Skip to main content

Mass Production of Artemisinin Using Hairy Root Cultivation of Artemisia annua in Bioreactor

  • Reference work entry
  • First Online:
Bioprocessing of Plant In Vitro Systems

Part of the book series: Reference Series in Phytochemistry ((RSP))

Abstract

Malaria is endemic disease of the tropical countries primarily due to their specific climatic conditions. Artemisinin has been widely used for the treatment of patients of cerebral malaria in combination therapy with other antimalarial drugs such as quinine and chloroquine. It has been extracted from the leaves of the plant Artemisia annua which grows naturally in many countries except for humid tropical countries. However, yield of the drug from dry tissue has been in the range of 0.01–0.5%; with the result, a 1000 kg of dry plant leaves yield only 6 kg of artemisinin after solvent extraction and liquid chromatography-based purification protocols. In order to alleviate these problems, scientists have been exploring alternate in vitro production protocols particularly by plant cell/hairy root cultivation of A. annua to supplement the overall artemisinin availability. Hairy root cultivation could be one of the potent in vitro alternative production techniques for artemisinin as it has an inherent advantage of better biochemical stability and less doubling time than plant cell cultivation. The present report attempts to provide a comprehensive overview of mass production of artemisinin particularly in vitro production using various bioreactors and different cultivation modes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Muller IB, Hyde JE (2010) Antimalarial drugs: modes of action and mechanisms of parasite resistance. Future Microbiol 5:1857–1873

    Article  Google Scholar 

  2. Cumming JN, Ploypradith P, Posner GH (1997) Antimalarial activity of artemisinin (qinghaosu) and related trioxanes: mechanism(s) of action. Adv Pharmacol 37:253–297

    Article  CAS  Google Scholar 

  3. Li W, Mo W, Shen D, Sun L, Wang J, Lu S, Gitschier JM, Zhou B (2005) Yeast model uncovers dual roles of mitochondria in the action of artemisinin. PLoS Genet 1:e36

    Article  Google Scholar 

  4. O’Neill PM, Barton VE, Ward SA (2010) The molecular mechanism of action of artemisinin—the debate continues. Molecules 15:1705

    Article  Google Scholar 

  5. Woerdenbag HJ, Pras N, van Uden W, Wallaart TE, Beekman AC, Lugt CB (1994) Progress in the research of artemisinin-related antimalarials: an update. Pharm World Sci 16:169–180

    Article  CAS  Google Scholar 

  6. Walsh JJ, Coughlan D, Heneghan N, Gaynor C, Bell A (2007) A novel artemisinin-quinine hybrid with potent antimalarial activity. Bioorg Med Chem Lett 17:3599–3602

    Article  CAS  Google Scholar 

  7. Avery MA, Chong WKM, Jennings-White C (1992) Stereoselective total synthesis of (+)-artemisinin, the antimalarial constituent of Artemisia annua L. J Am Chem Soc 114:974–979

    Article  CAS  Google Scholar 

  8. Krishna S, Uhlemann AC, Haynes RK (2004) Artemisinins: mechanisms of action and potential for resistance. Drug Resist Updat 7:233–244

    Article  CAS  Google Scholar 

  9. van Vugt M, Edstein MD, Proux S, Lay K, Ooh M, Looareesuwan S, White NJ, Nosten F (1999) Absence of an interaction between artesunate and atovaquone – proguanil. Eur J Clin Pharmacol 55:469–474

    Article  Google Scholar 

  10. Lefevre G, Carpenter P, Souppart C, Schmidli H, McClean M, Stypinski D (2002) Pharmacokinetics and electrocardiographic pharmacodynamics of artemether-lumefantrine (Riamet) with concomitant administration of ketoconazole in healthy subjects. Br J Clin Pharmacol 54:485–492

    Article  CAS  Google Scholar 

  11. Delabays N, Benakis A, Collet G (1993) Selection and breeding for high artemisinin (qinghaosu) yielding strains of Artemisia annua. Acta Hortic 330:203–206

    Article  Google Scholar 

  12. Xing-Xiang X, Jie Z, Da-Zhong H, Wei-Shan Z (1986) Total synthesis of arteannuin and deoxyarteannuin. Tetrahedron 42:819–828

    Article  Google Scholar 

  13. Ferreira JFS, Simon JE, Janick J (2010) Artemisia annua: botany, horticulture, pharmacology. In: Horticultural reviews. Wiley, New York, pp 319–371

    Chapter  Google Scholar 

  14. Ferreira JS, Janick J (1996) Roots as an enhancing factor for the production of artemisinin in shoot cultures of Artemisia annua. Plant Cell Tissue Organ Cult 44:211–217

    Article  CAS  Google Scholar 

  15. Giri A, Narasu ML (2000) Transgenic hairy roots: recent trends and applications. Biotechnol Adv 18:1–22

    Article  CAS  Google Scholar 

  16. Srivastava S, Srivastava AK (2007) Hairy root culture for mass-production of high-value secondary metabolites. Crit Rev Biotechnol 27:29–43

    Article  CAS  Google Scholar 

  17. Nishikawa K, Ishimaru K (1997) Flavonoids in root cultures of Scutellaria baicalensis. J Plant Physiol 151:633–638

    Article  CAS  Google Scholar 

  18. Hu Z-B, Du M (2006) Hairy root and its application in plant genetic engineering. J Integr Plant Biol 48:121–127

    Article  CAS  Google Scholar 

  19. Souret FF, Kim Y, Wyslouzil BE, Wobbe KK, Weathers PJ (2003) Scale-up of Artemisia annua L. hairy root cultures produces complex patterns of terpenoid gene expression. Biotechnol Bioeng 83:653–667

    Article  CAS  Google Scholar 

  20. Gurib-Fakim A (2006) Medicinal plants: traditions of yesterday and drugs of tomorrow. Mol Asp Med 27:1–93

    Article  CAS  Google Scholar 

  21. Van Geldre E, Vergauwe A, Van den Eeckhout E (1997) State of the art of the production of the antimalarial compound artemisinin in plants. Plant Mol Biol 33:199–209

    Article  CAS  Google Scholar 

  22. Laughlin JC (1993) Effect of agronomic practices on plant yield and antimalarial constituents of Artemisia annua L. Acta Hortic 331:53–61

    Article  Google Scholar 

  23. Woerdenbag H, Lüers JJ, van Uden W, Pras N, Malingré T, Alfermann AW (1993) Production of the new antimalarial drug artemisinin in shoot cultures of Artemisia annua L. Plant Cell Tissue Organ Cult 32:247–257

    Article  CAS  Google Scholar 

  24. Paul S, Khanuja SPS, Gupta MM (2015) Transplanting and harvesting effect on artemisinin biosynthesis and herb yield in Artemisia annua L. Agrofor Syst 89:751–757

    Article  Google Scholar 

  25. Simon JE, Charles D, Cebert E, Grant L, Janick J, Whipkey A (1990) Artemisia annua L.: a promising aromatic and medicinal. Presented at advances in new crops, Portland, OR

    Google Scholar 

  26. Hien TT, White NJ (1993) Qinghaosu. Lancet 341:603–608

    Article  CAS  Google Scholar 

  27. Basile D, Akhtari N, Durand Y, Nair MSR (1993) Toward the production of artemisinin through tissue culture: determining nutrient-hormone combinations suitable for cell suspension cultures. In Vitro Cell Dev Biol Plant 29:143–147

    Article  Google Scholar 

  28. Liu CZ, Wang YC, Ouyang F, Ye HC, Li GF (1997) Production of artemisinin by hairy root cultures of Artemisia annua L. Biotechnol Lett 19:927–929

    Article  CAS  Google Scholar 

  29. Patra N, Srivastava AK (2015) Use of model-based nutrient feeding for improved production of artemisinin by hairy roots of Artemisia annua in a modified stirred tank bioreactor. Appl Biochem Biotechnol 177:373–388

