Skip to main content

Examples of Belowground Mechanisms Enabling Legumes to Mitigate Phosphorus Deficiency

  • Chapter
  • First Online:
Legume Nitrogen Fixation in Soils with Low Phosphorus Availability

Abstract

Legumes improve agricultural sustainability through symbiotic dinitrogen (N2) fixation which constitutes a major input into agroecosystems and may provide an ecologically acceptable complement or substitute for mineral nitrogen fertilizers. However, low soil nutrient availability, notably phosphorus (P), is among the most nutrient limitations for legumes whose sensitivity to P deficiency has been attributed to low soil P availability and higher P requirements during the symbiotic N2 fixation process. In response to P deficiency, plants use various adaptive strategies to improve soil P availability and their uptake efficiency, which involves modifications in nodulated-root architecture, rhizosphere acidification, and induction of genes involved in P use efficiency such as high-affinity P transporters and P-hydrolyzing phosphatases enzymes. This chapter reports numerous legume tolerance strategies to P deficiency that link morphological, physiological, and molecular responses. Stimulation of the root’s extracellular potentialities to improve solubilization and acquisition of the rhizosphere soil P as well as optimization of intracellular use efficiency and allocation of P has been described. Coincident with most knowledge on legume performance under P deficiency, exploration of biotic factors with synergistic and complementary interactions for the benefit of both plants and soil microorganisms is increasingly adopted. A holistic understanding of the key mechanisms underlying legume tolerance to abiotic constraints will be valuable for strategies to improve symbiotic N2 fixation and sustainable agriculture in a world of increasing population and declining renewable resources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abel S, Ticconi CA, Delatorre CA (2002) Phosphate sensing in higher plants. Plant Physiol 115:1–8

    Article  CAS  Google Scholar 

  • Alikhani HA, Saleh-Rastin N, Antoun H (2006) Phosphate solubilization activity of rhizobia native to Iranian soils. Plant Soil 287:35–41

    Article  CAS  Google Scholar 

  • Alkama N, Bolou Bi Bolou E, Vailhe H, Roger L, Ounane SM, Drevon JJ (2009) Genotypic variability in P use efficiency for symbiotic nitrogen fixation is associated with variation of proton efflux in cowpea rhizosphere. Soil Biol Biochem 41:1814–1823

    Article  CAS  Google Scholar 

  • Alkama N, Ounane G, Drevon JJ (2012) Is genotypic variation of H+ efflux under P deficiency linked with nodulated-root respiration of N2 fixing common bean (Phaseolus vulgaris L.)? J Plant Physiol 169:1084–1089

    Article  CAS  PubMed  Google Scholar 

  • Araujo AP, Plassard C, Drevon JJ (2008) Phosphatase and phytase activities in nodules of common bean genotypes at different levels of phosphorus supply. Plant Soil 312:129–138

    Article  CAS  Google Scholar 

  • Argaw A (2012) Evaluation of co-inoculation of Bradyrhizobium japonicum and phosphate solubilizing Pseudomonas spp. effect on soybean (Glycine max L. (Merr.)) in Assossa area. J Agric Sci Technol 14:213–224

    CAS  Google Scholar 

  • Baldwin JC, Athikkattuvalasu SK, Raghothama KG (2001) LEPS2, a phosphorus starvation-induced novel acid phosphatase from tomato. Plant Physiol 125:728–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bargaz A, Ghoulam C, Faghire M, Attar HA, Drevon JJ (2011) The nodule conductance to O2 diffusion increases with high phosphorus content in the Phaseolus vulgaris-rhizobia symbiosis. Symbiosis 53:157–164

    Article  CAS  Google Scholar 

  • Bargaz A, Ghoulam C, Amenc L, Lazali M, Faghire M, Drevon JJ (2012) Phosphoenol pyruvate phosphatase is induced in the root nodule cortex of Phaseolus vulgaris under phosphorus deficiency. J Exp Bot 63:4723–4730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bargaz A, Lazali M, Amenc M, Abadie J, Ghoulam C, Farissi M, Faghire M, Drevon JJ (2013) Differential expression of trehalose 6-P phosphatase and ascorbate peroxidase transcripts in nodule cortex of Phaseolus vulgaris and regulation of nodule O2 permeability. Planta 238:107–119

    Article  CAS  PubMed  Google Scholar 

  • Bargaz A, Zaman-Allah M, Farissi M, Lazali M, Drevon JJ, Rim T, Maougal RT, Carlsson G (2015) Physiological and molecular aspects of tolerance to environmental constraints in grain and forage legumes. Int J Mol Sci 16:18976–19008

    Article  PubMed Central  CAS  Google Scholar 

  • Bargaz A, Isaac ME, Jensen ES, Carlsson G (2016) Nodulation and root growth increase in lower soil layers of water-limited faba bean intercropped with wheat. J Plant Nutr Soil Sci 179:537–546

    Article  CAS  Google Scholar 

  • Blossfeld S, Schreiber CM, Liebsch G, Kuhn AJ, Hinsinger P (2013) Quantitative imaging of rhizosphere pH and CO2 dynamics with planar optodes. Ann Bot 112:267–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolan NS, Elliot J, Gregg PEH (1997) Enhanced dissolution of phosphate rocks in the rhizosphere. Biol Fertil Soils 24:169–174

    Article  CAS  Google Scholar 

  • Braum SM, Helmke PA (1995) White lupin utilizes soil phosphorus that is unavailable to soybean. Plant Soil 176:95–100

    Article  CAS  Google Scholar 

  • Brinch-Pedersen H, Sorenson LD, Holm PB (2002) Engineering crop plants: getting a handle on phosphate. Trends Plant Sci 7:118–125

    Article  CAS  PubMed  Google Scholar 

  • Bucher M (2007) Functional biology of plant phosphate uptake at root and mycorrhizal interfaces. New Phytol 173:11–26

    Article  CAS  PubMed  Google Scholar 

  • Burkert B, Robson A (1994) Zn uptake in subterranean clover (Trifolium subterraneum L.) by three vesicular-arbuscular mycorrhizal fungi in a root free sandy soil. Soil Biol Biochem 26:1117–1124

    Article  Google Scholar 

  • Casieri L, Ait Lahmidi N, Doidy J, Veneault-Fourrey C, Migeon A, Bonneau L, Courty PE, Garcia K, Charbonnier M, Delteil A, Brun A, Zimmermann S, Plassard C, Wipf D (2013) Biotrophic transportome in mutualistic plant–fungal interactions. Mycorrhiza 23:597–625

    Article  CAS  PubMed  Google Scholar 

  • Chabot R, Anton H, Cescas MP (1996) Growth promotion of maize and lettuce by phosphate solubilizing Rhizobium leguminosarum biovar phaseoli. Plant Soil 184:311–321

    Article  CAS  Google Scholar 

  • Choi YM, Suh HJ, Kim JM (2001) Purification and properties of extracellular phytase from Bacillus sp. KHU-10. J Protein Chem 20:287–292

    Article  CAS  PubMed  Google Scholar 

  • Chu HM, Guo RT, Lin TW, Chou CC, Shr HL, Lai HL, Tang TY, Cheng KJ, Selinger BL, Wang AHJ (2004) Structures of Selenomonas ruminantium phytase in complex with persulfated phytate: DSP phytase fold and mechanism for sequential substrate hydrolysis. Structure 12:2015–2024

    Article  CAS  PubMed  Google Scholar 

  • Cookson P (2002) Variation in phosphatase activity in soil: a case study. Agric Sci 7:65–72

    Google Scholar 

  • Devau N, Le Cadre E, Hinsinger P, Jaillard B, Gerard F (2009) Soil pH controls the environmental availability of phosphorus: experimental and mechanistic modelling approaches. Appl Geochem 24:2163–2174

    Article  CAS  Google Scholar 

  • Dinkelaker B, Römheld V, Marschner H (1989) Citric acid exudation and precipitation of calcium citrate in the rhizosphere of white lupin (Lupinus albus L.) Plant Cell Environ 12:265–292

    Article  Google Scholar 

  • Drevon JJ, Frangne N, Fleurat-Lessard P, Payre H, Ribet J, Vadez V (1998) Is nitrogenase-linked respiration regulated by osmocontractile cells in legume nodules? In: Elmerich C, Kondorosi A, Newton W (eds) Biological nitrogen fixation for the 21st century. Kluwer Academic Publishers, Dordrecht, pp 465–466

    Chapter  Google Scholar 

  • Drevon JJ, Abadie J, Alkama N, Andriamananjara A, Amenc L, Bargaz A, Carlsson G, Lazali M, Ghoulam C, Ounane SM (2015) Phosphorus use efficiency for N2 fixation in the rhizobial symbiosis with legumes. In: de Bruijn FJ (ed) Biological nitrogen fixation. Wiley, Hoboken, pp 455–464

