Skip to main content

Diversity and Biotechnological Potential of Endophytic Microorganisms Associated with Tropical Mangrove Forests

  • Chapter
  • First Online:
Diversity and Benefits of Microorganisms from the Tropics

Abstract

Mangroves are typical tropical ecosystems situated between land and sea. These biological communities are frequently found in tropical and subtropical areas and occupy approximately 18.1 million hectares of the planet. Endophytic microorganisms inhabit the internal tissues of plants without generating negative effects and represent an extensive source of promising natural products. Endophytes protect the plant host against predators and pathogens, including cattle and insect pests. That may also increase the resistance of plants against biotic and abiotic stresses and produce plant growth hormones, antibiotics, enzymes, and many other compounds of biotechnological interest. Endophytic microorganisms produce antibiotics that enable their survival in competitive habitats with other microorganisms protecting the host against other bacterial and fungal pathogens. The biochemical versatility and diversity of rare microorganisms suggest that many active compounds remain unknown. Endophytes from mangroves open up new areas of potential biotechnological exploitation; thus, isolating and cultivating these organisms are of great importance. The production of bioactive natural compounds that are important for both pharmaceutical and agricultural fields is widespread among endophytes. The great biodiversity observed in the mangrove ecosystem reinforces the importance of studying endophytic microorganisms, particularly the isolation of new compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agusta A, Ohaski K, Shibuya H (2006) Bisanthraquione metabolites produced by the endophytic fungus Diaporthe sp. Chem Pharm Bull 54:579–582

    Article  CAS  PubMed  Google Scholar 

  • Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth-promoting activities. Microbiol Res 163:173–181

    Article  CAS  PubMed  Google Scholar 

  • Andersson PF, Bengtsson S, Stenlid J, Broberg A (2012) B-norsteroids from Hymenoscyphus pseudoalbidus. Molecules 17:7769–7781

    Article  CAS  PubMed  Google Scholar 

  • Andersson PF, Bengtsson S, Cleary M, Stenlid J, Broberg A (2013) Viridin-like steroids from Hymenoscyphus pseudoalbidus. Phytochemistry 86:195–200

    Article  CAS  PubMed  Google Scholar 

  • Anu CJ, Priscilla HC, Jijo CJ (2014) Production and purification of cellulase enzyme by endophytic Bacillus sp. isolated from Rhizophora mucronata. Int J Agric Environ Biotechnol 7:367–370

    Article  Google Scholar 

  • Araújo WL, Marcon J, Maccheroni W Jr, Elsas JDV, Vuurde JLV, Azevedo JL (2002) Diversity of endophytic bacterial populations and interaction with Xylella fastidiosa in citrus plants. Appl Environ Microbiol 68:4906–4914

    Article  PubMed  PubMed Central  Google Scholar 

  • Araújo WL, Lacava PT, Andreote FD, Azevedo JL (2008) Interaction between endophytes and plant host: biotechnological aspects. In: Ait Barka E, Clément C (eds) Plant-microbe interactions, vol 1. Research Signpost, Kerala, pp 1–21

    Google Scholar 

  • Azevedo JL (2014) Endophytic fungi from Brazilian tropical hosts and their biotechnological applications. In: Kharwar RN, Upadhyay R, Dubey N, Raghuwansh R (eds) Microbial diversity and biotechnology in food security. Springer, New Delhi, pp 17–22

    Google Scholar 

  • Azevedo JL, Araújo WL (2007) Diversity and applications of endophytic fungi isolated from tropical plants. In: Ganguli BN, Deshmukh SK (eds) Fungi: multifaceted microbes. CRC Press, Boca Raton, pp 189–207

    Google Scholar 

  • Azevedo JL, Maccheroni W, Pereira JO, Araújo WL (2000) Endophytic microorganisms: a review on insect control and recent advances on tropical plants. Electron J Biotechnol 3:40–65

    Article  Google Scholar 

  • Bacon CW, White JF Jr (2000) Microbial endophytes. Marcel Dekker, New York, p 487

    Google Scholar 

  • Berg G, Hallmann J (2006) Control of plant pathogenic fungi with bacterial endophytes. In: Schulz BJE, Boyle CJC, Sieber TN (eds) Microbial root endophytes. Springer, Berlin, pp 53–69

    Chapter  Google Scholar 

  • Berg G, Eberl L, Hartmann A (2005) The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environ Microbiol 7:1673–1685

