Skip to main content

The Role and Epigenetic Modification of the Retinoic Acid Receptor

  • Reference work entry
  • First Online:
Handbook of Nutrition, Diet, and Epigenetics
  • 119 Accesses

Abstract

Dietary vitamin A is converted to retinoids, including retinal, retinol, and retinoic acid, in the metabolic pathway. Two types of retinoic acid exist in the cell nucleus along with two types of receptor, the retinoic acid receptor (RAR) and retinoic X receptor (RXR) each of which has three subtypes, α, β, and γ. Retinoic acid receptors are involved in a wide variety of functions including mediating cell differentiation, tissue growth, blood vessel formation, the emotional and cognitive functions, and tumor suppression.

RARβ, a tumor suppressor gene, is epigenetically suppressed in most cancers. Epigenetic modification of RAR in many cancers includes DNA methylation and histone hypoacetylation. Histone deacetylase inhibitor and RA restore RAR expression and have shown a strong antitumor effect. The epigenetic modification of RAR could have clinical applications such as in diagnosing malignancies.

In the future, as many other types of epigenetic modifications become better understood, we can expect their diagnostic and therapeutic applications to be greatly expanded.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 579.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATRA:

All-trans retinoic acid

CRA:

9-cis-retinoic acid

HDAC:

Histone deacetylase

RA:

Retinoic acid

RAR:

Retinoic acid receptor

RARE:

Receptor responsive element

RXR:

Retinoic X receptor

References

  • Al Haj Zen A et al (2016) The retinoid agonist Tazarotene promotes angiogenesis and wound healing. Mol Ther 24(10):1745–1759

    Article  Google Scholar 

  • Berrada N et al (2012) Epigenetic alterations of adenomatous polyposis coli (APC), retinoic acid receptor beta (RARbeta) and survivin genes in tumor tissues and voided urine of bladder cancer patients. Cell Mol Biol (Noisy-le-Grand) (Suppl 58):OL1744–OL1751

    Google Scholar 

  • Bhagat R et al (2014) Epigenetic alteration of p16 and retinoic acid receptor beta genes in the development of epithelial ovarian carcinoma. Tumour Biol 35(9):9069–9078

    Article  CAS  Google Scholar 

  • Boku S et al (2015) Neonatal maternal separation alters the capacity of adult neural precursor cells to differentiate into neurons via methylation of retinoic acid receptor gene promoter. Biol Psychiatry 77(4):335–344

    Article  CAS  Google Scholar 

  • Cassinat B et al (2011) New role for granulocyte colony-stimulating factor-induced extracellular signal-regulated kinase 1/2 in histone modification and retinoic acid receptor alpha recruitment to gene promoters: relevance to acute promyelocytic leukemia cell differentiation. Mol Cell Biol 31(7):1409–1418

    Article  CAS  Google Scholar 

  • Choi WI et al (2014) Promyelocytic leukemia zinc finger-retinoic acid receptor alpha (PLZF-RARalpha), an oncogenic transcriptional repressor of cyclin-dependent kinase inhibitor 1A (p21WAF/CDKN1A) and tumor protein p53 (TP53) genes. J Biol Chem 289(27):18641–18656

    Article  CAS  Google Scholar 

  • Corcoran JP, So PL, Maden M (2004) Disruption of the retinoid signalling pathway causes a deposition of amyloid beta in the adult rat brain. Eur J Neurosci 20(4):896–902

    Article  Google Scholar 

  • Cras A et al (2007) Epigenetic patterns of the retinoic acid receptor beta2 promoter in retinoic acid-resistant thyroid cancer cells. Oncogene 26(27):4018–4024

    Article  CAS  Google Scholar 

  • De-Castro Arce J, Gockel-Krzikalla E, Rosl F (2007) Retinoic acid receptor beta silences human papillomavirus-18 oncogene expression by induction of de novo methylation and heterochromatinization of the viral control region. J Biol Chem 282(39):28520–28529

    Article  CAS  Google Scholar 

  • Ding Y et al (2008) Retinoic acid attenuates beta-amyloid deposition and rescues memory deficits in an Alzheimer’s disease transgenic mouse model. J Neurosci 28(45):11622–11634

    Article  CAS  Google Scholar 

  • Dumache R et al (2012) Retinoic acid receptor beta2 (RARbeta2): nonivasive biomarker for distinguishing malignant versus benign prostate lesions from bodily fluids. Chirurgia (Bucur) 107(6):780–784

    CAS  Google Scholar 

  • Etchamendy N et al (2001) Alleviation of a selective age-related relational memory deficit in mice by pharmacologically induced normalization of brain retinoid signaling. J Neurosci 21(16):6423–6429

    Article  CAS  Google Scholar 

  • Fang C et al (2015) Promoter methylation of the retinoic acid receptor Beta2 (RARbeta2) is associated with increased risk of breast cancer: a PRISMA compliant meta-analysis. PLoS One 10(10):e0140329

    Article  Google Scholar 

  • Gutierrez J et al (2015) Human papillomavirus type 16 E7 oncoprotein upregulates the retinoic acid receptor-beta expression in cervical cancer cell lines and K14E7 transgenic mice. Mol Cell Biochem 408(1–2):261–272

    Article  CAS  Google Scholar 

  • Hayashi K et al (2001) Inactivation of retinoic acid receptor beta by promoter CpG hypermethylation in gastric cancer. Differentiation 68(1):13–21

    Article  CAS  Google Scholar 

  • He M et al (2009) Epigenetic regulation of Myc on retinoic acid receptor beta and PDLIM4 in RWPE1 cells. Prostate 69(15):1643–1650

    Article  CAS  Google Scholar 

  • Hou N et al (2015) Vitamin A deficiency impairs spatial learning and memory: the mechanism of abnormal CBP-dependent histone acetylation regulated by retinoic acid receptor alpha. Mol Neurobiol 51(2):633–647

    Article  CAS  Google Scholar 

  • Jung JK, Park SH, Jang KL (2010) Hepatitis B virus X protein overcomes the growth-inhibitory potential of retinoic acid by downregulating retinoic acid receptor-beta2 expression via DNA methylation. J Gen Virol 91(2):493–500

    Article  CAS  Google Scholar 

  • Kato Y et al (2007) Antitumor effect of the histone deacetylase inhibitor LAQ824 in combination with 13-cis-retinoic acid in human malignant melanoma. Mol Cancer Ther 6(1):70–81

    Article  CAS  Google Scholar 

  • Kato Y et al (2016) Combination of retinoid and histone deacetylase inhibitor produced an anti-tumor effect in cutaneous T-cell lymphoma by restoring tumor suppressor gene, retinoic acid receptorβ2, via histone acetylation. J Dermatol Sci 81(1):17–25

    Article  CAS  Google Scholar 

  • Koriyama Y et al (2013) Requirement of retinoic acid receptor β for genipin derivative-induced optic nerve regeneration in adult rat retina. PLoS One 8(8):e71252

    Article  CAS  Google Scholar 

  • Lee H et al (2013) Hepatitis C virus Core protein overcomes all-trans retinoic acid-induced cell growth arrest by inhibiting retinoic acid receptor-β2 expression via DNA methylation. Cancer Lett 335(2):372–379

    Article  CAS  Google Scholar 

  • Liu Z et al (2005) 5-Aza-2′-deoxycytidine induces retinoic acid receptor-beta(2) demethylation and growth inhibition in esophageal squamous carcinoma cells. Cancer Lett 230(2):271–283

    Article  CAS  Google Scholar 

  • Mingaud F et al (2008) Retinoid hyposignaling contributes to aging-related decline in hippocampal function in short-term/working memory organization and long-term declarative memory encoding in mice. J Neurosci 28(1):279–291

    Article  CAS  Google Scholar 

  • Moison C et al (2013) DNA methylation associated with polycomb repression in retinoic acid receptor beta silencing. FASEB J 27(4):1468–1478

    Article  CAS  Google Scholar 

  • Nakayama T et al (2001) The role of epigenetic modifications in retinoic acid receptor beta2 gene expression in human prostate cancers. Lab Investig 81(7):1049–1057

    Article  CAS  Google Scholar 

  • Pirouzpanah S et al (2010) The effect of modifiable potentials on hypermethylation status of retinoic acid receptor-beta2 and estrogen receptor-alpha genes in primary breast cancer. Cancer Causes Control 21(12):2101–2111

    Article  Google Scholar 

  • Qian DZ et al (2005) In vivo imaging of retinoic acid receptor beta2 transcriptional activation by the histone deacetylase inhibitor MS-275 in retinoid-resistant prostate cancer cells. Prostate 64(1):20–28

    Article  CAS  Google Scholar 

  • Saito A et al (2007) All-trans retinoic acid induces in vitro angiogenesis via retinoic acid receptor: possible involvement of paracrine effects of endogenous vascular endothelial growth factor signaling. Endocrinology 148(3):1412–1423

    Article  CAS  Google Scholar 

  • Seo SY, Kim EO, Jang KL (2008) Epstein-Barr virus latent membrane protein 1 suppresses the growth-inhibitory effect of retinoic acid by inhibiting retinoic acid receptor-beta2 expression via DNA methylation. Cancer Lett 270(1):66–76

    Article  CAS  Google Scholar 

  • Sirchia SM et al (2000) Evidence of epigenetic changes affecting the chromatin state of the retinoic acid receptor beta2 promoter in breast cancer cells. Oncogene 19(12):1556–1563

    Article  CAS  Google Scholar 

  • Sun J et al (2011) Epigenetic regulation of retinoic acid receptor β2 gene in the initiation of breast cancer. Med Oncol 28(4):1311–1318

    Article  CAS  Google Scholar 

  • Uruno A et al (2005) Upregulation of nitric oxide production in vascular endothelial cells by all-trans retinoic acid through the phosphoinositide 3-kinase/Akt pathway. Circulation 112(5):727–736

    Article  CAS  Google Scholar 

  • Wang XF et al (2005) Epigenetic modulation of retinoic acid receptor beta2 by the histone deacetylase inhibitor MS-275 in human renal cell carcinoma. Clin Cancer Res 11(9):3535–3542

    Article  CAS  Google Scholar 

  • Wang J et al (2012) 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone induces retinoic acid receptor β hypermethylation through DNA methyltransferase 1 accumulation in esophageal squamous epithelial cells. Asian Pac J Cancer Prev 13(5):2207–2212

    Article  Google Scholar 

  • Webb S et al (2016) Retinoic acid receptor signaling preserves tendon stem cell characteristics and prevents spontaneous differentiation in vitrox. Stem Cell Res Ther 7:45

    Article  Google Scholar 

  • Widschwendter M et al (2001) Epigenetic downregulation of the retinoic acid receptor-beta2 gene in breast cancer. J Mammary Gland Biol Neoplasia 6(2):193–201

    Article  CAS  Google Scholar 

  • Zhang Z et al (2007) Retinoic acid receptor beta2 is epigenetically silenced either by DNA methylation or repressive histone modifications at the promoter in cervical cancer cells. Cancer Lett 247(2):318–327

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukihiko Kato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kato, Y. (2019). The Role and Epigenetic Modification of the Retinoic Acid Receptor. In: Patel, V., Preedy, V. (eds) Handbook of Nutrition, Diet, and Epigenetics. Springer, Cham. https://doi.org/10.1007/978-3-319-55530-0_114

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55530-0_114

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55529-4

  • Online ISBN: 978-3-319-55530-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics