ventricular myocardial cells. Circ Res 46(2):244–255

    Article  CAS  PubMed  Google Scholar 

  43. Murphy RM, Mollica JP, Lamb GD (2009) Plasma membrane removal in rat skeletal muscle fibers reveals caveolin-3 hot-spots at the necks of transverse tubules. Exp Cell Res 315(6):1015–1028. https://doi.org/10.1016/j.yexcr.2008.11.022

    Article  CAS  PubMed  Google Scholar 

  44. Zampighi G, Vergara J, Ramon F (1975) On the connection between the transverse tubules and the plasma membrane in frog semitendinosus skeletal muscle. Are caveolae the mouths of the transverse tubule system? J Cell Biol 64(3):734–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Balijepalli RC, Foell JD, Hall DD et al (2006) Localization of cardiac L-type Ca(2+) channels to a caveolar macromolecular signaling complex is required for beta(2)-adrenergic regulation. Proc Natl Acad Sci USA 103(19):7500–7505. https://doi.org/10.1073/pnas.0503465103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wright PT, Nikolaev VO, O’Hara T et al (2014) Caveolin-3 regulates compartmentation of cardiomyocyte beta2-adrenergic receptor-mediated cAMP signaling. J Mol Cell Cardiol 67:38–48. https://doi.org/10.1016/j.yjmcc.2013.12.003

    Article  CAS  PubMed  Google Scholar 

  47. Balijepalli RC, Kamp TJ (2008) Caveolae, ion channels and cardiac arrhythmias. Prog Biophys Mol Biol 98(2–3):149–160. https://doi.org/10.1016/j.pbiomolbio.2009.01.012

    Article  CAS  PubMed  Google Scholar 

  48. Makarewich CA, Correll RN, Gao H et al (2012) A caveolae-targeted L-type Ca(2)+ channel antagonist inhibits hypertrophic signaling without reducing cardiac contractility. Circ Res 110(5):669–674. https://doi.org/10.1161/CIRCRESAHA.111.264028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Best JM, Kamp TJ (2012) Different subcellular populations of L-type Ca2+ channels exhibit unique regulation and functional roles in cardiomyocytes. J Mol Cell Cardiol 52(2):376–387. https://doi.org/10.1016/j.yjmcc.2011.08.014

    Article  CAS  PubMed  Google Scholar 

  50. Hong T, Shaw RM (2017) Cardiac T-tubule microanatomy and function. Physiol Rev 97(1):227–252. https://doi.org/10.1152/physrev.00037.2015

    Article  PubMed  Google Scholar 

  51. Colella M, Grisan F, Robert V et al (2008) Ca2+ oscillation frequency decoding in cardiac cell hypertrophy: role of calcineurin/NFAT as Ca2+ signal integrators. Proc Natl Acad Sci USA 105(8):2859–2864. https://doi.org/10.1073/pnas.0712316105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dolmetsch RE, Lewis RS, Goodnow CC et al (1997) Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature 386:855–858

    Article  CAS  PubMed  Google Scholar 

  53. Shan J, Betzenhauser MJ, Kushnir A et al (2010) Role of chronic ryanodine receptor phosphorylation in heart failure and beta-adrenergic receptor blockade in mice. J Clin Invest 120(12):4375–4387. https://doi.org/10.1172/JCI37649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhao W, Yuan Q, Qian J et al (2006) The presence of Lys27 instead of Asn27 in human phospholamban promotes sarcoplasmic reticulum Ca2+-ATPase superinhibition and cardiac remodeling. Circulation 113(7):995–1004. https://doi.org/10.1161/CIRCULATIONAHA.105.583351

    Article  CAS  PubMed  Google Scholar 

  55. Jordan MC, Henderson SA, Han T et al (2010) Myocardial function with reduced expression of the sodium-calcium exchanger. J Card Fail 16(9):786–796. https://doi.org/10.1016/j.cardfail.2010.03.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nakamura TY, Iwata Y, Arai Y et al (2008) Activation of Na+/H+ exchanger 1 is sufficient to generate Ca2+ signals that induce cardiac hypertrophy and heart failure. Circ Res 103(8):891–899. https://doi.org/10.1161/CIRCRESAHA.108.175141

    Article  CAS  PubMed  Google Scholar 

  57. Guo A, Cala SE, Song LS (2012) Calsequestrin accumulation in rough endoplasmic reticulum promotes perinuclear Ca2+ release. J Biol Chem 287(20):16670–16680. https://doi.org/10.1074/jbc.M112.340927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Petersen OH, Gerasimenko OV, Gerasimenko JV et al (1998) The calcium store in the nuclear envelope. Cell Calcium 23(2-3):87–90

    Article  CAS  PubMed  Google Scholar 

  59. Wu X, Bers DM (2006) Sarcoplasmic reticulum and nuclear envelope are one highly interconnected Ca2+ store throughout cardiac myocyte. Circ Res 99(3):283–291. https://doi.org/10.1161/01.RES.0000233386.02708.72

    Article  CAS  PubMed  Google Scholar 

  60. Guatimosim S, Amaya MJ, Guerra MT et al (2008) Nuclear Ca2+ regulates cardiomyocyte function. Cell Calcium 44(2):230–242. https://doi.org/10.1016/j.ceca.2007.11.016

    Article  CAS  PubMed  Google Scholar 

  61. Wu X, Zhang T, Bossuyt J et al (2006) Local InsP3-dependent perinuclear Ca2+ signaling in cardiac myocyte excitation-transcription coupling. J Clin Investig 116(3):675–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zima AV, Bare DJ, Mignery GA et al (2007) IP3-dependent nuclear Ca2+ signalling in the mammalian heart. J Physiol 584(Pt 2):601–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Goonasekera SA, Molkentin JD (2012) Unraveling the secrets of a double life: contractile versus signaling Ca2+ in a cardiac myocyte. J Mol Cell Cardiol 52(2):317–322. https://doi.org/10.1016/j.yjmcc.2011.05.001

    Article  CAS  PubMed  Google Scholar 

  64. Ibarra C, Vicencio JM, Varas-Godoy M et al (2014) An integrated mechanism of cardiomyocyte nuclear Ca(2+) signaling. J Mol Cell Cardiol 75:40–48. https://doi.org/10.1016/j.yjmcc.2014.06.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Deluca HF, Engstrom GW (1961) Calcium uptake by rat kidney mitochondria. Proc Natl Acad Sci USA 47:1744–1750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. De Stefani D, Raffaello A, Teardo E et al (2011a) A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 476(7360):336–340. https://doi.org/10.1038/nature10230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Baughman JM, Perocchi F, Girgis HS et al (2011) Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 476(7360):341–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. De Stefani D, Rizzuto R, Pozzan T (2016) Enjoy the trip: calcium in mitochondria back and forth. Annu Rev Biochem 85:161–192. https://doi.org/10.1146/annurev-biochem-060614-034216

    Article  CAS  PubMed  Google Scholar 

  69. Mammucari C, Raffaello A, Vecellio Reane D et al (2016) Molecular structure and pathophysiological roles of the mitochondrial calcium uniporter. Biochim Biophys Acta 1863(10):2457–2464. https://doi.org/10.1016/j.bbamcr.2016.03.006

