Skip to main content

Arsenic Carcinogenesis

  • Chapter
  • First Online:
Essential and Non-essential Metals

Part of the book series: Molecular and Integrative Toxicology ((MOLECUL))

  • 656 Accesses

Abstract

Arsenic is a Class I carcinogen causing cancer of the skin, lungs, bladder, liver, kidney, and probably prostate and ovary. Exposure can be by ingestion of contaminated drinking water or food, or by inhalation of fumes from burning coal. Arsenic does not induce point mutations like a classic DNA-damaging mutagen. The carcinogenic mechanism is unclear, but evidence exists supporting DNA repair inhibition, stem cell expansion, reactive oxygen generation, aneuploidy, and epigenetic dysregulation. The lack of UV signature mutation spectra in arsenic-induced skin cancers argues against DNA repair inhibition as a mechanism. Recent studies on epigenetic dysregulation point toward differential gene expression consistent with a role in arsenic carcinogenesis. Limited animal models for arsenic carcinogenesis and limited studies conducted in human cancers caused by arsenic exposure limit the ability to elucidate mechanisms. Research focused on tumors from people suffering from arsenicosis is needed for a clearer understanding of molecular events underlying arsenic-induced carcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Polya DA, Lamm SH. Geogenic and anthropogenic arsenic hazard in groundwaters and soils: distribution, nature, origin, and human exposure routes. In: States JC, editor. Arsenic: exposure sources, health risks, and mechanisms of toxicity. Hoboken, NJ: Wiley; 2016.

    Google Scholar 

  2. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Arsenic, metals, fibres, and dusts. IARC Monogr Eval Carcinog Risks Hum. 2012;100(Pt C):11–465.

    PubMed Central  Google Scholar 

  3. Hutchinson J. On some examples of arsenic-keratosis of the skin and of arsenic-cancer. Trans Pathol Soc. 1888;39:352–93.

    Google Scholar 

  4. Hutchinson J. A lecture on arsenic as a drug. Br Med J. 1891;1(1588):1213–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hutchinson J. Salvarsan (“606”) and arsenic cancer. Br Med J. 1911;1(2626):976–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Grobe JW. Expert-testimony and therapeutic findings and observations in wine-dressers of the Mosel-region with late sequelae of arsenic intoxication. Berufsdermatosen. 1977;25(3):124–30.

    CAS  PubMed  Google Scholar 

  7. Roth F. After-effects of chronic arsenism in Moselle wine makers. Dtsch Med Wochenschr. 1957;82(6):211–7. doi:10.1055/s-0028-1114666.

    Article  CAS  PubMed  Google Scholar 

  8. Chen CJ, Wang CJ. Ecological correlation between arsenic level in well water and age-adjusted mortality from malignant neoplasms. Cancer Res. 1990;50(17):5470–4.

    CAS  PubMed  Google Scholar 

  9. Lamm SH, Ferdosi H, Dissen EK, Li J, Ahn J. A systematic review and meta-regression analysis of lung cancer risk and inorganic arsenic in drinking water. Int J Environ Res Public Health. 2015;12(12):15498–515. doi:10.3390/ijerph121214990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wu MM, Kuo TL, Hwang YH, Chen CJ. Dose-response relation between arsenic concentration in well water and mortality from cancers and vascular diseases. Am J Epidemiol. 1989;130(6):1123–32.

    Article  CAS  PubMed  Google Scholar 

  11. Steinmaus CM, Ferreccio C, Romo JA, Yuan Y, Cortes S, Marshall G, et al. Drinking water arsenic in northern chile: high cancer risks 40 years after exposure cessation. Cancer Epidemiol Biomark Prev. 2013;22(4):623–30. doi:10.1158/1055-9965.EPI-12-1190.

    Article  CAS  Google Scholar 

  12. Steinmaus C, Ferreccio C, Acevedo J, Yuan Y, Liaw J, Duran V, et al. Increased lung and bladder cancer incidence in adults after in utero and early-life arsenic exposure. Cancer Epidemiol Biomark Prev. 2014;23(8):1529–38. doi:10.1158/1055-9965.EPI-14-0059.

    Article  CAS  Google Scholar 

  13. Thomas DJ. The chemistry and metabolism of arsenic. In: States JC, editor. Arsenic: exposure sources, health risks, and mechanisms of toxicity. Hoboken, NJ: Wiley; 2016.

    Google Scholar 

  14. Kitchin KT, Wallace K. The role of protein binding of trivalent arsenicals in arsenic carcinogenesis and toxicity. J Inorg Biochem. 2008;102(3):532–9. doi:10.1016/j.jinorgbio.2007.10.021.

    Article  CAS  PubMed  Google Scholar 

  15. Sarma N. Skin manifestations of chronic arsenicosis. In: States JC, editor. Arsenic: exposure sources, health risks, and mechanisms of toxicity. Hoboken, NJ: Wiley; 2016.

    Google Scholar 

  16. Everall JD, Dowd PM. Influence of environmental factors excluding ultra violet radiation on the incidence of skin cancer. Bull Cancer. 1978;65(3):241–7.

    CAS  PubMed  Google Scholar 

  17. Prystowsky SD, Elfenbein GJ, Lamberg SI. Nasopharyngeal cardcinoma associated with long-term arsenic ingestion. Arch Dermatol. 1978;114(4):602–3.

    Article  CAS  PubMed  Google Scholar 

  18. Tseng WP, Chu HM, How SW, Fong JM, Lin CS, Yeh S. Prevalence of skin cancer in an endemic area of chronic arsenicism in Taiwan. J Natl Cancer Inst. 1968;40(3):453–63.

    CAS  PubMed  Google Scholar 

  19. Guo HR, Yu HS, Hu H, Monson RR. Arsenic in drinking water and skin cancers: cell-type specificity (Taiwan, ROC). Cancer Causes Control. 2001;12(10):909–16.

    Article  CAS  PubMed  Google Scholar 

  20. Chakraborty AK, Saha KC. Arsenical dermatosis from tubewell water in West Bengal. Indian J Med Res. 1987;85:326–34.

    CAS  PubMed  Google Scholar 

  21. Guha Mazumder DN, Chakraborty AK, Ghose A, Gupta JD, Chakraborty DP, Dey SB, et al. Chronic arsenic toxicity from drinking tubewell water in rural West Bengal. Bull World Health Organ. 1988;66(4):499–506.

    CAS  PubMed  Google Scholar 

  22. Guha Mazumder DN, Haque R, Ghosh N, De BK, Santra A, Chakraborty D, et al. Arsenic levels in drinking water and the prevalence of skin lesions in West Bengal, India. Int J Epidemiol. 1998;27(5):871–7.

    Article  CAS  PubMed  Google Scholar 

  23. Alam MG, Allinson G, Stagnitti F, Tanaka A, Westbrooke M. Arsenic contamination in Bangladesh groundwater: a major environmental and social disaster. Int J Environ Health Res. 2002;12(3):235–53. doi:10.1080/0960312021000000998.

    Article  CAS  PubMed  Google Scholar 

  24. Rahman MM, Chowdhury UK, Mukherjee SC, Mondal BK, Paul K, Lodh D, et al. Chronic arsenic toxicity in Bangladesh and West Bengal, India—a review and commentary. J Toxicol Clin Toxicol. 2001;39(7):683–700.

    Article  CAS  PubMed  Google Scholar 

  25. Ghosh SK, Bandyopadhyay D, Bandyopadhyay SK, Debbarma K. Cutaneous malignant and premalignant conditions caused by chronic arsenicosis from contaminated ground water consumption: a profile of patients from eastern India. Skinmed. 2013;11(4):211–6.

    PubMed  Google Scholar 

  26. Mayer JE, Goldman RH. Arsenic and skin cancer in the USA: the current evidence regarding arsenic-contaminated drinking water. Int J Dermatol. 2016; doi:10.1111/ijd.13318.

    PubMed  Google Scholar 

  27. IARC. Arsenic and arsenic compounds. IARC Monogr Eval Carcinog Risk Chem Hum. 1980;23:39–141.

    Google Scholar 

  28. Smith AH, Ercumen A, Yuan Y, Steinmaus CM. Increased lung cancer risks are similar whether arsenic is ingested or inhaled. J Expo Sci Environ Epidemiol. 2009;19(4):343–8. doi:10.1038/jes.2008.73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Amster ED, Cho JI, Christiani D. Urine arsenic concentration and obstructive pulmonary disease in the U.S. population. J Toxicol Environ Health A. 2011;74(11):716–27. doi:10.1080/15287394.2011.556060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Argos M, Parvez F, Rahman M, Rakibuz-Zaman M, Ahmed A, Hore SK, et al. Arsenic and lung disease mortality in Bangladeshi adults. Epidemiology. 2014;25(4):536–43. doi:10.1097/EDE.0000000000000106.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Guha Mazumder DN. Arsenic and non-malignant lung disease. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2007;42(12):1859–67. doi:10.1080/10934520701566926.

    Article  CAS  PubMed  Google Scholar 

  32. Mazumder DN, Steinmaus C, Bhattacharya P, von Ehrenstein OS, Ghosh N, Gotway M, et al. Bronchiectasis in persons with skin lesions resulting from arsenic in drinking water. Epidemiology. 2005;16(6):760–5.

    Article  PubMed  Google Scholar 

  33. Milton AH, Rahman M. Respiratory effects and arsenic contaminated well water in Bangladesh. Int J Environ Health Res. 2002;12(2):175–9. doi:10.1080/09603120220129346.

    Article  CAS  PubMed  Google Scholar 

  34. Smith AH, Marshall G, Yuan Y, Ferreccio C, Liaw J, von Ehrenstein O, et al. Increased mortality from lung cancer and bronchiectasis in young adults after exposure to arsenic in utero and in early childhood. Environ Health Perspect. 2006;114(8):1293–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Guo HR, Chiang HS, Hu H, Lipsitz SR, Monson RR. Arsenic in drinking water and incidence of urinary cancers. Epidemiology. 1997;8(5):545–50.

    Article  CAS  PubMed  Google Scholar 

  36. Hopenhayn-Rich C, Biggs ML, Smith AH. Lung and kidney cancer mortality associated with arsenic in drinking water in Cordoba, Argentina. Int J Epidemiol. 1998;27(4):561–9.

    Article  CAS  PubMed  Google Scholar 

  37. Smith AH, Goycolea M, Haque R, Biggs ML. Marked increase in bladder and lung cancer mortality in a region of Northern Chile due to arsenic in drinking water. Am J Epidemiol. 1998;147(7):660–9.

    Article  CAS  PubMed  Google Scholar 

  38. Ferreccio C, Smith AH, Duran V, Barlaro T, Benitez H, Valdes R, et al. Case-control study of arsenic in drinking water and kidney cancer in uniquely exposed Northern Chile. Am J Epidemiol. 2013;178(5):813–8. doi:10.1093/aje/kwt059.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Chiou HY, Chiou ST, Hsu YH, Chou YL, Tseng CH, Wei ML, et al. Incidence of transitional cell carcinoma and arsenic in drinking water: a follow-up study of 8,102 residents in an arseniasis-endemic area in Northeastern Taiwan. Am J Epidemiol. 2001;153(5):411–8.

    Article  CAS  PubMed  Google Scholar 

  40. Huang YK, Huang YL, Hsueh YM, Yang MH, Wu MM, Chen SY, et al. Arsenic exposure, urinary arsenic speciation, and the incidence of urothelial carcinoma: a twelve-year follow-up study. Cancer Causes Control. 2008;19(8):829–39. doi:10.1007/s10552-008-9146-5.

    Article  PubMed  Google Scholar 

  41. Chen CJ, Chuang YC, You SL, Lin TM, Wu HY. A retrospective study on malignant neoplasms of bladder, lung and liver in blackfoot disease endemic area in Taiwan. Br J Cancer. 1986;53(3):399–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chung CJ, Huang YL, Huang YK, Wu MM, Chen SY, Hsueh YM, et al. Urinary arsenic profiles and the risks of cancer mortality: a population-based 20-year follow-up study in arseniasis-endemic areas in Taiwan. Environ Res. 2013;122:25–30. doi:10.1016/j.envres.2012.11.007.

    Article  CAS  PubMed  Google Scholar 

  43. Yang CY, Chang CC, Chiu HF. Does arsenic exposure increase the risk for prostate cancer? J Toxicol Environ Health A. 2008;71(23):1559–63. doi:10.1080/15287390802392065.

    Article  CAS  PubMed  Google Scholar 

  44. Chen CJ, Yu MW, Liaw YF. Epidemiological characteristics and risk factors of hepatocellular carcinoma. J Gastroenterol Hepatol. 1997;12(9–10):S294–308.

    Article  CAS  PubMed  Google Scholar 

  45. Hsu LI, Wang YH, Hsieh FI, Yang TY, Wen-Juei Jeng R, Liu CT, et al. Effects of arsenic in drinking water on risk of hepatitis or cirrhosis in persons with and without chronic viral hepatitis. Clin Gastroenterol Hepatol. 2016;14(9):1347–55. e1344 doi:10.1016/j.cgh.2016.03.043.

    Article  CAS  PubMed  Google Scholar 

  46. Lin HJ, Sung TI, Chen CY, Guo HR. Arsenic levels in drinking water and mortality of liver cancer in Taiwan. J Hazard Mater. 2013;262:1132–8. doi:10.1016/j.jhazmat.2012.12.049.

    Article  CAS  PubMed  Google Scholar 

  47. Chiu HF, Ho SC, Wang LY, Wu TN, Yang CY. Does arsenic exposure increase the risk for liver cancer? J Toxicol Environ Health A. 2004;67(19):1491–500. doi:10.1080/15287390490486806.

    Article  CAS  PubMed  Google Scholar 

  48. Lu SN, Chow NH, Wu WC, Chang TT, Huang WS, Chen SC, et al. Characteristics of hepatocellular carcinoma in a high arsenicism area in Taiwan: a case-control study. J Occup Environ Med. 2004;46(5):437–41.