    Article  CAS  PubMed  Google Scholar 

  • Bezerra JDP, Santos MGS, Svedese VM, Lima DMM, Fernandes MJS, Paiva LM, Souza-Motto CM (2012) Richness of endophytic fungi from Opuntia fiscus-indica mill. (Cactaceae) and preliminary screening for enzyme production. World J Microbiol Biotechnol 28:1989–1995

    Article  CAS  PubMed  Google Scholar 

  • Boddey RM, Urquiaga S, Alves BJR, Reis V (2003) Endophytic nitrogen fixation in sugarcane: present knowledge and future applications. Plant Soil 252:139–149

    Article  CAS  Google Scholar 

  • Buatong J, Phongpaichit S, Rukachaisirikul V, Sakayaroj J (2011) Antimicrobial activity of crude extracts from mangrove fungal endophytes. World J Microbiol Biotechnol 27:3005–3008

    Article  CAS  Google Scholar 

  • Cao S, Ross L, Tamayo G, Clardy J (2010) Asterogynins: secondary metabolites from a costa Rican endophytic fungus. Org Lett 12:4661–4663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carrim AJI, Barbosa EC, Vieira JDG (2006) Enzymatic activity of endophytic bacterial isolates of Jacaranda decurrens Cham. (Carobinha-do-campo). Braz Arch Biol Technol 49:353–359

    Article  Google Scholar 

  • Castro RA (2011) Estudo da comunidade bacteriana endofítica cultivável associada aos manguezais de Cananéia e Bertioga SP. MS Thesis, University of São Paulo, Piracicaba, 91 pp

    Google Scholar 

  • Castro RC, Quecine MC, Lacava PT, Batista BD, Luvizotto DM, Marcon J, Ferreira A, Melo IS, Azevedo JL (2014) Isolation and enzyme bioprospection of endophytic bacteria associated with plants of Brazilian mangrove ecosystem. Springerplus 3:1–9

    Article  Google Scholar 

  • Chaeprasert S, Piapukiew J, Whalley AJS, Sihanonth P (2010) Endophytic fungi from mangrove plant species of Thailand: their antimicrobial and anticancer potentials. Bot Mar 53:555–564

    Article  Google Scholar 

  • Cheng Z, Pan J, Tang W, Chen Q, Lin Y (2009) Biodiversity and biotechnological potential of mangrove-associated fungi. J For Res 20:63–72

    Article  CAS  Google Scholar 

  • Compant S, Reiter B, Sessitsch A, Nowak J, Clément C, Barka EA (2005) Endophytic colonization of Vitis Vinifera L. by a plant growth-promoting bacterium, Burkholderia sp. strain PsJN. Appl Environ Microbiol 71:1685–1693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coombs JT, Franco CMM (2003) Isolation and identification of actinobacteria from surface-sterilized wheat roots. Appl Environ Microbiol 69:5603–5608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coombs JT, Michelsen PP, Franco CMM (2004) Evaluation of endophytic actinobacteria as antagonists of Gaeumannomyces graminis var. tritici in wheat. Biol Control 29:359–366

    Article  Google Scholar 

  • de Bary A (1866) Morphologie, Phisiologie der pilze, flechten und myxomyceten. Holmeister’s handbook of physiological Botany, Leipzig

    Book  Google Scholar 

  • Deivanai S, Bindusara AS, Prabhakaran G, Bhore SJ (2014) Culturable bacterial endophytes isolated from mangrove tree (Rhizophora apiculata Blume) enhance seedling growth in Rice. J Nat Sci Biol Med 5:437–444

    Article  PubMed  PubMed Central  Google Scholar 

  • Dettrakul S, Kittakoop P, Isaka M, Nopichai S, Suyarnsestakorn C, Tanticharoen M, Thebtaranonth Y (2003) Antimycobacterial pimarane diterpenes from fungus Diaporthe sp. Bioorg Med Chem Lett 13:1253–1255

    Article  CAS  PubMed  Google Scholar 

  • Dias ACF, Andreote FD, Dini-Andreote F, Lacava PT, Sá ALB, Melo IS, Azevedo JL, Araújo WL (2009) Diversity and biotechnological potential of culturable bacteria from Brazilian mangrove sediment. World J Microbiol Biotechnol 25:1305–1311