    Article  CAS  PubMed  Google Scholar 

  70. Kamer KJ, Mootha VK (2015) The molecular era of the mitochondrial calcium uniporter. Nat Rev Mol Cell Biol 16(9):545–553. https://doi.org/10.1038/nrm4039

    Article  CAS  PubMed  Google Scholar 

  71. Pendin D, Greotti E, Pozzan T (2014a) The elusive importance of being a mitochondrial Ca2+ uniporter. Cell Calcium 55(3):139–145. https://doi.org/10.1016/j.ceca.2014.02.008

    Article  CAS  PubMed  Google Scholar 

  72. Rizzuto R, Simpson AW, Brini M et al (1992) Rapid changes of mitochondrial Ca2+ revealed by specifically targeted recombinant aequorin. Nature 358(6384):325–327

    Article  CAS  PubMed  Google Scholar 

  73. Pendin D, Greotti E, Filadi R et al (2014b) Spying on organelle Ca2+ in living cells: the mitochondrial point of view. J Endocrinol Invest 38(1):39–45. https://doi.org/10.1007/s40618-014-0178-2

    Article  CAS  PubMed  Google Scholar 

  74. Pendin D, Greotti E, Lefkimmiatis K et al (2017) Exploring cells with targeted biosensors. J Gen Physiol 149(1):1–36. https://doi.org/10.1085/jgp.201611654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Rizzuto R, Pinton P, Carrington W et al (1998) Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280(5370):1763–1766

    Article  CAS  PubMed  Google Scholar 

  76. Csordás G, Thomas AP, Hajnoczky G (1999) Quasi-synaptic calcium signal transmission between endoplasmic reticulum and mitochondria. EMBO J 18:96–108

    Article  PubMed  PubMed Central  Google Scholar 

  77. Giacomello M, Drago I, Bortolozzi M et al (2010) Ca2+ hot spots on the mitochondrial surface are generated by Ca2+ mobilization from stores, but not by activation of store-operated Ca2+ channels. Mol Cell 38(2):280–290. https://doi.org/10.1016/j.molcel.2010.04.003

    Article  CAS  PubMed  Google Scholar 

  78. Csordas G, Varnai P, Golenar T et al (2010) Imaging interorganelle contacts and local calcium dynamics at the ER-mitochondrial interface. Mol Cell 39(1):121–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Filadi R, Pozzan T (2015) Generation and functions of second messengers microdomains. Cell Calcium 58(4):405–414. https://doi.org/10.1016/j.ceca.2015.03.007

    Article  CAS  PubMed  Google Scholar 

  80. Filadi R, Theurey P, Pizzo P (2017) The endoplasmic reticulum-mitochondria coupling in health and disease: molecules, functions and significance. Cell Calcium 62:1–15. https://doi.org/10.1016/j.ceca.2017.01.003

    Article  CAS  PubMed  Google Scholar 

  81. Messina A, Reina S, Guarino F et al (2012) VDAC isoforms in mammals. Biochim Biophys Acta 1818(6):1466–1476. https://doi.org/10.1016/j.bbamem.2011.10.005

    Article  CAS  PubMed  Google Scholar 

  82. Rapizzi E, Pinton P, Szabadkai G et al (2002) Recombinant expression of the voltage-dependent anion channel enhances the transfer of Ca2+ microdomains to mitochondria. J Cell Biol 159(4):613–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. De Stefani D, Bononi A, Romagnoli A et al (2011b) VDAC1 selectively transfers apoptotic Ca2+ signals to mitochondria. Cell Death Differ 19(2):267–273. https://doi.org/10.1038/cdd.2011.92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Filadi R, Greotti E, Turacchio G et al (2016) Presenilin 2 modulates endoplasmic reticulum-mitochondria coupling by tuning the antagonistic effect of mitofusin 2. Cell Rep 15(10):2226–2238

    Article  CAS  PubMed  Google Scholar 

  85. Szabadkai G, Bianchi K, Varnai P et al (2006) Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J Cell Biol 175(6):901–911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. De Marchi U, Castelbou C, Demaurex N (2011) Uncoupling protein 3 (UCP3) modulates the activity of Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) by decreasing mitochondrial ATP production. J Biol Chem 286(37):32533–32541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Landolfi B, Curci S, Debellis L et al (1998) Ca2+ homeostasis in the agonist-sensitive internal store: functional interactions between mitochondria and the ER measured in situ in intact cells. J Cell Biol 142:1235–1243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Foskett JK, White C, Cheung KH et al (2007) Inositol trisphosphate receptor Ca2+ release channels. Physiol Rev 87(2):593–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Vais H, Foskett JK, Ullah G et al (2012) Permeant calcium ion feed-through regulation of single inositol 1,4,5-trisphosphate receptor channel gating. J Gen Physiol 140(6):697–716. https://doi.org/10.1085/jgp.201210804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ivanova H, Vervliet T, Missiaen L et al (2014) Inositol 1,4,5-trisphosphate receptor-isoform diversity in cell death and survival. Biochim Biophys Acta 1843(10):2164–2183. https://doi.org/10.1016/j.bbamcr.2014.03.007

    Article  CAS  PubMed  Google Scholar 

  91. Perkins G, Renken C, Martone ME et al (1997) Electron tomography of neuronal mitochondria: three-dimensional structure and organization of cristae and membrane contacts. J Struct Biol 119(3):260–272

    Article  CAS  PubMed  Google Scholar 

  92. del Arco A, Satrustegui J (2004) Identification of a novel human subfamily of mitochondrial carriers with calcium-binding domains. J Biol Chem 279(23):24701–24713. https://doi.org/10.1074/jbc.M401417200

    Article  CAS  PubMed  Google Scholar 

  93. Satrustegui J, Pardo B, Del Arco A (2007) Mitochondrial transporters as novel targets for intracellular calcium signaling. Physiol Rev 87(1):29–67

    Article  CAS  PubMed  Google Scholar 

  94. De La Fuente S, Fernandez-Sanz C, Vail C et al (2016) Strategic positioning and biased activity of the mitochondrial calcium uniporter in cardiac muscle. J Biol Chem 291(44):23343–23362. https://doi.org/10.1074/jbc.M116.755496

    Article  CAS  Google Scholar 

  95. Garcia-Perez C, Schneider TG, Hajnoczky G et al (2011) Alignment of sarcoplasmic reticulum-mitochondrial junctions with mitochondrial contact points. Am J Physiol Heart Circ Physiol 301(5):H1907–H1915. https://doi.org/10.1152/ajpheart.00397.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Booth DM, Enyedi B, Geiszt M et al (2016) Redox nanodomains are induced by and control calcium signaling at the ER-mitochondrial interface. Mol Cell 63(2):240–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Giorgi C, Bonora M, Sorrentino G et al (2015) p53 at the endoplasmic reticulum regulates apoptosis in a Ca2+-dependent manner. Proc Natl Acad Sci USA 112(6):1779–1784. https://doi.org/10.1073/pnas.1410723112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Raffaello A, De Stefani D, Sabbadin D et al (2013) The mitochondrial calcium uniporter is a multimer that can include a dominant-negative pore-forming subunit. EMBO J 32(17):2362–2376. https://doi.org/10.1038/emboj.2013.157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Plovanich M, Bogorad RL, Sancak Y et al (2013) MICU2, a paralog of MICU1, resides within the mitochondrial uniporter complex to regulate calcium handling. PLoS One 8(2):e55785. https://doi.org/10.1371/journal.pone.0055785 PONE-D-12-28515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Westrate LM, Lee JE, Prinz WA et al (2015) Form follows function: the importance of endoplasmic reticulum shape. Annu Rev Biochem 84:791–811. https://doi.org/10.1146/annurev-biochem-072711-163501