    Article  CAS  PubMed  Google Scholar 

  49. Bulka CM, Jones RM, Turyk ME, Stayner LT, Argos M. Arsenic in drinking water and prostate cancer in Illinois counties: an ecologic study. Environ Res. 2016;148:450–6. doi:10.1016/j.envres.2016.04.030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Garcia-Esquinas E, Pollan M, Umans JG, Francesconi KA, Goessler W, Guallar E, et al. Arsenic exposure and cancer mortality in a US-based prospective cohort: the strong heart study. Cancer Epidemiol Biomark Prev. 2013;22(11):1944–53. doi:10.1158/1055-9965.EPI-13-0234-T.

    Article  CAS  Google Scholar 

  51. Tokar EJ, Benbrahim-Tallaa L, Ward JM, Lunn R, Sams 2nd RL, Waalkes MP. Cancer in experimental animals exposed to arsenic and arsenic compounds. Crit Rev Toxicol. 2010;40(10):912–27. doi:10.3109/10408444.2010.506641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Waalkes MP, Liu J, Ward JM, Diwan BA. Animal models for arsenic carcinogenesis: inorganic arsenic is a transplacental carcinogen in mice. Toxicol Appl Pharmacol. 2004;198(3):377–84. doi:10.1016/j.taap.2003.10.028.

    Article  CAS  PubMed  Google Scholar 

  53. Waalkes MP, Qu W, Tokar EJ, Kissling GE, Dixon D. Lung tumors in mice induced by “whole-life” inorganic arsenic exposure at human-relevant doses. Arch Toxicol. 2014;88(8):1619–29. doi:10.1007/s00204-014-1305-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tokar EJ, Diwan BA, Ward JM, Delker DA, Waalkes MP. Carcinogenic effects of “whole-life” exposure to inorganic arsenic in CD1 mice. Toxicol Sci. 2011;119(1):73–83. doi:10.1093/toxsci/kfq315.

    Article  CAS  PubMed  Google Scholar 

  55. Tokar EJ, Xu Y, Waalkes MP. Cancer induced by exposure to arsenicals in animals. In: States JC, editor. Arsenic: exposure sources, health risks, and mechanisms of toxicity. Hoboken, NJ: Wiley; 2016.

    Google Scholar 

  56. Gonsebatt ME, Vega L, Herrera LA, Montero R, Rojas E, Cebrian ME, et al. Inorganic arsenic effects on human lymphocyte stimulation and proliferation. Mutat Res. 1992;283(2):91–5.

    Article  CAS  PubMed  Google Scholar 

  57. Hwang BJ, Utti C, Steinberg M. Induction of cyclin D1 by submicromolar concentrations of arsenite in human epidermal keratinocytes. Toxicol Appl Pharmacol. 2006;217(2):161–7. doi:10.1016/j.taap.2006.08.006.

    Article  CAS  PubMed  Google Scholar 

  58. Chowdhury R, Chatterjee R, Giri AK, Mandal C, Chaudhuri K. Arsenic-induced cell proliferation is associated with enhanced ROS generation, Erk signaling and CyclinA expression. Toxicol Lett. 2010;198(2):263–71. doi:10.1016/j.toxlet.2010.07.006.

    Article  CAS  PubMed  Google Scholar 

  59. Morzadec C, Bouezzedine F, Macoch M, Fardel O, Vernhet L. Inorganic arsenic impairs proliferation and cytokine expression in human primary T lymphocytes. Toxicology. 2012;300(1–2):46–56. doi:10.1016/j.tox.2012.05.025.

    Article  CAS  PubMed  Google Scholar 

  60. McCollum G, Keng PC, States JC, McCabe Jr MJ. Arsenite delays progression through each cell cycle phase and induces apoptosis following G2/M arrest in U937 myeloid leukemia cells. J Pharmacol Exp Ther. 2005;313(2):877–87. doi:10.1124/jpet.104.080713.

    Article  CAS  PubMed  Google Scholar 

  61. States JC. Disruption of mitotic progression by arsenic. Biol Trace Elem Res. 2015;166(1):34–40. doi:10.1007/s12011-015-0306-7.

    Article  CAS  PubMed  Google Scholar 

  62. Okamura K, Miki D, Nohara K. Inorganic arsenic exposure induces E2F-dependent G0/G1 arrest via an increase in retinoblastoma family protein p130 in B-cell lymphoma A20 cells. Genes Cells. 2013;18(10):839–49. doi:10.1111/gtc.12079.

    CAS  PubMed  Google Scholar 

  63. Zhang X, Jia S, Yang S, Yang Y, Yang T, Yang Y. Arsenic trioxide induces G2/M arrest in hepatocellular carcinoma cells by increasing the tumor suppressor PTEN expression. J Cell Biochem. 2012;113(11):3528–35. doi:10.1002/jcb.24230.

    Article  CAS  PubMed  Google Scholar 

  64. Bi X, Gu J, Guo Z, Tao S, Wang Y, Tang L, et al. Different pathways are involved in arsenic-trioxide-induced cell proliferation and growth inhibition in human keratinocytes. Skin Pharmacol Physiol. 2010;23(2):68–78. doi:10.1159/000265677.

    Article  CAS  PubMed  Google Scholar 

  65. McNeely SC, Belshoff AC, Taylor BF, Fan TW, McCabe Jr MJ, Pinhas AR, et al. Sensitivity to sodium arsenite in human melanoma cells depends upon susceptibility to arsenite-induced mitotic arrest. Toxicol Appl Pharmacol. 2008;229(2):252–61. doi:10.1016/j.taap.2008.01.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tokar EJ, Qu W, Liu J, Liu W, Webber MM, Phang JM, et al. Arsenic-specific stem cell selection during malignant transformation. J Natl Cancer Inst. 2010;102(9):638–49. doi:10.1093/jnci/djq093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Waalkes MP, Liu J, Germolec DR, Trempus CS, Cannon RE, Tokar EJ, et al. Arsenic exposure in utero exacerbates skin cancer response in adulthood with contemporaneous distortion of tumor stem cell dynamics. Cancer Res. 2008;68(20):8278–85. doi:10.1158/0008-5472.CAN-08-2099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Xu Y, Tokar EJ, Waalkes MP. Stem cell targeting and alteration by arsenic. In: States JC, editor. Arsenic: exposure sources, health risks, and mechanisms of toxicity. Hoboken, NJ: Wiley; 2016.

    Google Scholar 

  69. Nishisgori C. Current concept of photocarcinogenesis. Photochem Photobiol Sci. 2015;14(9):1713–21. doi:10.1039/c5pp00185d.

    Article  CAS  PubMed  Google Scholar 

  70. Brash DE. Roles of the transcription factor p53 in keratinocyte carcinomas. Br J Dermatol. 2006;154(Suppl 1):8–10. doi:10.1111/j.1365-2133.2006.07230.x.

    Article  CAS  PubMed  Google Scholar 

  71. Rossman TG, Stone D, Molina M, Troll W. Absence of arsenite mutagenicity in E coli and Chinese hamster cells. Environ Mutagen. 1980;2(3):371–9.

    Article  CAS  PubMed  Google Scholar 

  72. Li JH, Rossman TG. Comutagenesis of sodium arsenite with ultraviolet radiation in Chinese hamster V79 cells. Biol Met. 1991;4(4):197–200.

    Article  CAS  PubMed  Google Scholar 

  73. Li JH, Rossman TG. Mechanism of comutagenesis of sodium arsenite with n-methyl-n-nitrosourea. Biol Trace Elem Res. 1989;21:373–81.

    Article  CAS  PubMed  Google Scholar 

  74. Lee TC, Wang-Wuu S, Huang RY, Lee KC, Jan KY. Differential effects of pre- and posttreatment of sodium arsenite on the genotoxicity of methyl methanesulfonate in Chinese hamster ovary cells. Cancer Res. 1986;46(4 Pt 1):1854–7.

    CAS  PubMed  Google Scholar 

  75. Yang JL, Chen MF, Wu CW, Lee TC. Posttreatment with sodium arsenite alters the mutational spectrum induced by ultraviolet light irradiation in Chinese hamster ovary cells. Environ Mol Mutagen. 1992;20(3):156–64.

    Article  CAS  PubMed  Google Scholar 

  76. Castren K, Ranki A, Welsh JA, Vahakangas KH. Infrequent p53 mutations in arsenic-related skin lesions. Oncol Res. 1998;10(9):475–82.

    CAS  PubMed  Google Scholar 

  77. Hsieh LL, Chen HJ, Hsieh JT, Jee SH, Chen GS, Chen CJ. Arsenic-related Bowen’s disease and paraquat-related skin cancerous lesions show no detectable ras and p53 gene alterations. Cancer Lett. 1994;86(1):59–65.

    Article  CAS  PubMed  Google Scholar 

  78. Hsu CH, Yang SA, Wang JY, Yu HS, Lin SR. Mutational spectrum of p53 gene in arsenic-related skin cancers from the blackfoot disease endemic area of Taiwan. Br J Cancer. 1999;80(7):1080–6. doi:10.1038/sj.bjc.6690467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Cleaver JE, States JC. The DNA damage-recognition problem in human and other eukaryotic cells: the XPA damage binding protein. Biochem J. 1997;328(Pt 1):1–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Schwerdtle T, Walter I, Hartwig A. Arsenite and its biomethylated metabolites interfere with the formation and repair of stable BPDE-induced DNA adducts in human cells and impair XPAzf and Fpg. DNA Repair (Amst). 2003;2(12):1449–63.

