Skip to main content

Advertisement

Log in

Epigenetic alteration of p16 and retinoic acid receptor beta genes in the development of epithelial ovarian carcinoma

  • Research Article
  • Published:
Tumor Biology

Abstract

Silencing of tumor suppressor and tumor-related genes by promoter hypermethylation is one of the major events in ovarian carcinogenesis. In this study, we analyzed aberrant promoter methylation of p16 and RAR-β genes in 134 epithelial ovarian carcinomas (EOCs), 23 low malignant potential (LMP) tumors, 26 benign cystadenomas, and 15 normal ovarian tissues. Methylation was investigated by methylation-specific PCR (MSP), and the results were confirmed by bisulfite DNA sequencing. Relative gene expression of p16 and RAR-β was done using quantitative reverse transcriptase PCR (qRT-PCR) on 51 EOC cases, 9 LMP tumors, and 7 benign cystadenomas with 5 normal ovarian tissues. Aberrant methylation for p16 and RAR-β was present in 43 % (58/134) and 31 % (41/134) in carcinoma cases, 22 % (05/23) and 52 % (12/23) in LMP tumors, and 42 % (11/26) and 69 % (18/26) in benign cystadenomas. No methylation was observed in any of the normal ovarian tissues. The mRNA expression level of p16 and RAR-β was significantly downregulated in EOC and LMP tumors than the corresponding normal tissues whereas the expression level was normal in benign cystadenomas for p16 and slightly reduced for RAR-β. A significant correlation of p16 promoter methylation was observed with reduced gene expression in EOC. For RAR-β, no significant correlation was observed between promoter methylation and gene expression. Our results suggest that epigenetic alterations of p16 and RAR-β have an important role in ovarian carcinogenesis and that mechanism along with methylation plays a significant role in downregulation of RAR-β gene in ovarian cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Parkin DM, Bray F, Ferlay J, et al. Global cancer statistics, 1998. CA Cancer J Clin. 2005;55:74–108.

    Article  PubMed  Google Scholar 

  2. Three-year report of population based cancer registries 2009–11: National Cancer Registry Programme (ICMR), Bangalore 2013.

  3. Hennessy BT, Coleman RL, Markman M. Ovarian cancer. Lancet. 2009;374:1371–8.

    Article  CAS  PubMed  Google Scholar 

  4. Wei SH, Balch C, Paik HH, Kim YS, Baldwin RL, Liyanarachchi S, et al. Prognostic DNA methylation biomarkers in ovarian cancer. Clin Cancer Res. 2006;12:2788–94.

    Article  CAS  PubMed  Google Scholar 

  5. Jones PA, Baylin SB. The epigenomics of cancer. Cell. 2007;128:683–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Warnecke PM, Bestor TH. Cytosine methylation and human cancer. Curr Opin Oncol. 2000;12:68–73.

    Article  CAS  PubMed  Google Scholar 

  7. Baylin SB, Herman JG. DNA Hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet. 2000;16:168–74.

    Article  CAS  PubMed  Google Scholar 

  8. Liggett Jr WH, Sidransky D. Role of the p16 tumor suppressor gene in cancer. J Clin Oncol. 1998;16:197–206.

    Google Scholar 

  9. Kamb A, Gruis NA, Weaver-Feldhaus J, Liu Q, Harshman K, Tavtigian SV, et al. A cell cycle regulator potentially involved in genesis of many tumor types. Science. 1994;264:436–40.

    Article  CAS  PubMed  Google Scholar 

  10. Nobori T, Miura K, Wu DJ, Lois A, Takabayashi K, Carson DA. Deletions of the cyclin-dependent kinase- 4 inhibitor gene in multiple human cancers. Nature. 1994;368:753–6.

    Article  CAS  PubMed  Google Scholar 

  11. Serrano M, Hannon GJ, Beach D. A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature. 1993;366:704–7.

    Article  CAS  PubMed  Google Scholar 

  12. Cobrinik D, Dowdy SF, Hinds PW, Mittnacht S, Weinberg RA. The retinoblastoma protein and the regulation of cell cycling. Trends Biochem Sci. 1992;17:312–5.

    Article  CAS  PubMed  Google Scholar 

  13. Sherr CJ, Roberts JM. Cdk inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 1999;13:1501–12.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang HS, Postigo AA, Dean DC. Active transcriptional repression by the Rb-E2F complex mediates G1 arrest triggered by p16INK4a, TGFbeta, and contact inhibition. Cell. 1999;97:53–61.

    Article  CAS  PubMed  Google Scholar 

  15. Rocco JW, Sidransky D. p16 (MTS-1/CDKN2/INK4a) in cancer progression. Exp Cell Res. 2001;264:42–55.

    Article  CAS  PubMed  Google Scholar 

  16. Grummer MA, Thet LA, Zachman RD. Expression of retinoic acid receptor genes in fetal and newborn rat lung. Pediatr Pulmonol. 1994;17:234–8.

    Article  CAS  PubMed  Google Scholar 

  17. Mendelsohn C, Lohnes D, Decrimo D, Lufkin T, LeMeur M, Chambon P, et al. Function of the retinoic acid receptors (RARs) during development (II). Multiple abnormalities at various stages of organogenesis in RAR double mutants. Development. 1994;120:2749–71.

    CAS  PubMed  Google Scholar 

  18. Chambon P. A decade of molecular biology of retinoic acid receptors. FASEB J. 1996;10:940–54.

    CAS  PubMed  Google Scholar 

  19. Yang Q, Mori I, Shan L, Nakamura M, Nakamura Y, Utsunomiya H, et al. Biallelic inactivation of retinoic acid receptor 2 gene by epigenetic change in breast cancer. Am J Pathol. 2001;158:299–303.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Ivanova T, Petrenko A, Gritsko T, Vinokourova S, Eshilev E, Kobzeva V, et al. Methylation and silencing of the retinoic acid receptor-beta 2 gene in cervical cancer. BMC Cancer. 2002;2:4 (e1).

    Article  PubMed Central  PubMed  Google Scholar 

  21. Yang Q, Yoshimura G, Mori I, Sakurai T, Kakudo K. Chromosome 3p and breast cancer. J Hum Genet. 2002;47:453–9.

    Article  CAS  PubMed  Google Scholar 

  22. Nakayama T, Watanabe M, Yamanaka M, Hirokawa Y, Suzuki H, Ito H, et al. The role of epigenetic modifications in retinoic acid receptor Beta2 gene expression in human prostate cancers. Lab Investig. 2001;81:1049–57.

    Article  CAS  PubMed  Google Scholar 

  23. Fackler MJ, McVeigh M, Evron E, Garrett E, Mehrotra J, Polyak K, et al. DNA methylation of RASSF1A, HIN-1, RAR-beta, Cyclin D2 and twist in in situ and invasive lobular breast carcinoma. Int J Cancer. 2003;107:970–5.

    Article  CAS  PubMed  Google Scholar 

  24. Jerónimo C, Henrique R, Hoque MO, Ribeiro FR, Oliveira J, Fonseca D, et al. Quantitative RARbeta2 hypermethylation: a promising prostate cancer marker. Clin Cancer Res. 2004;10:4010–4.

    Article  PubMed  Google Scholar 

  25. Fischer JR, Ohnmacht U, Rieger N, Zemaitis M, Stoffregen C, Kostrzewa M, et al. Promoter methylation of RASSF1A, RARbeta and DAPK predict poor prognosis of patients with malignant mesothelioma. Lung Cancer. 2006;54:109–16.

    Article  PubMed  Google Scholar 

  26. He M, Vanaja DK, Karnes RJ, Young CY. Epigenetic regulation of Myc on retinoic acid receptor beta and PDLIM4 in RWPE1 cells. Prostate. 2009;69:1643–50.

    Article  CAS  PubMed  Google Scholar 

  27. Björklund P, Akerström G, Westin G. Accumulation of nonphosphorylated beta-catenin and c-myc in primary and uremic secondary hyperparathyroid tumors. J Clin Endocrinol Metab. 2007;92:338–44.

    Article  PubMed  Google Scholar 

  28. Bhagat R, Shilpa V, Premalata CS, Ramesh G, Ramesh C, Pallavi VR, et al. Aberrant promoter methylation of the RASSF1A and APC genes in epithelial ovarian carcinoma development. Cell Oncol. 2012;35:473–9.

    Article  CAS  Google Scholar 

  29. Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB. Methylation specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A. 1996;93:9821–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Ogino S, Kawasaki T, Brahmandam M, Cantor M, Kirkner GJ, Spiegelman D, et al. Precision and performance characteristics of bisulfite conversion and real-time PCR (MethyLight) for quantitative DNA methylation analysis. J Mol Diagn. 2006;8:209–17.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Parrish RR, Day JJ, Lubin FD. Direct bisulfite sequencing for examination of DNA methylation with gene and nucleotide resolution from brain tissues. Curr Protoc Neurosci. 2012 July; CHAPTER: Unit 7.24. doi:10.1002/0471142301.ns0724s60.

  32. Herman JG, Baylin SB. Gene silencing in cancer in association with promoter hypermethylation. New Engl J Med. 2003;349:2042–54.

    Article  CAS  PubMed  Google Scholar 

  33. Milde-Langosch K, Ocon E, Becker G, Loning T. p16/MTS1 inactivation in ovarian carcinomas: high frequency of reduced protein expression associated with hypermethylation or mutation in endometrioid and mucinous tumors. Int J Cancer. 1998;79:61–5.

    Article  CAS  PubMed  Google Scholar 

  34. McCluskey LL, Chen C, Delgadillo E, Felix JC, Muderspach LI, Debeau L. Differences in p16 gene methylation and expression in benign and malignant ovarian tumors. Gynecol Oncol. 1999;72:87–92.

    Article  CAS  PubMed  Google Scholar 

  35. Wong YF, Chung TK, Cheung TH, Nobori T, Yu AL, Yu J, et al. Methylation of p16INK4A in primary gynecologic malignancy. Cancer Lett. 1999;136:231–5.

    Article  CAS  PubMed  Google Scholar 

  36. Furlan D, Carnevali I, Marcomini B, Cerutti R, Dainese E, Capella C, et al. The high frequency of de novo promoter methylation in synchronous primary endometrial and ovarian carcinomas. Clin Cancer Res. 2006;12:3329–36.

    Article  CAS  PubMed  Google Scholar 

  37. Li M, Huang ZJ, Dong WH, Li XY, Wang XY, He XH, et al. Disfigurement of p16INK4A gene expression in development of ovarian cancer and the mechanism. Zhonghua Fu Chan Ke Za Zhi. 2006;41:408–12.

    PubMed  Google Scholar 

  38. Wiley A, Katsaros D, Chen H, Rigault de la Longrais IA, Beeghly A, Puopolo M, et al. Aberrant promoter methylation of multiple genes in malignant ovarian tumors and in ovarian tumors with low malignant potential. Cancer. 2006;107:299–308.

    Article  CAS  PubMed  Google Scholar 

  39. Leal Rojas P, Anabalón Rodríguez L, García Muñoz P, Tapia Escalona O, Guzmán González P, Araya Orostica JC, et al. Promoter hypermethylation gene patterns in gynecological tumors. Med Clin (Barc). 2009;132:371–6.

    Article  Google Scholar 

  40. Makarla PB, Saboorian MH, Ashfaq R, Toyooka KO, Toyooka S, Minna JD, et al. Promoter hypermethylation profile of ovarian epithelial neoplasms. Clin Cancer Res. 2005;11:5365–9.

    Article  CAS  PubMed  Google Scholar 

  41. Bammidi LS, Neerukonda GN, Murthy S, Kanapuram RD. p16 gene alterations in human ovarian cancer: comparison between tissue and blood samples. Int J Gynecol Cancer. 2012;22(4):553–60.

    Article  PubMed  Google Scholar 

  42. Widschwendter M, Berger J, Hermann M, Müller HM, Amberger A, Zeschnigk M, et al. Methylation and silencing of retinoic acid receptor-beta 2 gene in breast cancer. J Natl Cancer Inst. 2000;92(10):826–32.

    Article  CAS  PubMed  Google Scholar 

  43. Gao YP, Li M, Zhang YY, Wang H, He XH, Wang ZH. Relationship between RAR-beta gene expression defect and its methylation. Zhonghua Fu Chan Ke Za Zhi. 2007;42(7):472–6.

    CAS  PubMed  Google Scholar 

  44. Tang D, Kryvenko ON, Mitrache N, Do KC, Jankowski M, Chitale DA, et al. Methylation of RAR-β gene increases prostate cancer risk in black Americans. J Urol. 2013;190(1):317–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Chmelarova M, Krepinska E, Spacek J, Laco J, Nekvindova J, Palicka V. Methylation analysis of tumour suppressor genes in ovarian cancer using MS-MLPA. Folia Biol (Praha). 2012;58:246–50.

    CAS  Google Scholar 

  46. Ozdemir F, Altinisik J, Karateke A, Coksuer H, Buyru N. Methylation of tumor suppressor genes in ovarian cancer. Exp Ther Med. 2012;4(6):1092–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  47. Khodyrev DS, Loginov VI, Pronina IV, Kazubskaya TP, Garkavtsera RF, Braga EA. Methylation of promoter region of RAR-β2 gene in renal cell, breast and ovarian carcinomas. Russ J Genet. 2008;44(8):983–8.

    Article  CAS  Google Scholar 

  48. Katsaros D, Cho W, Singal R, Fracchioli S, Rigault De La Longrais IA, Arisio R, et al. Methylation of tumor suppressor gene p16 and prognosis of epithelial ovarian cancer. Gynecol Oncol. 2004;94:685–92.

    Article  CAS  PubMed  Google Scholar 

  49. Leu YW, Rahmatpanah F, Shi H, Wei SH, Liu JC, Yan PS, et al. Double RNA interference of DNMT3b and DNMT1 enhances DNA demethylation and gene reactivation. Cancer Res. 2003;63:6110–5.

    CAS  PubMed  Google Scholar 

  50. Marchini S, Codegoni AM, Bonazzi C, Chiari S, Broggini M. Absence of deletions but frequent loss of expression of p16INK4 in human ovarian tumours. Br J Cancer. 1997;76:146–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Fujita M, Enomoto T, Haba T, Nakashima R, Sasaki M, Yoshino K, et al. Alteration of p16 and p15 genes in common epithelial ovarian tumors. Int J Cancer. 1997;74:148–55.

    Article  CAS  PubMed  Google Scholar 

  52. Niederacher D, Yan HY, An HX, Bender HG, Beckmann MW. CDKN2A gene inactivation in epithelial sporadic ovarian cancer. Br J Cancer. 1999;80:1920–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Kaiser PC, Körner M, Kappeler A, Aebi S. Retinoid receptors in ovarian cancer: expression and prognosis. Ann Oncol. 2005;16(9):1477–87.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The research work is supported by Department of Biotechnology, India, Grant No BT/PR 13440/MED/30/267/2009. We are grateful to Dr V Shanmugam (Research Assistant, NIMHANS) for helping with the statistical analysis.

Conflict of interest

None.

Ethical clearance

The study was approved by Institutional Ethics Committee and all samples were collected after obtaining written, informed consent from patients.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lakshmi Krishnamoorthy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table S1

(DOCX 13 kb)

Supplementary Table S2

(DOCX 11 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhagat, R., Kumar, S.S., Vaderhobli, S. et al. Epigenetic alteration of p16 and retinoic acid receptor beta genes in the development of epithelial ovarian carcinoma. Tumor Biol. 35, 9069–9078 (2014). https://doi.org/10.1007/s13277-014-2136-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2136-1

Keywords

Navigation