    Article  CAS  PubMed  Google Scholar 

  101. Zhang H, Hu J (2016) Shaping the endoplasmic reticulum into a social network. Trends Cell Biol 26(12):934–943. https://doi.org/10.1016/j.tcb.2016.06.002

    Article  CAS  PubMed  Google Scholar 

  102. Montero M, Alvarez J, Scheenen WJJ et al (1997) Ca2+ homeostasis in the endoplasmic reticulum: coexistence of high and low [Ca2+] subcompartments in intact HeLa cells. J Cell Biol 139:601–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. de la Fuente S, Fonteriz RI, Montero M et al (2013) Ca2+ homeostasis in the endoplasmic reticulum measured with a new low-Ca2+-affinity targeted aequorin. Cell Calcium 54(1):37–45. https://doi.org/10.1016/j.ceca.2013.04.001

    Article  CAS  PubMed  Google Scholar 

  104. Aulestia FJ, Redondo PC, Rodriguez-Garcia A et al (2011) Two distinct calcium pools in the endoplasmic reticulum of HEK-293T cells. Biochem J 435(1):227–235

    Article  CAS  PubMed  Google Scholar 

  105. Hayashi T, Su TP (2007) Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca(2+) signaling and cell survival. Cell 131(3):596–610. https://doi.org/10.1016/j.cell.2007.08.036

    Article  CAS  PubMed  Google Scholar 

  106. Villa A, Podini P, Panzeri MC et al (1993) The endoplasmic-sarcoplasmic reticulum of smooth muscle: immunocytochemistry of vas deferens fibers reveals specialized subcompartments differently equipped for the control of Ca2+ homeostasis. J Cell Biol 121(5):1041–1051

    Article  CAS  PubMed  Google Scholar 

  107. Villa A, Podini P, Clegg DO et al (1991) Intracellular Ca2+ stores in chicken Purkinje neurons: differential distribution of the low affinity-high capacity Ca2+ binding protein, calsequestrin, of Ca2+ ATPase and of the ER lumenal protein, Bip. J Cell Biol 113(4):779–791

    Article  CAS  PubMed  Google Scholar 

  108. Meldolesi J, Pozzan T (1998) The heterogeneity of ER Ca2+ stores has a key role in nonmuscle cell signaling and function. J Cell Biol 142(6):1395–1398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Myhill N, Lynes EM, Nanji JA et al (2008) The subcellular distribution of calnexin is mediated by PACS-2. Mol Biol Cell 19(7):2777–2788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lynes EM, Bui M, Yap MC et al (2012) Palmitoylated TMX and calnexin target to the mitochondria-associated membrane. EMBO J 31(2):457–470

    Article  CAS  PubMed  Google Scholar 

  111. Bastianutto C, Clementi E, Codazzi F et al (1995) Overexpression of calreticulin increases the Ca2+ capacity of rapidly exchanging Ca2+ stores and reveals aspects of their lumenal microenvironment and function. J Cell Biol 130:847–855

    Article  CAS  PubMed  Google Scholar 

  112. Mery L, Mesaeli N, Michalak M et al (1996) Overexpression of calreticulin increases intracellular Ca2+ storage and decreases store-operated Ca2+ influx. J Biol Chem 271:9332–9339

    Article  CAS  PubMed  Google Scholar 

  113. de Brito OM, Scorrano L (2008) Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456(7222):605–610

    Article  CAS  PubMed  Google Scholar 

  114. Orso G, Pendin D, Liu S et al (2009) Homotypic fusion of ER membranes requires the dynamin-like GTPase atlastin. Nature 460(7258):978–983. https://doi.org/10.1038/nature08280

    Article  CAS  PubMed  Google Scholar 

  115. Sobie EA, Dilly KW, dos Santos CJ et al (2002) Termination of cardiac Ca2+ sparks: an investigative mathematical model of calcium-induced calcium release. Biophys J 83(1):59–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Brochet DX, Yang D, Di Maio A et al (2005) Ca2+ blinks: rapid nanoscopic store calcium signaling. Proc Natl Acad Sci USA 102(8):3099–3104. https://doi.org/10.1073/pnas.0500059102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Suzuki J, Kanemaru K, Ishii K et al (2014) Imaging intraorganellar Ca2+ at subcellular resolution using CEPIA. Nat Commun 5:4153. https://doi.org/10.1038/ncomms5153

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Mogami H, Nakano K, Tepikin AV et al (1997) Ca2+ flow via tunnels in polarized cells: recharging of apical Ca2+ stores by focal Ca2+ entry through basal membrane patch. Cell 88(1):49–55

    Article  CAS  PubMed  Google Scholar 

  119. Thorn P, Lawrie AM, Smith PM et al (1993) Local and global cytosolic Ca2+ oscillations in exocrine cells evoked by agonists and inositol trisphosphate. Cell 74(4):661–668

    Article  CAS  PubMed  Google Scholar 

  120. de Juan-Sanz J, Holt GT, Schreiter ER et al (2017) Axonal endoplasmic reticulum Ca2+ content controls release probability in CNS nerve terminals. Neuron 93(4):867–881 e866. https://doi.org/10.1016/j.neuron.2017.01.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Lissandron V, Podini P, Pizzo P et al (2010) Unique characteristics of Ca2+ homeostasis of the trans-Golgi compartment. Proc Natl Acad Sci USA 107(20):9198–9203. https://doi.org/10.1073/pnas.1004702107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Wong AK, Capitanio P, Lissandron V et al (2013) Heterogeneity of Ca2+ handling among and within Golgi compartments. J Mol Cell Biol 5(4):266–276. https://doi.org/10.1093/jmcb/mjt024

    Article  CAS  PubMed  Google Scholar 

  123. Filippin L, Magalhães PJ, Di Benedetto G et al (2003) Stable interactions between mitochondria and endoplasmic reticulum allow rapid accumulation of calcium in a subpopulation of mitochondria. J Biol Chem 278:39224–39234

    Article  CAS  PubMed  Google Scholar 

  124. Montero M, Alonso MT, Carnicero E et al (2000) Chromaffin-cell stimulation triggers fast millimolar mitochondrial Ca2+ transients that modulate secretion. Nat Cell Biol 2(2):57–61

    Article  CAS  PubMed  Google Scholar 

  125. Szabadkai G, Simoni AM, Chami M et al (2004) Drp-1-dependent division of the mitochondrial network blocks intraorganellar Ca2+ waves and protects against Ca2+-mediated apoptosis. Mol Cell 16(1):59–68

    Article  CAS  PubMed  Google Scholar 

  126. Lefkimmiatis K, Zaccolo M (2014) cAMP signaling in subcellular compartments. Pharmacol Ther 143(3):295–304. https://doi.org/10.1016/j.pharmthera.2014.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Hayes JS, Brunton LL, Mayer SE (1980) Selective activation of particulate cAMP-dependent protein kinase by isoproterenol and prostaglandin E1. J Biol Chem 255(11):5113–5119