    Article  CAS  Google Scholar 

  81. Asmuss M, Mullenders LH, Hartwig A. Interference by toxic metal compounds with isolated zinc finger DNA repair proteins. Toxicol Lett. 2000;112-113:227–31.

    Article  CAS  PubMed  Google Scholar 

  82. Asmuss M, Mullenders LH, Eker A, Hartwig A. Differential effects of toxic metal compounds on the activities of Fpg and XPA, two zinc finger proteins involved in DNA repair. Carcinogenesis. 2000;21(11):2097–104.

    Article  CAS  PubMed  Google Scholar 

  83. Wei H, Yu X. Functions of PARylation in DNA damage repair pathways. Genomics Proteomics Bioinformatics. 2016;14(3):131–9. doi:10.1016/j.gpb.2016.05.001.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Sancar A. DNA excision repair. Annu Rev Biochem. 1996;65:43–81. doi:10.1146/annurev.bi.65.070196.000355.

    Article  CAS  PubMed  Google Scholar 

  85. Hartwig A, Asmuss M, Ehleben I, Herzer U, Kostelac D, Pelzer A, et al. Interference by toxic metal ions with DNA repair processes and cell cycle control: molecular mechanisms. Environ Health Perspect. 2002;110(Suppl 5):797–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhou X, Sun X, Cooper KL, Wang F, Liu KJ, Hudson LG. Arsenite interacts selectively with zinc finger proteins containing C3H1 or C4 motifs. J Biol Chem. 2011;286(26):22855–63. doi:10.1074/jbc.M111.232926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ding W, Liu W, Cooper KL, Qin XJ, de Souza Bergo PL, Hudson LG, et al. Inhibition of poly(ADP-ribose) polymerase-1 by arsenite interferes with repair of oxidative DNA damage. J Biol Chem. 2009;284(11):6809–17. doi:10.1074/jbc.M805566200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Qin XJ, Hudson LG, Liu W, Timmins GS, Liu KJ. Low concentration of arsenite exacerbates UVR-induced DNA strand breaks by inhibiting PARP-1 activity. Toxicol Appl Pharmacol. 2008;232(1):41–50. doi:10.1016/j.taap.2008.05.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Komissarova EV, Rossman TG. Arsenite induced poly(ADP-ribosyl)ation of tumor suppressor P53 in human skin keratinocytes as a possible mechanism for carcinogenesis associated with arsenic exposure. Toxicol Appl Pharmacol. 2010;243(3):399–404. doi:10.1016/j.taap.2009.12.014.

    Article  CAS  PubMed  Google Scholar 

  90. Ochi T. Induction of aneuploidy, centrosome abnormality, multipolar spindle, and multipolar division in cultured mammalian cells exposed to an arsenic metabolite, dimethylarsinate. Yakugaku Zasshi. 2016;136(6):873–81. doi:10.1248/yakushi.15-00275.

    Article  CAS  PubMed  Google Scholar 

  91. Salazar AM, Miller HL, McNeely SC, Sordo M, Ostrosky-Wegman P, States JC. Suppression of p53 and p21CIP1/WAF1 reduces arsenite-induced aneuploidy. Chem Res Toxicol. 2010;23(2):357–64. doi:10.1021/tx900353v.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Dulout FN, Grillo CA, Seoane AI, Maderna CR, Nilsson R, Vahter M, et al. Chromosomal aberrations in peripheral blood lymphocytes from native Andean women and children from northwestern Argentina exposed to arsenic in drinking water. Mutat Res. 1996;370(3–4):151–8.

    Article  CAS  PubMed  Google Scholar 

  93. Duesberg P, Rasnick D, Li R, Winters L, Rausch C, Hehlmann R. How aneuploidy may cause cancer and genetic instability. Anticancer Res. 1999;19(6A):4887–906.

    CAS  PubMed  Google Scholar 

  94. Adams J, Nassiri M. Acute promyelocytic leukemia: a review and discussion of variant translocations. Arch Pathol Lab Med. 2015;139(10):1308–13. doi:10.5858/arpa.2013-0345-RS.

    Article  PubMed  Google Scholar 

  95. Yih LH, Ho IC, Lee TC. Sodium arsenite disturbs mitosis and induces chromosome loss in human fibroblasts. Cancer Res. 1997;57(22):5051–9.

    CAS  PubMed  Google Scholar 

  96. Vega L, Gonsebatt ME, Ostrosky-Wegman P. Aneugenic effect of sodium arsenite on human lymphocytes in vitro: an individual susceptibility effect detected. Mutat Res. 1995;334(3):365–73.

    Article  CAS  PubMed  Google Scholar 

  97. Basu A, Ghosh P, Das JK, Banerjee A, Ray K, Giri AK. Micronuclei as biomarkers of carcinogen exposure in populations exposed to arsenic through drinking water in West Bengal, India: a comparative study in three cell types. Cancer Epidemiol Biomark Prev. 2004;13(5):820–7.

    CAS  Google Scholar 

  98. Mass MJ, Wang L. Arsenic alters cytosine methylation patterns of the promoter of the tumor suppressor gene p53 in human lung cells: a model for a mechanism of carcinogenesis. Mutat Res. 1997;386(3):263–77.

    Article  CAS  PubMed  Google Scholar 

  99. Chanda S, Dasgupta UB, Guhamazumder D, Gupta M, Chaudhuri U, Lahiri S, et al. DNA hypermethylation of promoter of gene p53 and p16 in arsenic-exposed people with and without malignancy. Toxicol Sci. 2006;89(2):431–7. doi:10.1093/toxsci/kfj030.

    Article  CAS  PubMed  Google Scholar 

  100. Majumdar S, Chanda S, Ganguli B, Mazumder DN, Lahiri S, Dasgupta UB. Arsenic exposure induces genomic hypermethylation. Environ Toxicol. 2010;25(3):315–8. doi:10.1002/tox.20497.

    Article  CAS  PubMed  Google Scholar 

  101. Chen H, Li S, Liu J, Diwan BA, Barrett JC, Waalkes MP. Chronic inorganic arsenic exposure induces hepatic global and individual gene hypomethylation: implications for arsenic hepatocarcinogenesis. Carcinogenesis. 2004;25(9):1779–86. doi:10.1093/carcin/bgh161.

    Article  CAS  PubMed  Google Scholar 

  102. Li H, Wang Y, Xu W, Dong L, Guo Y, Bi K, et al. Arsenic trioxide inhibits DNA methyltransferase and restores TMS1 gene expression in K562 cells. Acta Haematol. 2015;133(1):18–25. doi:10.1159/000362683.

    Article  CAS  PubMed  Google Scholar 

  103. Zhao CQ, Young MR, Diwan BA, Coogan TP, Waalkes MP. Association of arsenic-induced malignant transformation with DNA hypomethylation and aberrant gene expression. Proc Natl Acad Sci U S A. 1997;94(20):10907–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Reichard JF, Schnekenburger M, Puga A. Long term low-dose arsenic exposure induces loss of DNA methylation. Biochem Biophys Res Commun. 2007;352(1):188–92. doi:10.1016/j.bbrc.2006.11.001.

    Article  CAS  PubMed  Google Scholar 

  105. Lu G, Xu H, Chang D, Wu Z, Yao X, Zhang S, et al. Arsenic exposure is associated with DNA hypermethylation of the tumor suppressor gene p16. J Occup Med Toxicol. 2014;9(1):42. doi:10.1186/s12995-014-0042-5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Zhang A, Li H, Xiao Y, Chen L, Zhu X, Li J, et al. Aberrant methylation of nucleotide excision repair genes is associated with chronic arsenic poisoning. Biomarkers. 2016;12:1–10. doi:10.1080/1354750X.2016.1217933.

    CAS  Google Scholar 

  107. Paul S, Banerjee N, Chatterjee A, Sau TJ, Das JK, Mishra PK, et al. Arsenic-induced promoter hypomethylation and over-expression of ERCC2 reduces DNA repair capacity in humans by non-disjunction of the ERCC2-Cdk7 complex. Metallomics. 2014;6(4):864–73. doi:10.1039/c3mt00328k.

    Article  CAS  PubMed  Google Scholar 

  108. Bandyopadhyay AK, Paul S, Adak S, Giri AK. Reduced LINE-1 methylation is associated with arsenic-induced genotoxic stress in children. Biometals. 2016;29(4):731–41. doi:10.1007/s10534-016-9950-4.

    Article  CAS  PubMed  Google Scholar 

  109. Rager JE, Tilley SK, Tulenko SE, Smeester L, Ray PD, Yosim A, et al. Identification of novel gene targets and putative regulators of arsenic-associated DNA methylation in human urothelial cells and bladder cancer. Chem Res Toxicol. 2015;28(6):1144–55. doi:10.1021/tx500393y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Broberg K, Ahmed S, Engstrom K, Hossain MB, Jurkovic Mlakar S, Bottai M, et al. Arsenic exposure in early pregnancy alters genome-wide DNA methylation in cord blood, particularly in boys. J Dev Orig Health Dis. 2014;5(4):288–98. doi:10.1017/S2040174414000221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Tellez-Plaza M, Tang WY, Shang Y, Umans JG, Francesconi KA, Goessler W, et al. Association of global DNA methylation and global DNA hydroxymethylation with metals and other exposures in human blood DNA samples. Environ Health Perspect. 2014;122(9):946–54. doi:10.1289/ehp.1306674.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Mauro M, Caradonna F, Klein CB. Dysregulation of DNA methylation induced by past arsenic treatment causes persistent genomic instability in mammalian cells. Environ Mol Mutagen. 2016;57(2):137–50. doi:10.1002/em.21987.

    Article  CAS  PubMed  Google Scholar 

  113. Yang TY, Hsu LI, Chiu AW, Pu YS, Wang SH, Liao YT, et al. Comparison of genome-wide DNA methylation in urothelial carcinomas of patients with and without arsenic exposure. Environ Res. 2014;128:57–63. doi:10.1016/j.envres.2013.10.006.

    Article  CAS  PubMed  Google Scholar 

  114. Chen WT, Hung WC, Kang WY, Huang YC, Chai CY. Urothelial carcinomas arising in arsenic-contaminated areas are associated with hypermethylation of the gene promoter of the death-associated protein kinase. Histopathology. 2007;51(6):785–92. doi:10.1111/j.1365-2559.2007.02871.x.

    Article  PubMed  Google Scholar 

  115. Howe CG, Gamble MV. Influence of arsenic on global levels of histone posttranslational modifications: a review of the literature and challenges in the field. Curr Environ Health Rep. 2016;3(3):225–37. doi:10.1007/s40572-016-0104-1.

    Article  PubMed  CAS  Google Scholar 

  116. Roy RV, Son Y, Pratheeshkumar P, Wang L, Hitron JA, Divya SP, et al. Epigenetic targets of arsenic: emphasis on epigenetic modifications during carcinogenesis. J Environ Pathol Toxicol Oncol. 2015;34(1):63–84.

    Article  PubMed  Google Scholar 

  117. Brocato J, Chen D, Liu J, Fang L, Jin C, Costa M. A potential new mechanism of arsenic carcinogenesis: depletion of stem-loop binding protein and increase in polyadenylated canonical histone H3.1 mRNA. Biol Trace Elem Res. 2015;166(1):72–81. doi:10.1007/s12011-015-0296-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Pournara A, Kippler M, Holmlund T, Ceder R, Grafstrom R, Vahter M, et al. Arsenic alters global histone modifications in lymphocytes in vitro and in vivo. Cell Biol Toxicol. 2016;32(4):275–84. doi:10.1007/s10565-016-9334-0.

    Article  CAS  PubMed  Google Scholar 

  119. Chervona Y, Hall MN, Arita A, Wu F, Sun H, Tseng HC, et al. Associations between arsenic exposure and global posttranslational histone modifications among adults in Bangladesh. Cancer Epidemiol Biomark Prev. 2012;21(12):2252–60. doi:10.1158/1055-9965.EPI-12-0833.

    Article  CAS  Google Scholar 

  120. Rahman S, Housein Z, Dabrowska A, Mayan MD, Boobis AR, Hajji N. E2F1-mediated FOS induction in arsenic trioxide-induced cellular transformation: effects of global H3K9 hypoacetylation and promoter-specific hyperacetylation in vitro. Environ Health Perspect. 2015;123(5):484–92. doi:10.1289/ehp.1408302.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Gonzalez H, Lema C, Kirken RA, Maldonado RA, Varela-Ramirez A, Aguilera RJ. Arsenic-exposed keratinocytes exhibit differential microRNAs expression profile; potential implication of miR-21, miR-200a and miR-141 in melanoma pathway. Clin Cancer Drugs. 2015;2(2):138–47. doi:10.2174/2212697X02666150629174704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Ngalame NN, Tokar EJ, Person RJ, Xu Y, Waalkes MP. Aberrant microRNA expression likely controls RAS oncogene activation during malignant transformation of human prostate epithelial and stem cells by arsenic. Toxicol Sci. 2014;138(2):268–77. doi:10.1093/toxsci/kfu002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Ngalame NN, Makia NL, Waalkes MP, Tokar EJ. Mitigation of arsenic-induced acquired cancer phenotype in prostate cancer stem cells by miR-143 restoration. Toxicol Appl Pharmacol. 2015; doi:10.1016/j.taap.2015.12.013.

    Google Scholar 

  124. Rager JE, Bailey KA, Smeester L, Miller SK, Parker JS, Laine JE, et al. Prenatal arsenic exposure and the epigenome: altered microRNAs associated with innate and adaptive immune signaling in newborn cord blood. Environ Mol Mutagen. 2014;55(3):196–208. doi:10.1002/em.21842.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Christopher States .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Christopher States, J. (2017). Arsenic Carcinogenesis. In: Mudipalli, A., Zelikoff, J. (eds) Essential and Non-essential Metals. Molecular and Integrative Toxicology. Humana Press, Cham. https://doi.org/10.1007/978-3-319-55448-8_5

Download citation

Publish with us

Policies and ethics