Skip to main content

Spiking Neural Network with 256 × 256 PCM Array

  • Chapter
  • First Online:
Neuro-inspired Computing Using Resistive Synaptic Devices
  • 2424 Accesses

Abstract

Spiking neural network has potential to provide power efficiency and additional functionality compared to conventional artificial neural network (ANN) due to its distinctive features such as spike representation and computation capability using time. The incompatibility of spiking neural network (SNN) to conventional von Neumann computing architecture necessitates development of novel computing architecture for spiking neural network. Neuromorphic computing architecture with nonvolatile memory devices storing synaptic weights can lead to area- and power-efficient hardware implementation for spiking neural network. We will discuss one such neuromorphic chip implementation which has 256 on-chip neuron circuits and 64 k PCM synaptic cells with on-chip learning capability. The two-transistor one-resistor synaptic unit cell structure enables each synaptic cell in the array to operate in asynchronous and parallel fashion, which facilitates scaling up to a larger neural network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  2. D. Silver, A. Huang, C.J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, D. Hassabis, Mastering the game of Go with deep neural networks and tree search. Nature 529(7587), 484–489 (2016)

    Article  Google Scholar 

  3. A. Grüning, S. M. Bohte, (2014), in European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Spiking neural networks: principles and challenges, ISBN 978-287419095-7, http://www.i6doc.com/fr/book/ GCOI=28001100432440

  4. W. Maass, Networks of spiking neurons: the third generation of neural network models. Neural Netw. 10(9), 1659–1671 (1997)

    Article  Google Scholar 

  5. W. Maass, To spike or not to spike: that is the question. Proc. IEEE 103(12), 2219–2224 (2015)

    Article  Google Scholar 

  6. D. Garbin, O. Bichler, E. Vianello, Q. Rafhay, C. Gamrat, L. Perniola, G. Ghibaudo, B. DeSalvo, in IEEE International Electron Devices Meeting (IEDM). Variability-tolerant convolutional neural network for pattern recognition applications based on OxRAM synapses (IEEE, San Francisco, 2014)

    Google Scholar 

  7. P.A. Merolla, J.V. Arthur, R. Alvarez-Icaza, A.S. Cassidy, J. Sawada, F. Akopyan, B.L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S.K. Esser, R. Appuswamy, B. Taba, A. Amir, M.D. Flickner, W.P. Risk, R. Manohar, D.S. Modha, A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345(6197), 668–673 (2014)

    Article  Google Scholar 

  8. S. Kim, M. Ishii, S. Lewis, T. Perri, M. BrightSky, W. Kim, R. Jordan, G. W. Burr, N. Sosa, A. Ray, J.-P. Han, C. Miller, K. Hosokawa, C. Lam, in IEEE International Electron Devices Meeting (IEDM). NVM neuromorphic core with 64 k-cell (256-by-256) phase change memory synaptic array with on-chip neuron circuits for continuous in-situ learning (IEEE, Washington, DC, 2015)

    Google Scholar 

  9. W. Gerstner, W.M. Kistler, Spiking Neuron Models: Single Neurons, Populations, Plasticity (Cambridge University Press, Cambridge/New York, 2002)

    Book  MATH  Google Scholar 

  10. E. Neftci, S. Das, B. Pedroni, K. Kreutz-Delgado, G. Cauwenberghs, Event-driven contrastive divergence for spiking neuromorphic systems. Front. Neurosci. 7, 1–14 (2014)

    Article  Google Scholar 

  11. P.U. Diehl, M. Cook, Unsupervised learning of digit recognition using spike-timing-dependent plasticity. Front. Comput. Neurosci. 9, 99 (2015)

    Article  Google Scholar 

  12. G.Q. Bi, M.M. Poo, Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 18(24), 10464–10472 (1998)

    Google Scholar 

  13. A. Morrison, M. Diesmann, W. Gerstner, Phenomenological models of synaptic plasticity based on spike timing. Biol. Cybern. 98(6), 459–478 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. G. Indiveri, E. Chicca, R. Douglas, A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity. IEEE Trans. Neural Netw. 17(1), 211–221 (2006)

    Article  Google Scholar 

  15. G. Indiveri, F. Corradi, N. Qiao, in IEEE International Electron Devices Meeting (IEDM). Neuromorphic architectures for spiking deep neural networks (IEEE, Washington, DC, 2015)