    Chapter  Google Scholar 

  • Dudeja SS, Khurana AL, Kundu BS (1981) Effect of Rhizobium and phosphor microorganism on yield and nutrient uptake in chickpea. Curr Sci 50:503–505

    CAS  Google Scholar 

  • Duff SMG, Sarath G, Plaxton WC (1994) The role of acid phosphatases in plant phosphorus metabolism. Physiol Plant 90:791–800

    Article  CAS  Google Scholar 

  • Duponnois R, Colombet A, Hien V, Thioulouse J (2005) The mycorrhizal fungus Glomus intraradices and rock phosphate amendment influence plant growth and microbial activity in the rhizosphere of Acacia holosericea. Soil Biol Biochem 37:1460–1468

    Article  CAS  Google Scholar 

  • El-Azouni I (2008) Effect of phosphate solubilizing fungi on growth and nutrition uptake of soybean (Glycine max L.) Plants J Appl Sci Res 4:592–598

    CAS  Google Scholar 

  • El Faiz A, Duponnois R, Winterton P, Ouhammou A, Meddich A, Boularbah A (2015) Effect of different amendments on growing of Canna indica L. inoculated with AMF on mining substrate. Int J Phytoremediation 17:503–513

    Article  PubMed  CAS  Google Scholar 

  • Elkoca E, Kantar F, Sahin F (2008) Influence of nitrogen fixing and phosphorus solubilizing bacteria on the nodulation, plant growth, and yield of chickpea. J Plant Nutr 31:157–171

    Article  CAS  Google Scholar 

  • Ezawa T, Smith SE, Smith FA (2002) P metabolism and transport in AM fungi. Plant Soil 244:221–230

    Article  CAS  Google Scholar 

  • Gahoonia TS, Nielsen NE (1992) The effect of root-induced pH change on the depletion of inorganic and organic phosphorus in the rhizosphere. Plant Soil 143:183–189

    Article  Google Scholar 

  • George TS, Simpson RJ, Gregory PJ, Richardson AE (2007) Differential interaction of Aspergillus niger and Peniophora lycii phytases with soil particles affects the hydrolysis of inositol phosphates. Soil Biol Biochem 39:793–803

    Article  CAS  Google Scholar 

  • Giaveno C, Celi L, Richardson E, Simpson RJ, Barberis E, Simpson B, Elisabetta B (2010) Interaction of phytases with minerals and availability of substrate affect the hydrolysis of inositol phosphates. Soil Biol Biochem 42:491–498

    Article  CAS  Google Scholar 

  • Gilbert GA, Knight JD, Vance CP, Allan DL (1999) Acid phosphatase activity in phosphorus-deficient white lupin roots. Plant Cell Environ 22:801–810

    Article  CAS  Google Scholar 

  • Golovan S, Wang G, Zhang J, Forsberg CW (2000) Characterization and over- production of the Escherichia coli appA encoded bifunctional enzyme that exhibits both phytase and acid phosphatase activities. Can J Microbiol 46:59–71

    Article  CAS  PubMed  Google Scholar 

  • Govindasamy V, Senthilkumar M, Mageshwaran V, Annapurna K (2009) Detection and characterization of ACC deaminase in plant growth promoting rhizobacteria. J Plant Biochem Biotechnol 18:71–76

    Article  CAS  Google Scholar 

  • Haefner S, Knietsch A, Scholten E, Braun J, Lohscheidt M, Zelder O (2005) Biotechnological production and applications of phytases. Appl Microbiol Biotechnol 68:588–597

    Article  CAS  PubMed  Google Scholar 

  • Harrison MJ (1997) The arbuscular mycorrhizal symbiosis: an underground association. Trends Plant Sci 2:54–60

    Article  Google Scholar 

  • Hayes JE, Richardson AE, Simpson RJ (1999) Phytase and acid phosphatase activities in extracts from roots of temperate pasture grass and legume seedlings. Aust J Plant Physiol 26:801–809

    Article  CAS  Google Scholar 

  • Hegeman CE, Grabau EA (2001) A novel phytase with sequence similarity to purple acid phosphatases is expressed in cotyledons of germinating soybean seedlings. Plant Physiol 126:1598–1608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hinsinger P (1998) How do plant roots acquire mineral nutrients? Chemical processes involved in the rhizosphere. Adv Agron 64:225–265

    Article  CAS  Google Scholar 

  • Hinsinger P (2001) Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil 237:173–195

    Article  CAS  Google Scholar 

  • Hinsinger P, Plassard C, Tang CX, Jaillard B (2003) Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review. Plant Soil 248:43–59

    Article  CAS  Google Scholar 

  • Irshad U, Brauman A, Villenave C, Plassard C (2012) Phosphorus acquisition from phytate depends on efficient bacterial grazing, irrespective of the mycorrhizal status of Pinus pinaster. Plant Soil 358:155–168

    Article  CAS  Google Scholar 

  • Jaillard B, Plassard C, Hinsinger P (2001) Measurements of H+ fluxes and concentrations in the rhizosphere. In: Rengel Z (ed) Soil acidity handbook. Marcel Dekker Inc., New York, pp 25–35

    Google Scholar 

  • Javot H, Pumplin N, Harrison MJ (2007) Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles. Plant Cell Environ 30:310–322

    Article  CAS  PubMed  Google Scholar 

  • Jones DL (1998) Organic acids in the rhizosphere: a critical review. Plant Soil 205:25–44

    Article  CAS  Google Scholar 

  • Jones DL, Darrah PR (1994) Role of root derived organic acids in the mobilization of nutrients in the rhizosphere. Plant Soil 166:247–257

    Article  CAS  Google Scholar 

  • Jorquera M, Martınez O, Maruyama F, Marschner P, Mora ML (2008) Current and future biotechnological applications of bacterial phytases and phytase producing bacteria. Microbes Environ 23:182–191

    Article  PubMed  Google Scholar 

  • Kang SC, Ha CG, Lee TG, Maheshwari DK (2002) Solubilization of insoluble inorganic phosphates by a soil-inhabiting fungus Fomitopsis sp. PS 102. Curr Sci 82:439–442

    CAS  Google Scholar 

  • Kerovuo J, Lauraeus M, Nurminen P, Kalkinen N, Apajalahti J (1998) Isolation, characterization, molecular gene cloning and sequencing of a novel phytase from Bacillus subtilis. Appl Environ Microbiol 64:2079–2085

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YO, Lee JK, Kim HK, Yu JH, Oh TK (1998) Cloning of thermostable phytase gene (phy) from Bacillus sp. DS11 and it’s over expression in Escherichia coli. FEMS Microbiol Lett 162:185–191

    Article  CAS  PubMed  Google Scholar 

  • Konietzny U, Greiner R (2002) Molecular and catalytic properties of phytase degrading enzymes (phytases). Int J Food Sci Technol 37:791–812

    Article  CAS  Google Scholar 

  • Kouas S, Alkama N, Abdelly C, Drevon JJ (2008) Proton release by nodulated roots varies among common bean genotypes (Phaseolus vulgaris) under phosphorus deficiency. J Plant Nutr Soil Sci 171:242–248

    Article  CAS  Google Scholar 

  • Kouas S, Debez A, Slatni T, Labidi N, Drevon JJ, Abdelly C (2009) Root proliferation, proton efflux, and acid phosphatase activity in common bean (Phaseolus vulgaris) under phosphorus shortage. J Plant Biol Res 52:395–402

    Article  Google Scholar 

  • Kumar R, Chandra R (2008) Influence of PGPR and PSB on Rhizobium leguminosarum bv. viciae strain competition and symbiotic performance in lentil. World J Agric Sci 4:297–301

    Google Scholar 

  • Kumar V, Behl RK, Narula N (2001) Establishment of phosphate solubilizing strains of Azotobacter chroococcum in the rhizosphere and their effect on wheat cultivars under greenhouse conditions. Microbiol Res 156:87–93

    Article  CAS  PubMed  Google Scholar 

  • Lambers H, Raven JA, Shavre GR, Smith SE (2006) Plant nutrient-acquisition strategies change with soil age. Trends Ecol Evol 23:95–103

    Article  Google Scholar 

  • Lambers H, Brundrett MC, Raven JA, Hopper SD (2010) Plant mineral nutrition in ancient landscapes: high plant species diversity on infertile soils is linked to functional diversity for nutritional strategies. Plant Soil 334:11–31

    Article  CAS  Google Scholar 

  • Lambers H, Clements JC, Nelson MN (2013) How a phosphorus-acquisition strategy based on carboxylate exudation powers the success and agronomic potential of lupines (Lupinus, Fabaceae). Am J Bot 100:263–288

    Article  CAS  PubMed  Google Scholar 

  • Latati M, Bargaz A, Belarbi B, Lazali M, Benlahrech S, Tellah S, Kaci G, Drevon JJ, Ounane SM (2016) The intercropping common bean with maize improves the rhizobial efficiency, resource use and grain yield under low phosphorus availability. Eur J Agron 72:80–90

    Article  CAS  Google Scholar 

  • Lazali M, Drevon JJ (2014) The nodule conductance to O2 diffusion increases with phytase activity in N2-fixing Phaseolus vulgaris L. Plant Physiol Biochem 80:53–59

    Article  CAS  PubMed  Google Scholar 

  • Lazali M, Zaman-Allah M, Amenc L, Ounane G, Abadie J, Drevon JJ (2013) A phytase gene is over-expressed in root nodules cortex of Phaseolus vulgaris-rhizobia symbiosis under phosphorus deficiency. Planta 238:317–324

    Article  CAS  PubMed  Google Scholar 

  • Lazali M, Louadj L, Ounane G, Abadie J, Amenc L, Bargaz A, Lullien-Pellerin V, Drevon JJ (2014) Localization of phytase transcripts in germinating seeds of the common bean (Phaseolus vulgaris L.) Planta 240:471–478

    Article  CAS  PubMed  Google Scholar 

  • Lazali M, Blavet D, Pernot C, Desclaux D, Drevon JJ (2016a) Efficiency of phosphorus use for dinitrogen fixation varies between common bean genotypes under phosphorus limitation. Agron J 108:1–8

    Article  CAS  Google Scholar 

  • Lazali M, Bargaz A, Brahimi S, Amenc L, Abadie J, Drevon JJ (2016b) Expression of a phosphate-starvation inducible fructose-1,6-bisphosphatase gene in common bean nodules correlates with phosphorus use efficiency. J Plant Physiol 205:48–56

    Article  CAS  PubMed  Google Scholar 

  • Lazali M, Brahimi S, Merabet C, Latati M, Benadis C, Maougal RT, Blavet D, Drevon JJ, Ounane SM (2016c) Nodular diagnosis of contrasting recombinant inbred lines of Phaseolus vulgaris in multi-local field tests under Mediterranean climate. Eur J Soil Biol 73:100–107

    Article  CAS  Google Scholar 

  • Leggewie G, Willmitzer L, Riesmeier JW (1997) Two cDNAs from potato are able to complement a phosphate uptake-deficient yeast mutant: identification of phosphate transporters from higher plants. Plant Cell 9:381–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lei XG, Weaver JD, Mullaney E, Ullah AH, Michael J, Azain MJ (2013) Phytase, a new life for an “old” enzyme. Annu Rev Anim Biosci 1:283–309

    Article  PubMed  CAS  Google Scholar 

  • Liang C, Pineros AM, Tian J, Yao Z, Sun L, Liu J, Shaff J, Coluccio A, Kochian VL, Liao H (2013) Low pH, aluminum, and phosphorus coordinately regulate malate exudation through GmALMT1 to improve soybean adaptation to acid soils. Plant Physiol 161:1347–1361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao H, Rubio G, Yan X, Cao A, Brown KM, Lynch JP (2001) Effect of phosphorus availability on basal root shallowness in common bean. Plant Soil 232:69–79

    Article  CAS  PubMed  Google Scholar 

  • Lim BL, Yeung P, Cheng C, Hill JE (2007) Distribution and diversity of phytate-mineralizing bacteria. ISME J 1:321–330

    CAS  PubMed  Google Scholar 

  • Liu H, Trieu AT, Blaylock LA, Harrison MJ (1998) Cloning and characterization of two phosphate transporters from Medicago truncatula roots: regulation in response to phosphate and to colonization by arbuscular mycorrhizal (AM) fungi. Mol Plant-Microbe Interact 11:14–22

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Versaw WK, Pumplin N, Gomez SK, Blaylock LA, Harrison MJ (2008) Closely related members of the Medicago truncatula PHT phosphate transporter gene family encode phosphate transporters with distinct biochemical activities. J Biol Chem 283:24673–24681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London

    Google Scholar 

  • Marschner P, Crowley D, Rengel Z (2011) Rhizosphere interactions between microorganisms and plants govern iron and phosphorus acquisition along the root axis–model and research methods. Soil Biol Biochem 43:883–894

    Article  CAS  Google Scholar 

  • Mehana TA, Wahid OAA (2002) Associative effect of phosphate dissolving fungi, Rhizobium and phosphate fertilizer on some soil properties, yield components and the phosphorus and nitrogen concentration and uptake by Vicia faba L. under field conditions. Pak J Biol Sci 5:1226–1231

    Article  Google Scholar 

  • Miller SS, Liu J, Allan DL, Menzhuber CJ, Fedorova M, Vance CP (2001) Molecular control of acid phosphatase secretion into the rhizosphere of proteoid roots from phosphorus-stressed white lupin. Plant Physiol 127:594–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Misson J, Thibaud MC, Bechtold N, Raghothama K, Nussaume L (2004) Transcriptional regulation and functional properties of Arabidopsis Pht1;4, a high affinity transporter contributing greatly to phosphate uptake in phosphate deprived plants. Plant Mol Biol 55:727–741

    Article  CAS  PubMed  Google Scholar 

  • Muchhal US, Raghothama KG (1999) Transcriptional regulation of plant phosphate transporters. Proc Natl Acad Sci U S A 96:5868–5872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mullaney EJ, Ullah AH (1998) Identification of a histidine acid phosphatase (phyA)-like gene in Arabidopsis thaliana. Biochem Biophys Res Commun 251:252–255

    Article  CAS  PubMed  Google Scholar 

  • Mullaney EJ, Ullah AH (2003) The term phytase comprises several different classes of enzymes. Biochem Biophys Res Commun 312:179–184

    Article  CAS  PubMed  Google Scholar 

  • Neumann G, Martinoia E (2002) Cluster roots–an underground adaptation for survival in extreme environments. Trends Plant Sci 7:162–167

    Article  CAS  PubMed  Google Scholar 

  • Neumann G, Römheld V (1999) Root excretion of carboxylic acids and protons in phosphorus-deficient plants. Plant Soil 211:121–130

    Article  CAS  Google Scholar 

  • Neumann G, Römheld V (2007) The release of root exudates as affected by the plant’s physiological status. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere biochemistry and organic substances at the soil-plant interface, 2nd edn. CRC Press, New York, pp 23–72

    Google Scholar 

  • Nussaume L, Kanno S, Javot H, Marin E, Pochon N, Ayadi A, Nakanishi TM, Marie-Thibaud C (2011) Phosphate import in plants: focus on the PHT1 transporters. Front Plant Sci 2. doi:10.3389/fpls.2011.00083

  • Oh BC, Chang BS, Park KH, Ha NC, Kim HK, Oh BH, Oh TK (2001) Calcium-dependent catalytic activity of a novel phytase from Bacillus amyloliquefaciens DS11. Biochemistry 40:9669–9676

    Article  CAS  PubMed  Google Scholar 

  • Ozawa K, Osaki M, Matsui H, Honma M, Tadano T (1995) Purification and properties of acid phosphatase secreted from lupin roots under phosphorus deficiency. Soil Sci Plant Nutr 41:461–469

    Article  CAS  Google Scholar 

  • Pearse SJ, Venaklaas EJ, Cawthray G, Bolland MDA, Lambers H (2006) Carboxylate release of wheat, canola and 11 grain legume species as affected by phosphorus status. Plant Soil 288:127–139

    Article  CAS  Google Scholar 

  • del Pozo JC, Allona I, Rubio V, Layva A, de la Peña A, Aragoncillo C, Paz-Ares J (1999) A type 5 acid phosphatase gene from Arabidopsis thaliana is induced by phosphate starvation and by some other types of phosphate mobilizing/oxidative stress conditions. Plant J 19:579–589

    Article  PubMed  Google Scholar 

  • Pradhan N, Sukla LB (2005) Solubilization of inorganic phosphate by fungi isolated from agriculture soil. Afr J Biotechnol 5:850–854

    Google Scholar 

  • Qin L, Zhao J, Tian J, Chen L, Sun Z, Guo Y, Lu X, Gu M, Xu G, Liao H (2012) The high-affinity phosphate transporter GmPT5 regulates phosphate transport to nodules and nodulation in soybean. Plant Physiol 159:1634–1643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quan CS, Fan SD, Zhang LH, Wang YJ, Ohta Y (2002) Purification and properties of a phytase from Candida krusei WZ-001. J Biosci Bioeng 94:419–425

    CAS  PubMed  Google Scholar 

  • Raghothama KG (1999) Phosphate acquisition. Annu Rev Plant Physiol Plant Mol Biol 50:665–693