    CAS  PubMed  Google Scholar 

  128. Buxton IL, Brunton LL (1983) Compartments of cyclic AMP and protein kinase in mammalian cardiomyocytes. J Biol Chem 258(17):10233–10239

    CAS  PubMed  Google Scholar 

  129. Jurevicius J, Fischmeister R (1996) cAMP compartmentation is responsible for a local activation of cardiac Ca2+ channels by beta-adrenergic agonists. Proc Natl Acad Sci USA 93:295–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Rich TC, Fagan KA, Nakata H et al (2000) Cyclic nucleotide-gated channels colocalize with adenylyl cyclase in regions of restricted cAMP diffusion. J Gen Physiol 116(2):147–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Zaccolo M, Pozzan T (2002) Discrete microdomains with high concentration of cAMP in stimulated rat neonatal cardiac myocytes. Science 295(5560):1711–1715

    Article  CAS  PubMed  Google Scholar 

  132. Nikolaev VO, Bunemann M, Schmitteckert E et al (2006) Cyclic AMP imaging in adult cardiac myocytes reveals far-reaching beta1-adrenergic but locally confined beta2-adrenergic receptor-mediated signaling. Circ Res 99(10):1084–1091. https://doi.org/10.1161/01.RES.0000250046.69918.d5

    Article  CAS  PubMed  Google Scholar 

  133. Di Benedetto G, Zoccarato A, Lissandron V et al (2008) Protein kinase A type I and type II define distinct intracellular signaling compartments. Circ Res 103(8):836–844

    Article  CAS  PubMed  Google Scholar 

  134. Jiang JY, Falcone JL, Curci S et al (2017) Interrogating cyclic AMP signaling using optical approaches. Cell Calcium 64:47–56. https://doi.org/10.1016/j.ceca.2017.02.010

    Article  CAS  PubMed  Google Scholar 

  135. Dworkin M, Keller KH (1977) Solubility and diffusion coefficient of adenosine 3′:5′-monophosphate. J Biol Chem 252(3):864–865

    CAS  PubMed  Google Scholar 

  136. Nikolaev VO, Gambaryan S, Engelhardt S et al (2005) Real-time monitoring of the PDE2 activity of live cells: hormone-stimulated cAMP hydrolysis is faster than hormone-stimulated cAMP synthesis. J Biol Chem 280(3):1716–1719. https://doi.org/10.1074/jbc.C400505200

    Article  CAS  PubMed  Google Scholar 

  137. Saucerman JJ, Greenwald EC, Polanowska-Grabowska R (2014) Mechanisms of cyclic AMP compartmentation revealed by computational models. J Gen Physiol 143(1):39–48. https://doi.org/10.1085/jgp.201311044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Houslay MD (2010) Underpinning compartmentalised cAMP signalling through targeted cAMP breakdown. Trends Biochem Sci 35(2):91–100. https://doi.org/10.1016/j.tibs.2009.09.007

    Article  CAS  PubMed  Google Scholar 

  139. Richards M, Lomas O, Jalink K et al (2016) Intracellular tortuosity underlies slow cAMP diffusion in adult ventricular myocytes. Cardiovasc Res 110(3):395–407. https://doi.org/10.1093/cvr/cvw080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Agarwal SR, Clancy CE, Harvey RD (2016) Mechanisms restricting diffusion of intracellular cAMP. Sci Rep 6:19577. https://doi.org/10.1038/srep19577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Lohse C, Bock A, Maiellaro I et al (2017) Experimental and mathematical analysis of cAMP nanodomains. PLoS One 12(4):e0174856. https://doi.org/10.1371/journal.pone.0174856 PONE-D-16-39245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Yang PC, Boras BW, Jeng MT et al (2016) A computational modeling and simulation approach to investigate mechanisms of subcellular cAMP compartmentation. PLoS Comput Biol 12(7):e1005005. https://doi.org/10.1371/journal.pcbi.1005005 PCOMPBIOL-D-16-00287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Calebiro D, Maiellaro I (2014) cAMP signaling microdomains and their observation by optical methods. Front Cell Neurosci 8:350. https://doi.org/10.3389/fncel.2014.00350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Matulef K, Zagotta WN (2003) Cyclic nucleotide-gated ion channels. Annu Rev Cell Dev Biol 19:23–44. https://doi.org/10.1146/annurev.cellbio.19.110701.154854

    Article  CAS  PubMed  Google Scholar 

  145. Kawasaki H, Springett GM, Mochizuki N et al (1998) A family of cAMP-binding proteins that directly activate Rap1. Science 282(5397):2275–2279

    Article  CAS  PubMed  Google Scholar 

  146. Beavo JA, Brunton LL (2002) Cyclic nucleotide research – still expanding after half a century. Nat Rev Mol Cell Biol 3(9):710–718. https://doi.org/10.1038/nrm911

    Article  CAS  PubMed  Google Scholar 

  147. Schindler RF, Scotton C, Zhang J et al (2016) POPDC1(S201F) causes muscular dystrophy and arrhythmia by affecting protein trafficking. J Clin Invest 126(1):239–253. https://doi.org/10.1172/JCI79562

    Article  PubMed  Google Scholar 

  148. Schindler RF, Brand T (2016) The Popeye domain containing protein family – a novel class of cAMP effectors with important functions in multiple tissues. Prog Biophys Mol Biol 120(1-3):28–36. https://doi.org/10.1016/j.pbiomolbio.2016.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Taylor SS, Zhang P, Steichen JM et al (2013) PKA: lessons learned after twenty years. Biochim Biophys Acta 1834(7):1271–1278. https://doi.org/10.1016/j.bbapap.2013.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Langeberg LK, Scott JD (2015) Signalling scaffolds and local organization of cellular behaviour. Nat Rev Mol Cell Biol 16(4):232–244. https://doi.org/10.1038/nrm3966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Jarnaess E, Ruppelt A, Stokka AJ et al (2008) Dual specificity A-kinase anchoring proteins (AKAPs) contain an additional binding region that enhances targeting of protein kinase A type I. J Biol Chem 283(48):33708–33718. https://doi.org/10.1074/jbc.M804807200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Means CK, Lygren B, Langeberg LK et al (2011) An entirely specific type I A-kinase anchoring protein that can sequester two molecules of protein kinase A at mitochondria. Proc Natl Acad Sci USA 108(48):E1227–E1235. https://doi.org/10.1073/pnas.1107182108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Bachmann VA, Mayrhofer JE, Ilouz R et al (2016) Gpr161 anchoring of PKA consolidates GPCR and cAMP signaling. Proc Natl Acad Sci USA 113(28):7786–7791. https://doi.org/10.1073/pnas.1608061113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Cooper DM, Crossthwaite AJ (2006) Higher-order organization and regulation of adenylyl cyclases. Trends Pharmacol Sci 27(8):426–431. https://doi.org/10.1016/j.tips.2006.06.002

    Article  CAS  PubMed  Google Scholar 

  155. Halls ML, Cooper DM (2017) Adenylyl cyclase signalling complexes – pharmacological challenges and opportunities. Pharmacol Ther 172:171–180. https://doi.org/10.1016/j.pharmthera.2017.01.001