    Article  CAS  Google Scholar 

  • Ding L, Münch J, Goerls H, Maier A, Fiebig HH, Lin WH, Hertweck C (2010) Xiamycin, a pentacyclic indolosesquiterpene with selective anti-HIV activity from a bacterial mangrove endophyte. Bioorg Med Chem Lett 20:6685–6687

    Article  CAS  PubMed  Google Scholar 

  • Doty SL (2008) Enhancing phytoremediation through the use of transgenics and endophytes. New Phytol 179:318–333

    Article  CAS  PubMed  Google Scholar 

  • Dourado MN, Ferreira A, Araújo WL, Azevedo JL, Lacava PT (2012) The diversity of endophytic methylotrophic bacteria in an oil-contaminated and an oil-free mangrove ecosystem and their tolerance to heavy metals. Biotechnol Res Int 2012:759865

    Article  PubMed  PubMed Central  Google Scholar 

  • Eldeen IMS (2014) Isolation of 12 bacterial endophytes from some mangrove plants and determination of antimicrobial properties of the isolates and the plant extracts. Int J Phytomedicine 6:425–432

    Google Scholar 

  • Gayathri P, Muralikrishnan V (2013) Isolation of endophytic bacteria from mangrove, bananas and sugarcane for their biological activities. Asian J Res Biol Pharm Sci 1:19–27

    Google Scholar 

  • Gayathri S, Saravanan D, Radhakrishnan M, Balagurunathan R, Kathiresan K (2010) Bioprospecting potential of fast growing endophytic bacteria from leaves of mangrove and salt-marsh plant species. Indian J Biotechnol 9:397–402

    Google Scholar 

  • Gazis R, Chavern P (2010) Diversity of fungal endophytes on leaves and stems of wild rubber tress (Hevea brasiliensis) in Peru. Fungal Ecol 3:240–254

    Article  Google Scholar 

  • Gunatilaka AAL (2006) Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity and implications of their occurrence. J Nat Prod 69:509–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Habibi S, Djedidi S, Prongjunthuek K, Mortuza MF, Ohkama-Ohtsu N, Sekimoto H, Yokoyoma T (2014) Physiological and genetic characterization of rice nitrogen fixer PGPR isolated from rhizosphere soils of different crops. Plant Soil 379:51–66

    Article  CAS  Google Scholar 

  • Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914

    Article  CAS  Google Scholar 

  • Hanson JR (1995) The viridin family of steroidal antibiotics. Nat Prod Rep 12:381–384

    Article  CAS  PubMed  Google Scholar 

  • Harman GE (1998) Björjmann T. Potential and existing uses of Trichoderma and Gliocladium for plant disease control and plant growth enhancement. In: Harman GE (ed) Trichoderma and Gliocladium. Taylor & Francis, London, pp 229–265

    Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species - opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    Article  CAS  PubMed  Google Scholar 

  • Janarthine SRS, Eganathan P (2012) Plant growth promoting of endophytic Sporosarcina aquimarina SjAM16103 isolated from the pneumatophores of Avicennia marina L. Int J Microbiol 2012:532060. doi:10.1155/2012/532060

    Article  PubMed  PubMed Central  Google Scholar 

  • Janarthine SR, Eganathan P, Balasubramanian T, Vijayalakshmi S (2011) Endophytic bacteria isolated from the pneumatophores of Avicennia marina. Afr J Microbiol Res 5:4455–4466

    Google Scholar 

  • Jose AC, Christy PH (2013) Assessment of antimicrobial potential of endophytic bacteria isolated from Rhizophora mucronata. Int J Curr Microbiol App Sci 2:188–194

    Google Scholar 

  • Kayalvizhi N, Gunasekaran P (2010) Purification and characterization of a novel broad-spectrum bacteriocin from Bacillus licheniformis MKU3. Biotechnol Bioprocess Eng 15:365–370

    Article  CAS  Google Scholar 

  • Lacava PT, Azevedo JL (2013) Endophytic bacteria: a biotechnological potential in agrobiology system. In: Maheshwari DK, Sarah M, Aeron A (eds) Bacteria in agrobiology: crop productivity. Springer, Berlin, pp 1–44

    Chapter  Google Scholar 

  • Lacava PT, Azevedo JL (2014) Biological control of insect-pest and diseases by endophytes. In: Vijay VC, Alan CG (eds) Advances in endophytic research advances. Springer, New Delhi, pp 231–243

    Chapter  Google Scholar 

  • Lee K, Lim YS, Yong D, Yum JH, Chong Y (2003) Evaluation of the Hodge test and the imipenem-EDTA double disk synergy test for differentiation of metallo-β-lactamases producing clinical isolates of Pseudomonas spp. and Acinetobacter sp. J Clin Microbiol 41:4623–4629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin X, Huang Y, Fang M, Wang J, Zheng Z, Su W (2005) Cytotoxic and antimicrobial metabolites from marine lignicolous fungi, Diaporthe sp. FEMS Microbiol Lett 251:53–58

    Article  CAS  PubMed  Google Scholar 

  • Liu AR, Wu XP, Xu T (2007) Research advances in endophytic fungi of mangrove. Chin J Appl Ecol 18:912–918

    CAS  Google Scholar 

  • Malboobi MA, Behbahani M, Madani H, Owlia P, Deljou A, Yakhchali B, Moradi M, Hassanabadi H (2009a) Performance evaluation of potent phosphate solubilizing bacteria in potato rhizosphere. World J Microbiol Biotechnol 25:1479–1484

    Article  Google Scholar 

  • Malboobi MA, Owlia P, Behbahani M, Sarokhani E, Moradi S, Yakhchali B, Deljou A, Heravi KM (2009b) Solubilization of organic and inorganic phosphates by three highly efficient soil bacterial isolates. World J Microbiol Biotechnol 25:1471–1477

    Article  CAS  Google Scholar 

  • Maria GL, Sridhar KR (2003) Endophytic fungal assemblage of two halophytes from west coast mangrove habitats, India. Czech Mycol 55:241–251

    Google Scholar 

  • Mélançon D, Grenier D (2003) Production and properties of bacteriocin-like inhibitory substances from the swine pathogen Stereptococcus suis serotype 2. Appl Environ Microbiol 69:4482–4488

    Google Scholar 

  • Mendes R, Azevedo JL (2008) Valor biotecnológico de fungos endofíticos isolados de plantas de interesse econômico. In: Maia MC, Malosso E, Jano-Melo AM (eds) Micologia: avanços no conhecimento. Sociedade Brasileira de Micologia, Recife, pp 129–140

    Google Scholar 

  • Owen NL, Hundley N (2004) Endophytes the chemical synthesizer inside plants. Sci Prog 87:79–99

    Article  CAS  PubMed  Google Scholar 

  • Paz LCP, Santin RCM, Guimarães AM, Rosa OPP, Dias ACF, Quecine MC, Azevedo JL, Matsumura AT (2012) Eucalyptus growth promotion by endophytic Bacillus spp. Genet Mol Res 11:3711–3720

    Article  CAS  PubMed  Google Scholar 

  • Pittayakhajonwut P, Dramae A, Madla S, Lartpornmatulee N, Boonyuen N, Tanticharoen M (2006) Depsidones from the endophytic fungus BCC 8616. J Nat Prod 69:1361–1363

    Article  CAS  PubMed  Google Scholar 

  • Priscilla HCS, Sudha SS (2014) A study on the potential of endophytic bacteria as biocontrol agent. Scrut Int Res J Biol Environ Sci 1:8–12

    Google Scholar 

  • Quecine MC, Araújo WL, Marcon J, Gai CS, Azevedo JL, Pizzirani-Kleiner AA (2008) Chitinolytic activity of endophytic Streptomyces and potential for biocontrol. Lett Appl Microbiol 47:486–491

    Article  CAS  PubMed  Google Scholar 

  • Quecine MC, Lacava PT, Magro SR, Parra JRP, Araujo WL, Azevedo JL, Pizzirani-Kleiner AA (2011) Partial characterization of chitinolytic extract from endophytic Streptomyces sp. and its effects on the boll weevil. J Agric Sci Technol 5:420–427

    Google Scholar 

  • Quecine MC, Batista BD, Lacava PT (2014) Diversity and biotechnological potential of plant-associated endophytic bacteria. In: Kumar AP, Govil JN (eds) Biotechnology: plant biotechnology, vol 2. Studium Press LLC, Houston, pp 377–423

    Google Scholar 

  • Rao KPC, Verchot LV, Joshi LM (2007) Adaptation to climate change through sustainable management and development of agroforestry systems. J SAT Agric Res 4:1–30

    Google Scholar 

  • Ravikumar S, Gnanadesigan M, Suganthi P, Ramalakshmi A (2010) Antibacterial potential of chosen mangrove plants against isolated urinary tract infectious bacterial pathogens. Int J Med Sci 2:94–99

    Google Scholar 

  • Ravikumar S, Inbaneson SJ, Uthiraselvam M, Priya SR, Ramu A, Banerjee MB (2011) Diversity of endophytic actinomycetes from Karangkadu mangrove ecosystem and its antibacterial potential against bacterial pathogens. J Pharm Res 4:294–296

    Google Scholar 

  • Rivera-Orduña FN, Suarez-Sanches RA, Flores-Bustamante ZR, Gracida-Rodriguez JN, Flores-Cotera LB (2011) Diversity of endophytic fungi of Taxus globose (Mexican yew). Fungal Divers 47:65–74

    Article  Google Scholar 

  • Rukshana Begum S, Tamilselvi KS (2016) Endophytes are plant helpers: an overview. Int J Curr Microbiol App Sci 5:424–436

    Article  Google Scholar 

  • Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9

    Article  CAS  PubMed  Google Scholar 

  • Saikkonen K, Wäli P, Helander M, Faeth SH (2004) Evolution of endophyte–plant symbioses. Trends Plant Sci 9:275–280

    Article  CAS  PubMed  Google Scholar 

  • Saravanan P, Ramya V, Sridhar H, Balamurugan V, Umamaheswari S (2010) Antibacterial activity of Allium sativum L. on pathogenic bacterial strains. Glob Vet 4:519–522

    Google Scholar 

  • Sebastianes FLS, Lacava PT, Fávaro LCL, Rodrigues MBC, Araújo WL, Azevedo JL, Pizzirani-Kleiner AA (2012a) Genetic transformation of Diaporthe phaseolorum, an endophytic fungus found in mangrove forests, mediated by Agrobacterium tumefaciens. Curr Genet 58:21–33

    Article  CAS  PubMed  Google Scholar 

  • Sebastianes FS, Cabedo N, Aouad NE, Valente AMMP, Lacava PT, Azevedo JL, Pizzirani-Kleiner AA, Cortes D (2012b) 3-hydroxypropionic acid as an antibacterial agent from endophytic fungi Diaporthe phaseolorum. Curr Microbiol 65:622–632

    Article  CAS  PubMed  Google Scholar 

  • Sebastianes FLS, Romao-Dumaresq AS, Lacava PT, Harakava R, Azevedo JL, Melo IS, Pizzirani-Kleiner AA (2013) Species diversity of culturable endophytic fungi from Brazilian mangrove forests. Curr Genet 59:153–166

    Article  CAS  Google Scholar 

  • Sebastianes FLS, Valente AMMP, Boffo EF, Ferreira AG, Melo IS, Moraes LAB, Azevedo JL, Pizzirani-Kleiner AA, Lacava PT (2016) Isolation of the antibacterial agent viridiol from the mangrove endophytic fungus Hypocrea virens, as monitored by a biologic assay against Escherichia coli and NMR spectroscopy. Curr Biotechnol (in press). http://www.eurekaselect.com/node/139752/article/isolation-of-the-antibacterial-agent-viridiol-from-the-mangroveendophytic-fungus-hypocrea-virens-as-monitored-by-a-biologic-assay-against-escherichia-coli-and-nmrspectroscopy)

    Google Scholar 

  • Sessitsch A, Reiter B, Berg G (2004) Endophytic bacterial communities of field grown potato plants and their plant growth-promoting and antagonistic abilities. Can J Microbiol 50:239–249

    Article  CAS  PubMed  Google Scholar 

  • Sevilla M, Burris RH, Gunapala N, Kennedy C (2001) Comparison of benefit to sugarcane plant growth and N2 incorporation following inoculation of sterile plants with Acetobacter diazotrophicus wild-type and Nif- mutant strains. Mol Plant-Microbe Interact 14:358–366

    Article  CAS  PubMed  Google Scholar 

  • Siciliano SD, Fortin N, Mihoc N, Wisse G, Labelle S et al (2001) Selection of specific endophytic bacterial genotypes by plants in response to soil contamination. Appl Environ Microbiol 67:2469–2475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva MRO, Almeida AC, Arruda FVF, Gusmão N (2011) Endophytic fungi from Brazilian mangrove plant Laguncularia racemose (L.) Gaertn. (Combretaceae): their antimicrobial potential. In: Méndez-Vilas A (ed) Science against microbial pathogens: communicating current research and technological advances. Badajoz, Formatex, pp 1260–1266