    Article  CAS  Google Scholar 

  30. Liu CZ, Wang YC, Zhao B, Guo C, Ouyang F, Ye HC, Li GF (1999) Development of a nutrient mist bioreactor for growth of hairy roots. In Vitro Cell Dev Biol Plant 35:271–274

    Article  Google Scholar 

  31. Patra N, Srivastava A (2016) Artemisinin production by plant hairy root cultures in gas- and liquid-phase bioreactors. Plant Cell Rep 35:143–153

    Article  CAS  Google Scholar 

  32. Shanks JV, Morgan J (1999) Plant ‘hairy root’ culture. Curr Opin Biotechnol 10:151–155

    Article  CAS  Google Scholar 

  33. Srivastava JK, Gupta S (2007) Antiproliferative and apoptotic effects of chamomile extract in various human cancer cells. J Agric Food Chem 55:9470–9478

    Article  CAS  Google Scholar 

  34. Jaziri M, Shimomura K, Yoshimatsu K, Fauconnier ML, Marlier M, Homes J (1995) Establishment of normal and transformed root cultures of Artemisia-annua L for Artemisinin production. J Plant Physiol 145:175–177

    Article  CAS  Google Scholar 

  35. Mannan A, Shaheen N, Arshad W, Rizwana QA, Zia M, Mirza B (2008) Hairy roots induction and artemisinin analysis in Artemisia dubia and Artemisia indica. Afr J Biotechnol 7:3288–3292

    CAS  Google Scholar 

  36. Weathers PJ, Mannan A, Liu C, Towler MJ, Vail D, Lorence A (2009) DMSO stimulates production of Artemisinin and also suggests that the sesquiterpene may function as a ROS sink in Artemisia annua. In Vitro Cell Dev Biol Animal 45:S69.

    Google Scholar 

  37. Giri A, Ravindra ST, Dhingra V, Narasu ML (2001) Influence of different strains of Agrobacterium rhizogenes on induction of hairy roots and artemisinin production in Artemisia annua. Curr Sci 81:378–382

    CAS  Google Scholar 

  38. Patra N, Srivastava AK, Sharma S (2013) Study of various factors for enhancement of Artemisinin in Artemisia annua hairy roots. Int J Chem Eng Appl 4:157–160

    CAS  Google Scholar 

  39. Patra N, Sharma S, Srivastava AK (2012) Statistical media optimization for enhanced biomass and Artemisinin production in Artemisia annua hairy roots. In: Khemani LD, Srivastava MM, Srivastava S (eds) Chemistry of phytopotentials: health, energy and environmental erspectives. Springer, Berlin/Heidelberg, pp 173–176

    Chapter  Google Scholar 

  40. Kim Y, Wyslouzil B, Weathers P (2002) Secondary metabolism of hairy root cultures in bioreactors. In Vitro Cell Dev Biol Plant 38:1–10

    Article  CAS  Google Scholar 

  41. Srivastava S, Srivastava AK (2012) In vitro azadirachtin production by hairy root cultivation of Azadirachta indica in nutrient mist bioreactor. Appl Biochem Biotechnol 166:365–378

    Article  CAS  Google Scholar 

  42. De Boer J, Van Blitterswijk C, Thomsen P, Hubbell J, Cancedda R, de Bruijn JD, Lindahl A, Sohier J, Williams DF (2008) Tissue engineering. Elsevier Science, Oxford, UK.

    Google Scholar 

  43. Arsenault P, Vail D, Wobbe K, Weathers P (2010) Exogenous sugars affect Artemisinin production in Artemisia annua L transcription and metabolite measurements. In Vitro Cell Dev Biol Animal 46:S83–SS4

    Article  Google Scholar 

  44. Kim Y, Wyslouzil BE, Weathers PJ (2001) A comparative study of mist and bubble column reactors in the in vitro production of artemisinin. Plant Cell Rep 20:451–455

    Article  CAS  Google Scholar 

  45. Kim YJ, Weathers PJ, Wyslouzil BE (2003) Growth dynamics of Artemisia annua hairy roots in three culture systems. Biotechnol Bioeng 83:428–443

    Article  CAS  Google Scholar 

  46. Xie D, Wang L, Ye H, Li G (2000) Isolation and production of artemisinin and stigmasterol in hairy root cultures of Artemisia annua. Plant Cell Tissue Organ Cult 63:161–166

    Article  CAS  Google Scholar 

  47. Towler M, Kim Y, Wyslouzil B, Correll M, Weathers P (2006) Design, development, and applications of mist bioreactors for micropropagation and hairy root culture. In: Gupta SD, Ibaraki Y (eds) Plan tissue culture engineering. Springer, Amsterdam, pp 119–134

    Google Scholar 

  48. Weathers PJ, Arsenault PR, Covello PS, McMickle A, Teoh KH, Reed DW (2011) Artemisinin production in Artemisia annua: studies in planta and results of a novel delivery method for treating malaria and other neglected diseases. Phytochem Rev 10:173–183

    Article  CAS  Google Scholar 

  49. Patra N, Srivastava AK (2014a) Mass scale artemisinin production in a stirred tank bioreactor using hairy roots of Artemisia annua. Int J Biosci Biochem Bioinfo 4:467–474

    CAS  Google Scholar 

  50. Hilton MG, Rhodes MJC (1990) Growth and Hyoscyamine production of hairy root cultures of Datura-Stramonium in a modified stirred tank reactor. Appl Microbiol Biotechnol 33:132–138

    Article  CAS  Google Scholar 

  51. Kondo O, Honda H, Taya M, Kobayashi T (1989) Comparison of growth-properties of carrot hairy root in various bioreactors. Appl Microbiol Biotechnol 32:291–294

    Article  CAS  Google Scholar 

  52. Patra N, Srivastava AK (2014b) Enhanced production of Artemisinin by hairy root cultivation of Artemisia annua in a modified stirred tank reactor. Appl Biochem Biotechnol 174:2209–2222

    Article  CAS  Google Scholar 

  53. Prakash G, Srivastava AK (2007) Azadirachtin production in stirred tank reactors by Azadirachta indica suspension culture. Process Biochem 42:93–97

    Article  CAS  Google Scholar 

  54. Kim Y, Yoo Y (1993) Development of a bioreactor for high density culture of hairy roots. Biotechnol Tech 7:859–862

    Article  CAS  Google Scholar 

  55. Liu CZ, Guo C, Wang YC, Ouyang F (2003) Comparison of various bioreactors on growth and artemisinin biosynthesis of Artemisia annua L. shoot cultures. Process Biochem 39:45–49

    Article  CAS  Google Scholar 

  56. Mishra BN, Ranjan R (2008) Growth of hairy-root cultures in various bioreactors for the production of secondary metabolites. Biotechnol Appl Biochem 49:1–10

    Article  CAS  Google Scholar 

  57. Liu C, Wang Y, Guo C, Ouyang F, Ye H, Li G (1998) Enhanced production of artemisinin by Artemisia annua L hairy root cultures in a modified inner-loop airlift bioreactor. Bioprocess Eng 19:389–392

    Google Scholar 

  58. Yu SX, Doran PM (1993) Oxygen requirements and mass-transfer in hairy-root cultures. Abstr Pap Am Chem Soc 205: 151-BIOT.

    Google Scholar 

  59. Weathers PJ, Wyslouzil BE, Wobbe KK, Kim YJ, Yigit E (1999) The biological response of hairy roots to O-2 levels in bioreactors. In Vitro Cell Dev Biol Plant 35:286–289

    Article  CAS  Google Scholar 

  60. Guillon S, Tremouillaux-Guiller J, Pati PK, Rideau M, Gantet P (2006a) Harnessing the potential of hairy roots: dawn of a new era. Trends Biotechnol 24:403–409

    Article  CAS  Google Scholar 

  61. Guillon S, Tremouillaux-Guiller J, Pati PK, Rideau M, Gantet P (2006b) Hairy root research: recent scenario and exciting prospects. Curr Opin Plant Biol 9:341–346

    Article  CAS  Google Scholar 

  62. Sánchez Pérez JA, Rodríguez Porcel EM, Casas López JL, Fernández Sevilla JM, Chisti Y (2006) Shear rate in stirred tank and bubble column bioreactors. Chem Eng J 124:1–5

    Article  Google Scholar 

  63. Towler MJ, Wyslouzil BE, Weathers PJ (2007) Using an aerosol deposition model to increase hairy root growth in a mist reactor. Biotechnol Bioeng 96:881–891

    Article  CAS  Google Scholar 

  64. Kaur G, Srivastava AK, Chand S (2012) Mathematical modelling approach for concentration and productivity enhancement of 1,3-propanediol using Clostridium diolis. Biochem Eng J 68:34–41

    Article  CAS  Google Scholar 

  65. Kaur G, Srivastava AK, Chand S (2013) Bioconversion of glycerol to 1,3-propanediol: a mathematical model-based nutrient feeding approach for high production using Clostridium diolis. Bioresour Technol 142:82–87

    Article  CAS  Google Scholar 

  66. Shiao TL, Ellis MH, Dolferus R, Dennis ES, Doran PM (2002) Overexpression of alcohol dehydrogenase or pyruvate decarboxylase improves growth of hairy roots at reduced oxygen concentrations. Biotechnol Bioeng 77:455–461

    Article  CAS  Google Scholar 

  67. Son SH, Choi SM, Lee YH, Choi KB, Yun SR, Kim JK, Park HJ, Kwon OW, Noh EW, Seon JH, Park YG (2000) Large-scale growth and taxane production in cell cultures of Taxus cuspidata (Japanese yew) using a novel bioreactor. Plant Cell Rep 19:628–633

    Article  CAS  Google Scholar 

  68. Thakore D, Srivastava AK, Sinha AK (2015) Model based fed batch cultivation and elicitation for the overproduction of ajmalicine from hairy roots of Catharanthus roseus. Biochem Eng J 97:73–80

    Article  CAS  Google Scholar 

  69. Pierce LN, Shabram PW (2004) Scalability of a disposable bioreactor from 25 L–500 L run in perfusion mode with a CHO-based cell line: a tech review. Bioprocess J 3:51–56

    Article  Google Scholar 

  70. Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K, Fisher K, McPhee D, Leavell MD, Tai A, Main A, Eng D, Polichuk DR, Teoh KH, Reed DW, Treynor T, Lenihan J, Fleck M, Bajad S, Dang G, Dengrove D, Diola D, Dorin G, Ellens KW, Fickes S, Galazzo J, Gaucher SP, Geistlinger T, Henry R, Hepp M, Horning T, Iqbal T, Jiang H, Kizer L, Lieu B, Melis D, Moss N, Regentin R, Secrest S, Tsuruta H, Vazquez R, Westblade LF, Xu L, Yu M, Zhang Y, Zhao L, Lievense J, Covello PS, Keasling JD, Reiling KK, Renninger NS, Newman JD (2013) High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496:528–532

    Article  CAS  Google Scholar 

  71. Sinkule JA (1984) Etoposide: a semisynthetic epipodophyllotoxin. Chemistry, pharmacology, pharmacokinetics, adverse effects and use as an antineoplastic agent. Pharmacotherapy 4:61–73

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thankfully acknowledge the supply of elite seed material from CIMAP Lucknow. The financial support by Ministry of Human Resource Development, New Delhi (India) for the execution of the above project is gratefully acknowledged by one of the authors (Dr. Nivedita Patra).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok K. Srivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Patra, N., Srivastava, A.K. (2018). Mass Production of Artemisinin Using Hairy Root Cultivation of Artemisia annua in Bioreactor. In: Pavlov, A., Bley, T. (eds) Bioprocessing of Plant In Vitro Systems. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-54600-1_20

Download citation

Publish with us

Policies and ethics