    Article  CAS  PubMed  Google Scholar 

  156. Tresguerres M, Levin LR, Buck J (2011) Intracellular cAMP signaling by soluble adenylyl cyclase. Kidney Int 79(12):1277–1288. https://doi.org/10.1038/ki.2011.95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Dessauer CW (2009) Adenylyl cyclase – A-kinase anchoring protein complexes: the next dimension in cAMP signaling. Mol Pharmacol 76(5):935–941. https://doi.org/10.1124/mol.109.059345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Lu Y, Allen M, Halt AR et al (2007) Age-dependent requirement of AKAP150-anchored PKA and GluR2-lacking AMPA receptors in LTP. EMBO J 26(23):4879–4890. https://doi.org/10.1038/sj.emboj.7601884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Lu Y, Zhang M, Lim IA et al (2008) AKAP150-anchored PKA activity is important for LTD during its induction phase. J Physiol 586(17):4155–4164. https://doi.org/10.1113/jphysiol.2008.151662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Tunquist BJ, Hoshi N, Guire ES et al (2008) Loss of AKAP150 perturbs distinct neuronal processes in mice. Proc Natl Acad Sci USA 105(34):12557–12562. https://doi.org/10.1073/pnas.0805922105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Dorsam RT, Gutkind JS (2007) G-protein-coupled receptors and cancer. Nat Rev Cancer 7(2):79–94. https://doi.org/10.1038/nrc2069

    Article  CAS  PubMed  Google Scholar 

  162. Nikolaev VO, Moshkov A, Lyon AR et al (2010) b2-adrenergic receptor redistribution in heart failure changes cAMP compartmentation. Science 327(5973):1653–1657. https://doi.org/10.1126/science.1185988

    Article  CAS  PubMed  Google Scholar 

  163. Calebiro D, Nikolaev VO, Gagliani MC et al (2009) Persistent cAMP-signals triggered by internalized G-protein-coupled receptors. PLoS Biol 7(8):e1000172. https://doi.org/10.1371/journal.pbio.1000172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Irannejad R, Tomshine JC, Tomshine JR et al (2013) Conformational biosensors reveal GPCR signalling from endosomes. Nature 495(7442):534–538. https://doi.org/10.1038/nature12000

    Article  CAS  PubMed  Google Scholar 

  165. Irannejad R, von Zastrow M (2014) GPCR signaling along the endocytic pathway. Curr Opin Cell Biol 27:109–116. https://doi.org/10.1016/j.ceb.2013.10.003

    Article  CAS  PubMed  Google Scholar 

  166. Tsvetanova NG, Trester-Zedlitz M, Newton BW et al (2017) G protein-coupled receptor endocytosis confers uniformity in responses to chemically distinct ligands. Mol Pharmacol 91(2):145–156. https://doi.org/10.1124/mol.116.106369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Tsvetanova NG, von Zastrow M (2014) Spatial encoding of cyclic AMP signaling specificity by GPCR endocytosis. Nat Chem Biol 10(12):1061–1065. https://doi.org/10.1038/nchembio.1665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Kamal FA, Travers JG, Blaxall BC (2012) G protein-coupled receptor kinases in cardiovascular disease: why “where” matters. Trends Cardiovasc Med 22(8):213–219. https://doi.org/10.1016/j.tcm.2012.07.023

    Article  CAS  PubMed  Google Scholar 

  169. Zippin JH, Chen Y, Straub SG et al (2013) CO2/HCO3(−)- and calcium-regulated soluble adenylyl cyclase as a physiological ATP sensor. J Biol Chem 288(46):33283–33291. https://doi.org/10.1074/jbc.M113.510073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Zippin JH, Chen Y, Nahirney P et al (2003) Compartmentalization of bicarbonate-sensitive adenylyl cyclase in distinct signaling microdomains. FASEB J 17(1):82–84. https://doi.org/10.1096/fj.02-0598fje

    Article  CAS  PubMed  Google Scholar 

  171. Omori K, Kotera J (2007) Overview of PDEs and their regulation. Circ Res 100(3):309–327. https://doi.org/10.1161/01.RES.0000256354.95791.f1

    Article  CAS  PubMed  Google Scholar 

  172. Kokkonen K, Kass DA (2017) Nanodomain regulation of cardiac cyclic nucleotide signaling by phosphodiesterases. Annu Rev Pharmacol Toxicol 57:455–479. https://doi.org/10.1146/annurev-pharmtox-010716-104756

    Article  CAS  PubMed  Google Scholar 

  173. Hofer AM, Lefkimmiatis K (2007) Extracellular calcium and cAMP: second messengers as “third messengers”? Physiology (Bethesda) 22:320–327. https://doi.org/10.1152/physiol.00019.2007

    CAS  Google Scholar 

  174. Hohl CM, Li QA (1991) Compartmentation of cAMP in adult canine ventricular myocytes. Relation to single-cell free Ca2+ transients. Circ Res 69(5):1369–1379

    Article  CAS  PubMed  Google Scholar 

  175. Zaccolo M, De Giorgi F, Cho CY et al (2000) A genetically encoded, fluorescent indicator for cyclic AMP in living cells. Nat Cell Biol 2:25–29

    Article  CAS  PubMed  Google Scholar 

  176. Mongillo M, McSorley T, Evellin S et al (2004) Fluorescence resonance energy transfer-based analysis of cAMP dynamics in live neonatal rat cardiac myocytes reveals distinct functions of compartmentalized phosphodiesterases. Circ Res 95(1):67–75. https://doi.org/10.1161/01.RES.0000134629.84732.11

    Article  CAS  PubMed  Google Scholar 

  177. Terrin A, Di Benedetto G, Pertegato V et al (2006) PGE(1) stimulation of HEK293 cells generates multiple contiguous domains with different [cAMP]: role of compartmentalized phosphodiesterases. J Cell Biol 175(3):441–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Acin-Perez R, Salazar E, Kamenetsky M et al (2009) Cyclic AMP produced inside mitochondria regulates oxidative phosphorylation. Cell Metab 9(3):265–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Hunter T (1995) Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell 80(2):225–236

    Article  CAS  PubMed  Google Scholar 

  180. Lefkimmiatis K, Leronni D, Hofer AM (2013) The inner and outer compartments of mitochondria are sites of distinct cAMP/PKA signaling dynamics. J Cell Biol 202(3):453–462. https://doi.org/10.1083/jcb.201303159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Chen C, Nakamura T, Koutalos Y (1999) Cyclic AMP diffusion coefficient in frog olfactory cilia. Biophys J 76(5):2861–2867. https://doi.org/10.1016/S0006-3495(99)77440-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Feinstein WP, Zhu B, Leavesley SJ et al (2012) Assessment of cellular mechanisms contributing to cAMP compartmentalization in pulmonary microvascular endothelial cells. Am J Physiol Cell Physiol 302(6):C839–C852. https://doi.org/10.1152/ajpcell.00361.2011

    Article  CAS  PubMed  Google Scholar 

  183. Roeder T (1999) Octopamine in invertebrates. Prog Neurobiol 59(5):533–561

    Article  CAS  PubMed  Google Scholar 

  184. Maiellaro I, Lohse MJ, Kittel RJ et al (2016) cAMP signals in drosophila motor neurons are confined to single synaptic boutons. Cell Rep 17(5):1238–1246. https://doi.org/10.1016/j.celrep.2016.09.090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Di Benedetto G, Scalzotto E, Mongillo M et al (2013) Mitochondrial Ca2+ uptake induces cyclic AMP generation in the matrix and modulates organelle ATP levels. Cell Metab 17(6):965–975. https://doi.org/10.1016/j.cmet.2013.05.003

    Article  CAS  PubMed  Google Scholar 

  186. Lefkimmiatis K (2014) cAMP signalling meets mitochondrial compartments. Biochem Soc Trans 42(2):265–269. https://doi.org/10.1042/BST20130281

    Article  CAS  PubMed  Google Scholar 

  187. Acin-Perez R, Russwurm M, Gunnewig K et al (2011) A phosphodiesterase 2A isoform localized to mitochondria regulates respiration. J Biol Chem 286(35):30423–30432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Cheung WY (1970) Cyclic 3′,5′-nucleotide phosphodiesterase. Demonstration of an activator. Biochem Biophys Res Commun 38(3):533–538

    Article  CAS  PubMed  Google Scholar 

  189. Kakiuchi S, Yamazaki R (1970) Calcium dependent phosphodiesterase activity and its activating factor (PAF) from brain studies on cyclic 3′,5′-nucleotide phosphodiesterase (3). Biochem Biophys Res Commun 41(5):1104–1110

    Article  CAS  PubMed  Google Scholar 

  190. Mons N, Decorte L, Jaffard R et al (1998) Ca2+-sensitive adenylyl cyclases, key integrators of cellular signalling. Life Sci 62(17-18):1647–1652

    Article  CAS  PubMed  Google Scholar 

  191. Willoughby D, Everett KL, Halls ML et al (2012) Direct binding between Orai1 and AC8 mediates dynamic interplay between Ca2+ and cAMP signaling. Sci Signal 5(219):ra29. https://doi.org/10.1126/scisignal.2002299

    Article  PubMed  Google Scholar 

  192. Martin AC, Willoughby D, Ciruela A et al (2009) Capacitative Ca2+ entry via Orai1 and stromal interacting molecule 1 (STIM1) regulates adenylyl cyclase type 8. Mol Pharmacol 75(4):830–842. https://doi.org/10.1124/mol.108.051748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Efendiev R, Dessauer CW (2011) A kinase-anchoring proteins and adenylyl cyclase in cardiovascular physiology and pathology. J Cardiovasc Pharmacol 58(4):339–344. https://doi.org/10.1097/FJC.0b013e31821bc3f000005344-201110000-00002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Lefkimmiatis K, Srikanthan M, Maiellaro I et al (2009) Store-operated cyclic AMP signalling mediated by STIM1. Nat Cell Biol 11(4):433–442. https://doi.org/10.1038/ncb1850

    Article  CAS  PubMed  Google Scholar 

  195. Maiellaro I, Lefkimmiatis K, Moyer MP et al (2012) Termination and activation of store-operated cyclic AMP production. J Cell Mol Med 16(11):2715–2725. https://doi.org/10.1111/j.1582-4934.2012.01592.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Spirli C, Locatelli L, Fiorotto R et al (2012) Altered store operated calcium entry increases cyclic 3′,5′-adenosine monophosphate production and extracellular signal-regulated kinases 1 and 2 phosphorylation in polycystin-2-defective cholangiocytes. Hepatology 55(3):856–868. https://doi.org/10.1002/hep.24723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Di Benedetto G, Pendin D, Greotti E et al (2014) Ca2+ and cAMP cross-talk in mitochondria. J Physiol 592(Pt 2):305–312. https://doi.org/10.1113/jphysiol.2013.259135

    Article  CAS  PubMed  Google Scholar 

  198. Katona D, Rajki A, Di Benedetto G et al (2015) Calcium-dependent mitochondrial cAMP production enhances aldosterone secretion. Mol Cell Endocrinol 412:196–204. https://doi.org/10.1016/j.mce.2015.05.002

    Article  CAS  PubMed  Google Scholar 

  199. Jeon KI, Jono H, Miller CL et al (2010) Ca2+/calmodulin-stimulated PDE1 regulates the beta-catenin/TCF signaling through PP2A B56 gamma subunit in proliferating vascular smooth muscle cells. FEBS J 277(24):5026–5039. https://doi.org/10.1111/j.1742-4658.2010.07908.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Goraya TA, Masada N, Ciruela A et al (2004) Sustained entry of Ca2+ is required to activate Ca2+-calmodulin-dependent phosphodiesterase 1A. J Biol Chem 279(39):40494–40504. https://doi.org/10.1074/jbc.M313441200

    Article  CAS  PubMed  Google Scholar 

  201. Wagner LE 2nd, Joseph SK, Yule DI (2008) Regulation of single inositol 1,4,5-trisphosphate receptor channel activity by protein kinase A phosphorylation. J Physiol 586(15):3577–3596. https://doi.org/10.1113/jphysiol.2008.152314

    Article  CAS  PubMed  Google Scholar 

  202. Betzenhauser MJ, Fike JL, Wagner LE 2nd et al (2009) Protein kinase A increases type-2 inositol 1,4,5-trisphosphate receptor activity by phosphorylation of serine 937. J Biol Chem 284(37):25116–25125. https://doi.org/10.1074/jbc.M109.010132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Lanner JT, Georgiou DK, Joshi AD et al (2010) Ryanodine receptors: structure, expression, molecular details, and function in calcium release. Cold Spring Harb Perspect Biol 2(11):a003996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Marks AR (2013) Calcium cycling proteins and heart failure: mechanisms and therapeutics. J Clin Invest 123(1):46–52. https://doi.org/10.1172/JCI62834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Kamp TJ, Hell JW (2000) Regulation of cardiac L-type calcium channels by protein kinase A and protein kinase C. Circ Res 87(12):1095–1102

    Article  CAS  PubMed  Google Scholar 

  206. Haase H, Karczewski P, Beckert R et al (1993) Phosphorylation of the L-type calcium channel beta subunit is involved in beta-adrenergic signal transduction in canine myocardium. FEBS Lett 335(2):217–222

    Article  CAS  PubMed  Google Scholar 

  207. Cerra MC, Imbrogno S (2012) Phospholamban and cardiac function: a comparative perspective in vertebrates. Acta Physiol (Oxf) 205(1):9–25. https://doi.org/10.1111/j.1748-1716.2012.02389.x

    Article  CAS  Google Scholar 

  208. Wei SK, Ruknudin A, Hanlon SU et al (2003) Protein kinase A hyperphosphorylation increases basal current but decreases beta-adrenergic responsiveness of the sarcolemmal Na+-Ca2+ exchanger in failing pig myocytes. Circ Res 92(8):897–903. https://doi.org/10.1161/01.RES.0000069701.19660.1401.RES.0000069701.19660.14

    Article  CAS  PubMed  Google Scholar 

  209. Wanichawan P, Louch WE, Hortemo KH et al (2011) Full-length cardiac Na+/Ca2+ exchanger 1 protein is not phosphorylated by protein kinase A. Am J Physiol Cell Physiol 300(5):C989–C997. https://doi.org/10.1152/ajpcell.00196.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Guerini D, Pan B, Carafoli E (2003) Expression, purification, and characterization of isoform 1 of the plasma membrane Ca2+ pump: focus on calpain sensitivity. J Biol Chem 278(40):38141–38148. https://doi.org/10.1074/jbc.M302400200

    Article  CAS  PubMed  Google Scholar 

  211. Bruce JI, Yule DI, Shuttleworth TJ (2002) Ca2+-dependent protein kinase--a modulation of the plasma membrane Ca2+-ATPase in parotid acinar cells. J Biol Chem 277(50):48172–48181. https://doi.org/10.1074/jbc.M208393200

    Article  CAS  PubMed  Google Scholar 

  212. Palty R, Silverman WF, Hershfinkel M et al (2010) NCLX is an essential component of mitochondrial Na+/Ca2+ exchange. Proc Natl Acad Sci USA 107(1):436–441

    Article  CAS  PubMed  Google Scholar 

  213. Zimmermann H, Zebisch M, Strater N (2012) Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal 8(3):437–502. https://doi.org/10.1007/s11302-012-9309-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Verkhratsky A, Burnstock G (2014) Biology of purinergic signalling: its ancient evolutionary roots, its omnipresence and its multiple functional significance. Bioessays 36(7):697–705. https://doi.org/10.1002/bies.201400024

    Article  CAS  PubMed  Google Scholar 

  215. Plattner H, Verkhratsky A (2016) Inseparable tandem: evolution chooses ATP and Ca2+ to control life, death and cellular signalling. Philos Trans R Soc Lond B Biol Sci 371(1700). https://doi.org/10.1098/rstb.2015.0419

  216. Falzoni S, Donvito G, Di Virgilio F (2013) Detecting adenosine triphosphate in the pericellular space. Interface Focus 3(3):20120101. https://doi.org/10.1098/rsfs.2012.0101rsfs20120101

    Article  PubMed  PubMed Central  Google Scholar 

  217. Burnstock G, Boeynaems JM (2014) Purinergic signalling and immune cells. Purinergic Signal 10(4):529–564. https://doi.org/10.1007/s11302-014-9427-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Burnstock G, Verkhratsky A (2010) Long-term (trophic) purinergic signalling: purinoceptors control cell proliferation, differentiation and death. Cell Death Dis 1:e9. https://doi.org/10.1038/cddis.2009.11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Di Virgilio F, Adinolfi E (2017) Extracellular purines, purinergic receptors and tumor growth. Oncogene 36(3):293–303. https://doi.org/10.1038/onc.2016.206

    Article  CAS  PubMed  Google Scholar 

  220. Di Virgilio F, Vuerich M (2015) Purinergic signaling in the immune system. Auton Neurosci 191:117–123. https://doi.org/10.1016/j.autneu.2015.04.011

    Article  CAS  PubMed  Google Scholar 

  221. Surprenant A, North RA (2009) Signaling at purinergic P2X receptors. Annu Rev Physiol 71:333–359. https://doi.org/10.1146/annurev.physiol.70.113006.100630

    Article  CAS  PubMed  Google Scholar 

  222. Coade SB, Pearson JD (1989) Metabolism of adenine nucleotides in human blood. Circ Res 65(3):531–537

    Article  CAS  PubMed  Google Scholar 

  223. Pellegatti P, Falzoni S, Pinton P et al (2005) A novel recombinant plasma membrane-targeted luciferase reveals a new pathway for ATP secretion. Mol Biol Cell 16(8):3659–3665. https://doi.org/10.1091/mbc.E05-03-0222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Corriden R, Insel PA, Junger WG (2007) A novel method using fluorescence microscopy for real-time assessment of ATP release from individual cells. Am J Physiol Cell Physiol 293(4):C1420–C1425. https://doi.org/10.1152/ajpcell.00271.2007

    Article  CAS  PubMed  Google Scholar 

  225. Sabirov RZ, Dutta AK, Okada Y (2001) Volume-dependent ATP-conductive large-conductance anion channel as a pathway for swelling-induced ATP release. J Gen Physiol 118(3):251–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Bodin P, Burnstock G (2001) Purinergic signalling: ATP release. Neurochem Res 26(8-9):959–969

    Article  CAS  PubMed  Google Scholar 

  227. Ceriani F, Pozzan T, Mammano F (2016) Critical role of ATP-induced ATP release for Ca2+ signaling in nonsensory cell networks of the developing cochlea. Proc Natl Acad Sci USA 113(46):E7194–E7201. https://doi.org/10.1073/pnas.1616061113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Romanello M, Pani B, Bicego M et al (2001) Mechanically induced ATP release from human osteoblastic cells. Biochem Biophys Res Commun 289(5):1275–1281. https://doi.org/10.1006/bbrc.2001.6124S0006-291X(01)96124-8

    Article  CAS  PubMed  Google Scholar 

  229. D’Hondt C, Ponsaerts R, De Smedt H et al (2011) Pannexin channels in ATP release and beyond: an unexpected rendezvous at the endoplasmic reticulum. Cell Signal 23(2):305–316

    Article  CAS  PubMed  Google Scholar 

  230. Adinolfi E, Callegari MG, Ferrari D et al (2005) Basal activation of the P2X7 ATP receptor elevates mitochondrial calcium and potential, increases cellular ATP levels, and promotes serum-independent growth. Mol Biol Cell 16(7):3260–3272. https://doi.org/10.1091/mbc.E04-11-1025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Sauvage V, Aubert D, Escotte-Binet S et al (2009) The role of ATP-binding cassette (ABC) proteins in protozoan parasites. Mol Biochem Parasitol 167(2):81–94. https://doi.org/10.1016/j.molbiopara.2009.05.005

    Article  CAS  PubMed  Google Scholar 

  232. Pankratov Y, Lalo U, Verkhratsky A et al (2007) Quantal release of ATP in mouse cortex. J Gen Physiol 129(3):257–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Pankratov Y, Lalo U, Verkhratsky A et al (2006) Vesicular release of ATP at central synapses. Pflugers Arch 452(5):589–597. https://doi.org/10.1007/s00424-006-0061-x

    Article  CAS  PubMed  Google Scholar 

  234. Bonora M, Patergnani S, Rimessi A et al (2012) ATP synthesis and storage. Purinergic Signal 8(3):343–357. https://doi.org/10.1007/s11302-012-9305-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Russo MV, McGavern DB (2015) Immune Surveillance of the CNS following Infection and Injury. Trends Immunol 36(10):637–650. https://doi.org/10.1016/j.it.2015.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Sheng ZH (2017) The interplay of axonal energy homeostasis and mitochondrial trafficking and anchoring. Trends Cell Biol 27(6):403–416. https://doi.org/10.1016/j.tcb.2017.01.005

    Article  CAS  PubMed  Google Scholar 

  237. Beraud N, Pelloux S, Usson Y et al (2009) Mitochondrial dynamics in heart cells: very low amplitude high frequency fluctuations in adult cardiomyocytes and flow motion in non beating Hl-1 cells. J Bioenerg Biomembr 41(2):195–214. https://doi.org/10.1007/s10863-009-9214-x

    Article  CAS  PubMed  Google Scholar 

  238. Boncompagni S, Rossi AE, Micaroni M et al (2009) Mitochondria are linked to calcium stores in striated muscle by developmentally regulated tethering structures. Mol Biol Cell 20(3):1058–1067. https://doi.org/10.1091/mbc.E08-07-0783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Franzini-Armstrong C (2007) ER-mitochondria communication. How privileged? Physiology (Bethesda) 22:261–268

    CAS  Google Scholar 

  240. Kohlhaas M, Maack C (2013) Calcium release microdomains and mitochondria. Cardiovasc Res 98(2):259–268. https://doi.org/10.1093/cvr/cvt032

    Article  CAS  PubMed  Google Scholar 

  241. Anmann T, Varikmaa M, Timohhina N et al (2014) Formation of highly organized intracellular structure and energy metabolism in cardiac muscle cells during postnatal development of rat heart. Biochim Biophys Acta 1837(8):1350–1361. https://doi.org/10.1016/j.bbabio.2014.03.015

    Article  CAS  PubMed  Google Scholar 

  242. Pasqualini FS, Nesmith AP, Horton RE et al (2016) Mechanotransduction and metabolism in cardiomyocyte microdomains. Biomed Res Int 2016:4081638. https://doi.org/10.1155/2016/4081638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Wilding JR, Joubert F, de Araujo C et al (2006) Altered energy transfer from mitochondria to sarcoplasmic reticulum after cytoarchitectural perturbations in mice hearts. J Physiol 575(Pt 1):191–200. https://doi.org/10.1113/jphysiol.2006.114116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Ashcroft FM, Rorsman P (2013) K(ATP) channels and islet hormone secretion: new insights and controversies. Nat Rev Endocrinol 9(11):660–669. https://doi.org/10.1038/nrendo.2013.166

    Article  CAS  PubMed  Google Scholar 

  245. Rorsman P, Ramracheya R, Rorsman NJ et al (2014) ATP-regulated potassium channels and voltage-gated calcium channels in pancreatic alpha and beta cells: similar functions but reciprocal effects on secretion. Diabetologia 57(9):1749–1761. https://doi.org/10.1007/s00125-014-3279-8

    Article  CAS  PubMed  Google Scholar 

  246. Detimary P, Gilon P, Henquin JC (1998) Interplay between cytoplasmic Ca2+ and the ATP/ADP ratio: a feedback control mechanism in mouse pancreatic islets. Biochem J 333(Pt 2):269–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Rolland JF, Henquin JC, Gilon P (2002) Feedback control of the ATP-sensitive K(+) current by cytosolic Ca(2+) contributes to oscillations of the membrane potential in pancreatic beta-cells. Diabetes 51(2):376–384

    Article  CAS  PubMed  Google Scholar 

  248. Tanaka T, Nagashima K, Inagaki N et al (2014) Glucose-stimulated single pancreatic islets sustain increased cytosolic ATP levels during initial Ca2+ influx and subsequent Ca2+ oscillations. J Biol Chem 289(4):2205–2216. https://doi.org/10.1074/jbc.M113.499111

    Article  CAS  PubMed  Google Scholar 

  249. Tarasov AI, Semplici F, Li D et al (2013) Frequency-dependent mitochondrial Ca(2+) accumulation regulates ATP synthesis in pancreatic beta cells. Pflugers Arch 465(4):543–554. https://doi.org/10.1007/s00424-012-1177-9

    Article  CAS  PubMed  Google Scholar 

  250. Tarasov AI, Semplici F, Ravier MA et al (2012) The mitochondrial Ca2+ uniporter MCU is essential for glucose-induced ATP increases in pancreatic beta-cells. PLoS One 7(7):e39722. https://doi.org/10.1371/journal.pone.0039722PONE-D-12-06521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Frieden M, Arnaudeau S, Castelbou C et al (2005) Subplasmalemmal mitochondria modulate the activity of plasma membrane Ca2+-ATPases. J Biol Chem 280(52):43198–43208. https://doi.org/10.1074/jbc.M510279200

    Article  CAS  PubMed  Google Scholar 

  252. Arora KK, Pedersen PL (1988) Functional significance of mitochondrial bound hexokinase in tumor cell metabolism. Evidence for preferential phosphorylation of glucose by intramitochondrially generated ATP. J Biol Chem 263(33):17422–17428

    CAS  PubMed  Google Scholar 

  253. Shinohara Y, Sagawa I, Ichihara J et al (1997) Source of ATP for hexokinase-catalyzed glucose phosphorylation in tumor cells: dependence on the rate of oxidative phosphorylation relative to that of extramitochondrial ATP generation. Biochim Biophys Acta 1319(2–3):319–330

    Article  CAS  PubMed  Google Scholar 

  254. Cesar Mde C, Wilson JE (1998) Further studies on the coupling of mitochondrially bound hexokinase to intramitochondrially compartmented ATP, generated by oxidative phosphorylation. Arch Biochem Biophys 350(1):109–117

    Article  PubMed  Google Scholar 

  255. Wilson JE (2003) Isozymes of mammalian hexokinase: structure, subcellular localization and metabolic function. J Exp Biol 206(Pt 12):2049–2057

    Article  CAS  PubMed  Google Scholar 

  256. Toyama EQ, Herzig S, Courchet J et al (2016) Metabolism. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress. Science 351(6270):275–281. https://doi.org/10.1126/science.aab4138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Aronsen JM, Swift F, Sejersted OM (2013) Cardiac sodium transport and excitation-contraction coupling. J Mol Cell Cardiol 61:11–19. https://doi.org/10.1016/j.yjmcc.2013.06.003

    Article  CAS  PubMed  Google Scholar 

  258. Allbritton NL, Meyer T, Stryer L (1992) Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. Science 258(5089):1812–1815

    Article  CAS  PubMed  Google Scholar 

  259. Suzuki KG, Fujiwara TK, Edidin M et al (2007) Dynamic recruitment of phospholipase C gamma at transiently immobilized GPI-anchored receptor clusters induces IP3-Ca2+ signaling: single-molecule tracking study 2. J Cell Biol 177(4):731–742. https://doi.org/10.1083/jcb.200609175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Dickinson GD, Ellefsen KL, Dawson SP et al (2016) Hindered cytoplasmic diffusion of inositol trisphosphate restricts its cellular range of action. Sci Signal 9(453):ra108. https://doi.org/10.1126/scisignal.aag1625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Decrock E, De Bock M, Wang N et al (2013) IP3, a small molecule with a powerful message. Biochim Biophys Acta 1833(7):1772–1786. https://doi.org/10.1016/j.bbamcr.2012.12.016

    Article  CAS  PubMed  Google Scholar 

  262. Hernandez VH, Bortolozzi M, Pertegato V et al (2007) Unitary permeability of gap junction channels to second messengers measured by FRET microscopy. Nat Methods 4(4):353–358. https://doi.org/10.1038/nmeth1031

    Article  CAS  PubMed  Google Scholar 

  263. Sneyd J, Wilkins M, Strahonja A et al (1998) Calcium waves and oscillations driven by an intercellular gradient of inositol (1,4,5)-trisphosphate. Biophys Chem 72(1–2):101–109

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The original work by the Authors has been supported by grants from the Italian Ministry of University and Research (MIUR), by Telethon Foundation, by Cariparo Foundation, by the National Research Council (CNR) and by the University of Padova to TP. We are grateful to Dr. P. Magalhaes for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tullio Pozzan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Filadi, R., Basso, E., Lefkimmiatis, K., Pozzan, T. (2017). Beyond Intracellular Signaling: The Ins and Outs of Second Messengers Microdomains. In: Krebs, J. (eds) Membrane Dynamics and Calcium Signaling. Advances in Experimental Medicine and Biology, vol 981. Springer, Cham. https://doi.org/10.1007/978-3-319-55858-5_12

Download citation

Publish with us

Policies and ethics