    Google Scholar 

  • Sivaramakrishnan S, Gangadharan D, Nampoothiri KM, Soccol CR, Pandey A (2006) A-amylases from microbial sources–an overview on recent developments. Food Technol Biotechnol 44:173–184

    CAS  Google Scholar 

  • Sivasithamparam K (1998) Ghisalberti EL. Secondary metabolism in Trichoderma and Gliocladium. In: Harman GE (ed) Trichoderma and Gliocladium. Taylor & Francis, London, pp 139–191

    Google Scholar 

  • Stamford TLM, Araujo JM, Stamford NP (1998) Atividade enzimática de microrganismos isolados do jacatupé (Pachyrhizus erosus L. Urban). Ciênc Tecnol Aliment 18:382–385

    Article  CAS  Google Scholar 

  • Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strobel G, Daisy B, Castillo U, Harper J (2004) Natural products from endophytic microorganisms. J Nat Prod 67:257–268

    Article  CAS  PubMed  Google Scholar 

  • Sun L, Qiu F, Zhang X, Dai X, Dong X, Song W (2008) Endophytic bacterial diversity in rice (Oryza sativa L.) roots estimated by 16S rDNA sequences analysis. Microb Ecol 55:415–424

    Article  CAS  PubMed  Google Scholar 

  • Suryanarayanan TS, Kumaresan V (2000) Endophytic fungi of some halophytes from an estuarine mangrove forest. Mycol Res 104:1465–1467

    Article  Google Scholar 

  • Suryanarayanan TS, Kumaresan V, Johnson JA (1998) Foliar fungal endophytes from two species of the mangrove Rhizophora. Can J Microbiol 44:1003–1006

    Article  CAS  Google Scholar 

  • Suryanarayanan TS, Venkatesan G, Murali TS (2003) Endophytic fungal communities in leaves of tropical forest trees: diversity and distribution patterns. Curr Sci 85:489–493

    Google Scholar 

  • Suryanarayanan TS, Thirunavukkarasu N, Govindarajulu MB, Aasse F, Jansen R, Murali TS (2009) Fungal endophytes and bioprospecting. Fungal Biol Rev 23:9–19

    Article  Google Scholar 

  • Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459

    Article  CAS  PubMed  Google Scholar 

  • Thatoi H, Behera BC, Mishra RR, Dutta SK (2013) Biodiversity and biotechnological potential of microorganisms from mangrove ecosystems: a review. Ann Microbiol 63:1–19

    Article  CAS  Google Scholar 

  • Tsavkelova EA, Cherdyntseva TA, Botina SG, Netrusov AI (2007) Bacteria associated with orchid roots and microbial production of auxin. Microbiol Res 162:69–76

    Article  CAS  PubMed  Google Scholar 

  • Verma M, Brar SK, Tyagi RD, Surampalli RY, Valéro JR (2007) Antagonistic fungi, Trichoderma sp: panoply of biological control. Biochem Eng J 37:1–20

    Article  Google Scholar 

  • Wang Y, Dai C-C (2011) Endophytes: a potencial resource for biosynthesis, biotranformation, and biodegradation. Review article. Ann Microbiol 61:207–215

    Article  CAS  Google Scholar 

  • Yuliar (2014) The effect of suppression of endophytic mangrove bacteria on leaf blight of rice caused by Xanthomonas oryzae pv.Oryzae. Global J Biol Agric Health Sci 3:1–7

    Google Scholar 

  • Zheng Y-K, Qiao X-G, Miao C-P, Liu K, Chen Y-W, Xu L-H, Zhao L-X (2016) Diversity, distribution and biotechnological potential of endophytic fungi. Ann Microbiol 66:529–542

    Article  CAS  Google Scholar 

  • Zhong-Shan C, Jia-Hui P, Wen-Cheng T, Qi-Jin C, Yong-Cheng L (2009) Biodiversity and biotechnological potential of mangrove associated fungi. J For Res 20:63–72

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Teixeira Lacava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Sebastianes, F.L.S., de Azevedo, J.L., Lacava, P.T. (2017). Diversity and Biotechnological Potential of Endophytic Microorganisms Associated with Tropical Mangrove Forests. In: de Azevedo, J., Quecine, M. (eds) Diversity and Benefits of Microorganisms from the Tropics . Springer, Cham. https://doi.org/10.1007/978-3-319-55804-2_3

Download citation

Publish with us

Policies and ethics