    Article  CAS  PubMed  Google Scholar 

  • Rausch C, Bucher M (2002) Molecular mechanisms of phosphate transport in plants. Planta 216:23–37

    Article  CAS  PubMed  Google Scholar 

  • Richardson AE (2001) Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Aust J Plant Physiol 28:897–906

    Google Scholar 

  • Richardson AE, Hadobas PA (1997) Soil isolates of Pseudomonas spp. that utilize inositol phosphates. Can J Microbiol 43:509–516

    Article  CAS  PubMed  Google Scholar 

  • Richardson AE, Simpson RJ (2011) Soil microorganisms mediating phosphorus availability: update on microbial phosphorus. Plant Physiol 156:989–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson AE, Hadobas PA, Hayes JE, O’Hara CP, Simpson RJ (2001) Utilization of phosphorus and pasture plants supplied with myoinositol hexaphosphate is enhanced by the presence of soil microorganisms. Plant Soil 229:47–56

    Article  CAS  Google Scholar 

  • Richardson AE, George TS, Hens M, Simpson RJ (2005) Utilisation of soil organic phosphorus by higher plants. In: Turner BL, Frossard E, Baldwin DS (eds) Organic phosphorus in the environment. CABI, Wallingford, pp 165–184

    Chapter  Google Scholar 

  • Richardson AE, Barea J-M, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339

    Article  CAS  Google Scholar 

  • Richardson AE, Lynch JP, Ryan PR (2011) Plant and microbial strategies to improve the phosphorus efficiency of agriculture. Plant Soil 349:121–156

    Article  CAS  Google Scholar 

  • Rodriguez E, Han Y, Lei XG (1999) Cloning, sequencing, and expression of an Escherichia coli acid phosphatase/phytase gene (appA2) isolated from pig colon. Biochem Biophys Res Commun 257:117–123

    Article  CAS  PubMed  Google Scholar 

  • Rosas BS, Javier AA, Marisa R, Correa NS (2006) Phosphate solubilizing Pseudomonas putida can influence the rhizobia legume symbiosis. Soil Biol Biochem 38:3502–3505

    Article  CAS  Google Scholar 

  • Ryan PR, Delhaize E, Jones DL (2001) Function and mechanism of organic anion exudation from plant roots. Ann Rev Plant Physiol Plant Mol Biol 52:527–560

    Article  CAS  Google Scholar 

  • Ryu CM, Hu CH, Locy RD, Kloepper JW (2005) Study of mechanisms for plant growth promotion elicited by rhizobacteria in Arabidopsis thaliana. Plant Soil 268:285–292

    Article  CAS  Google Scholar 

  • Schachtman DP, Reid RJ, Ayling SM (1998) Phosphorus uptake by plants: from soil to cell. Plant Physiol 116:447–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schröder JJ, Smit AL, Cordell D, Rosemarin A (2011) Improved phosphorus use efficiency in agriculture: a key requirement for its sustainable use. Chemosphere 84:822–831

    Article  PubMed  CAS  Google Scholar 

  • Schweiger PF, Robson AD, Barrow NJ (1995) Root hair length determines beneficial effect of a Glomus species on shoot growth of some pasture species. New Phytol 131:247–254

    Article  Google Scholar 

  • Simpson RJ, Oberson A, Culvenor RA (2011) Strategies and agronomic interventions to improve the phosphorus-use efficiency of farming systems. Plant Soil 349:89–120

    Article  CAS  Google Scholar 

  • Smith SE, Barker SJ (2002) Plant phosphate transporter genes help harness the nutrition benefits of arbuscular mycorrhizal symbiosis. Trends Plant Sci 7:189–190

    Article  CAS  PubMed  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic Press, London

    Google Scholar 

  • Smith FW, Rae AL, Hawkesford MJ (2000) Molecular mechanisms of phosphate and sulphate transport in plants. Biochim Biophys Acta 1465:236–245

    Article  CAS  PubMed  Google Scholar 

  • Tang C, Drevon JJ, Jaillard B, Souche G, Hinsinger P (2004) Proton efflux of two genotypes of bean (Phaseolus vulgaris L.) as affected by N nutrition and P deficiency. Plant Soil 260:59–68

    Article  CAS  Google Scholar 

  • Tang C, Han XZ, Qiao YF, Zheng SJ (2009) Phosphorus deficiency does not enhance proton efflux by roots of soybean [Glycine max (L.) Murr.] Environ Exp Bot 67:228–234

    Article  CAS  Google Scholar 

  • Tang H, Li X, Zu C, Zhang F, Shen J (2013) Spatial distribution and expression of intracellular and extracellular acid phosphatases of cluster roots at different developmental stages in white lupin. Plant J 170:1243–1250

    CAS  Google Scholar 

  • Tesfaye M, Temple SJ, Allan DL, Vance CP, Samac DA (2001) Overexpression of malate dehydrogenase in transgenic alfalfa enhances organic acid synthesis and confers tolerance to aluminum. Plant Physiol 127:1836–1844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tisdall JM (1994) Possible role of soil microorganisms in aggregation in soils. Plant Soil 159:115–121

    Article  Google Scholar 

  • Turner BL, Papházy M, Haygarth PM, McKelvie ID (2002) Inositol phosphates in the environment. Philos Trans R Soc Lond Ser B Biol Sci 357:449–469

    Article  CAS  Google Scholar 

  • Ullah AH, Phillippy BQ (1994) Substrate selectivity in Aspergillus ficuum phytase and acid phosphatases using myo-inositol phosphates. J Agric Food Chem 42:423–425

    Article  CAS  Google Scholar 

  • Valverde C, Ferrari A, Wall LG (2002) Phosphorus and the regulation of nodulation in the actinorhizal symbiosis between Discaria trinervis (Rhamnaceae) and Frankia BCU110501. New Phytol 153:43–51

    Article  CAS  Google Scholar 

  • Vance CP, Ehde-Stone C, Allan DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol 157:423–447

    Article  CAS  Google Scholar 

  • Veneklaas EJ, Stevens J, Cawthray GR, Turner S, Grigg AM, Lambers H (2003) Chickpea and white lupin rhizosphere carboxylates vary with soil properties and enhance phosphorus uptake. Plant Soil 248:187–197

    Article  CAS  Google Scholar 

  • Wahbi S, Maghraoui T, Hafidi M, Sanguin H, Oufdou K, Prin Y, Duponnois R, Galiana A (2016) Enhanced transfer of biologically fixed N from faba bean to intercropped wheat through mycorrhizal symbiosis. Appl Soil Ecol 107:91–98

    Article  Google Scholar 

  • Wouterlood M, Cawthray GR, Turner S, Lambers H, Veneklaas EJ (2004) Rhizosphere carboxylate concentrations of chickpea are affected by genotype and soil type. Plant Soil 261:1–10

    Article  CAS  Google Scholar 

  • Yan F, Zhu Y, Mueller C, Schubert S (2002) Adaptation of H+ pumping and plasma membrane H+ATPase activity in proteoid roots of white lupin under phosphorus deficiency. Plant Physiol 129:50–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan X, Liao H, Beebe SE, Blair MW, Lynch JP (2004) QTL mapping of root hair and acid exudation traits and their relationship to phosphorus uptake in common bean. Plant Soil 265:17–29

    Article  CAS  Google Scholar 

  • Yoon SJ, Choi YJ, Min HK, Cho KK, Kim JW, Lee SC, Jung YH (1996) Isolation and identification of phytase-producing bacterium, Enterobacter sp. 4, and enzymatic properties of phytase enzyme. Enzym Microb Technol 18:449–454

    Article  CAS  Google Scholar 

  • Zhang W, Mullaney EJ, Lei XG (2007) Adopting selected hydrogen bonding and ionic interactions from Aspergillus fumigatus phytase structure improves the thermostability of Aspergillus niger PhyA phytase. Appl Environ Microbiol 73:3069–3076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Gruszewski HA, Chevone BI, Nessler CL (2008) An Arabidopsis purple acid phosphatase with phytase activity increases foliar ascorbate. Plant Physiol 146:431–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zoysa AKN, Loganathan P, Hedley MJ (1998) Phosphate rock dissolution and transformation in the rhizosphere of tea (Camellia sinensis L.) compared with other species. Eur J Soil Sci 49:477–486

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Lazali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Lazali, M., Bargaz, A. (2017). Examples of Belowground Mechanisms Enabling Legumes to Mitigate Phosphorus Deficiency. In: Sulieman, S., Tran, LS. (eds) Legume Nitrogen Fixation in Soils with Low Phosphorus Availability. Springer, Cham. https://doi.org/10.1007/978-3-319-55729-8_7

Download citation

Publish with us

Policies and ethics