    Google Scholar 

  16. K. Meier, in IEEE International Electron Devices Meeting (IEDM). A mixed-signal universal neuromorphic computing system (IEEE, Washington, DC, 2015)

    Google Scholar 

  17. J. Seo, B. Brezzo, Y. Liu, B. D. Parker, S. K. Esser, R. K. Montoye, B. Rajendran, J. A. Tierno, L. Chang, D. S. Modha, D. J. Friedman, in IEEE Custom Integrated Circuits Conference (CICC). A 45 nm CMOS neuromorphic chip with a scalable architecture for learning in networks of spiking neurons (IEEE, San Jose, 2011)

    Google Scholar 

  18. F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla, N. Imam, Y. Nakamura, P. Datta, G. Nam, B. Taba, M. Beakes, B. Brezzo, J.B. Kuang, R. Manohar, W.P. Risk, B. Jackson, D.S. Modha, TrueNorth: design and tool flow of a 65 mW 1 million neuron programmable neurosynaptic chip. IEEE Trans. Comp. Aided. Des. Integr. Circuits Syst. 34(10), 1537–1557 (2015)

    Article  Google Scholar 

  19. G. Orchard, X. Lagorce, C. Posch, S. B. Furber, R. Benosman, F. Galluppi, in IEEE International Symposium on Circuits and Systems (ISCAS). Real-time event-driven spiking neural network object recognition on the SpiNNaker platform (IEEE, Lisbon 2015)

    Google Scholar 

  20. H.-S.P. Wong, S. Raoux, S. Kim, J. Liang, J.P. Reifenberg, B. Rajendran, M. Asheghi, K.E. Goodson, Phase change memory. Proc. IEEE 98(12), 2201–2227 (2010)

    Article  Google Scholar 

  21. G.W. Burr, M.J. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakrishnan, B. Jackson, B. Kurdi, C. Lam, L.A. Lastras, A. Padilla, B. Rajendran, S. Raoux, R.S. Shenoy, Phase change memory technology. J. Vac. Sci. Technol. B 28(2), 223 (2010)

    Article  Google Scholar 

  22. G.W. Burr, M.J. BrightSky, A. Sebastian, H.-Y. Cheng, J.-Y. Wu, S. Kim, N.E. Sosa, N. Papandreou, H.-L. Lung, H. Pozidis, E. Eleftheriou, C.H. Lam, Recent progress in phase-change memory technology. IEEE J. Emerging. Sel. Top. Circuits Syst. 6(2), 146–162 (2016)

    Article  Google Scholar 

  23. Y. Choi, I. Song, M.-H. Park, H. Chung, S. Chang, B. Cho, J. Kim, Y. Oh, D. Kwon, J. Sunwoo, J. Shin, Y. Rho, C. Lee, M. G. Kang, J. Lee, Y. Kwon, S. Kim, J. Kim, Y.-J. Lee, Q. Wang, S. Cha, S. Ahn, H. Horii, J. Lee, K. Kim, H. Joo, K. Lee, Y.-T. Lee, J. Yoo, G. Jeong, in IEEE International Solid-State Circuits Conference (ISSCC). A 20 nm 1.8 V 8Gb PRAM with 40 MB/s program bandwidth (IEEE, San Francisco, 2012), pp. 46–48

    Google Scholar 

  24. C. Villa, D. Mills, G. Barkley, H. Giduturi, S. Schippers, D. Vimercati, in IEEE International Solid-State Circuits Conference (ISSCC). A 45 nm 1Gb 1.8 V phase-change memory (IEEE, San Francisco, 2010), pp. 270–271

    Google Scholar 

  25. G.W. Burr, B.N. Kurdi, J.C. Scott, C.H. Lam, K. Gopalakrishnan, R.S. Shenoy, Overview of candidate device technologies for storage-class memory. IBM J. Res. Dev. 52(4.5), 449–464 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SangBum Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kim, S. (2017). Spiking Neural Network with 256 × 256 PCM Array. In: Yu, S. (eds) Neuro-inspired Computing Using Resistive Synaptic Devices. Springer, Cham. https://doi.org/10.1007/978-3-319-54313-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54313-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54312-3

  • Online ISBN: 978-3-319-54313-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics