Skip to main content

Synaptic Devices Based on Phase-Change Memory

  • Chapter
  • First Online:
Neuro-inspired Computing Using Resistive Synaptic Devices
  • 2865 Accesses

Abstract

The biological brain has the capability of learning, pattern recognition, processing imprecisely defined data, and executing complex computational tasks. Consisting of 1011 neurons and 1015 synapses as the major computational components, the biological brain is extremely power efficient, massively parallel, structurally plastic, and exceptionally robust against noise and variations (Kuzum et al. Nanotechnology 24:382001, 2013). The question of how to design and build a compact neuromorphic system is a grand challenge for academia and industry. An electronic synaptic device is an essential element in such neuromorphic systems. Among various electronic synapses candidates, nonvolatile memory-based synaptic devices have the highest potential to realize massive parallelism and 3D integration for achieving high function per unit volume. This chapter will focus on synaptic devices based on phase-change memory (PCM). We first review the basics of phase-change synaptic devices: device operation, phase-change materials, conduction mechanism, power consumption, and scaling. We then review the use of PCM synaptic device implementations spanning from single device operation to various array architecture designs in the following sections. The concept of spike-timing-dependent plasticity (STDP), various pulse scheme designs, and pulse programming techniques for plasticity will be explained and compared. Last, we will discuss recent advances in designing PCM synaptic device to achieve lower power consumption and more stable resistance states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. D. Kuzum, S. Yu, H.S.P. Wong, Synaptic electronics: materials, devices and applications. Nanotechnology. 24(38), 382001 (2013)

    Article  Google Scholar 

  2. S.R. Ovshinsky, Reversible electrical switching phenomena in disordered structures. Phys. Rev. Lett. 21(20), 1450–1453 (1968)

    Article  Google Scholar 

  3. R. Bez, Chalcogenide PCM: a memory technology for next decade, in IEEE International Electron Devices Meeting (IEDM) (2009)

    Google Scholar 

  4. S. Lai, Current status of the phase change memory and its future, in IEEE International Electron Devices Meeting (IEDM) (2003)

    Google Scholar 

  5. M.H. Lankhorst, B.W. Ketelaars, R. Wolters, Low-cost and nanoscale non-volatile memory concept for future silicon chips. Nat. Mater. 4(4), 347–352 (2005)

    Article  Google Scholar 

  6. J. Oh et al., Full integration of highly manufacturable 512 Mb PRAM based on 90 nm technology, in IEEE International Electron Devices Meeting (IEDM) (2006)

    Google Scholar 

  7. G. Servalli, A 45 nm generation phase change memory technology, in IEEE International Electron Devices Meeting (IEDM) (2009)

    Google Scholar 

  8. D. Kuzum, R.G. Jeyasingh, B. Lee, H.-S.P. Wong, Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing. Nano Lett. 12(5), 2179–2186 (2011)

    Article  Google Scholar 

  9. D.O. Hebb, The organization of behavior: a neuropsychological theory. (Psychology Press, 2005)

    Google Scholar 

  10. H.-S.P. Wong et al., Phase change memory. Proc. IEEE. 98(12), 2201–2227 (2010)

    Article  Google Scholar 

  11. S. Raoux, Phase change materials. Annu. Rev. Mat. Res. 39(1), 25–48 (2009)

    Article  Google Scholar 

  12. S. Raoux et al., Direct observation of amorphous to crystalline phase transitions in nanoparticle arrays of phase change materials. J. Appl. Phys. 102(9), 94305–94305 (2007)

    Article  Google Scholar 

  13. S. Raoux, F. Xiong, M. Wuttig, E. Pop, Phase change materials and phase change memory. MRS Bull. 39(08), 703–710 (2014)

    Article  Google Scholar 

  14. D. Ielmini, Threshold switching mechanism by high-field energy gain in the hopping transport of chalcogenide glasses. Phys. Rev. B 78(3), 035308 (2008)

    Article  Google Scholar 

  15. A. Owen, J. Robertson, C. Main, The threshold characteristics of chalcogenide-glass memory switches. J. Non Cryst. Solids. 32(1), 29–52 (1979)

    Article  Google Scholar 

  16. A. Pirovano, A.L. Lacaita, A. Benvenuti, F. Pellizzer, R. Bez, Electronic switching in phase-change memories. IEEE Trans. Electron Devices. 51(3), 452–459 (2004)

    Article  Google Scholar 

  17. D. Adler, M. Shur, M. Silver, S. Ovshinsky, Threshold switching in chalcogenide-glass thin films. J. Appl. Phys. 51(6), 3289–3309 (1980)

    Article  Google Scholar 

  18. D. Adler, M. Shur, M. Silver, S. Ovshinsky, Reply to comment on ‘Threshold switching in chalcogenide-glass thin films’. J. Appl. Phys. 56(2), 579–580 (1984)

    Article  Google Scholar 

  19. V. Karpov, Y. Kryukov, S. Savransky, I. Karpov, Nucleation switching in phase change memory. Appl. Phys. Lett. 90(12), 123504 (2007)

    Article  Google Scholar 

  20. A. Pirovano, A.L. Lacaita, F. Pellizzer, S.A. Kostylev, A. Benvenuti, R. Bez, Low-field amorphous state resistance and threshold voltage drift in chalcogenide materials. IEEE Trans. Electron Devices. 51(5), 714–719 (2004)

    Article  Google Scholar 

  21. A. Sebastian, D. Krebs, M. Le Gallo, H. Pozidis, E. Eleftheriou, A collective relaxation model for resistance drift in phase change memory cells, in IEEE International Reliability Physics Symposium (IRPS) (2015)

    Google Scholar 

  22. M. Boniardi, D. Ielmini, Physical origin of the resistance drift exponent in amorphous phase change materials. Appl. Phys. Lett. 98(24), 243506 (2011)

    Article  Google Scholar 

  23. D. Ielmini, S. Lavizzari, D. Sharma, A.L. Lacaita, Physical interpretation, modeling and impact on phase change memory (PCM) reliability of resistance drift due to chalcogenide structural relaxation, in IEEE International Electron Devices Meeting (IEDM) (2007)

    Google Scholar 

  24. M. Boniardi, A. Redaelli, A. Pirovano, I. Tortorelli, D. Ielmini, F. Pellizzer, A physics-based model of electrical conduction decrease with time in amorphous Ge2Sb2Te5. J. Appl. Phys. 105(8), 084506 (2009)

    Article  Google Scholar 

  25. D. Ielmini, S. Lavizzari, D. Sharma, A. Lacaita, Temperature acceleration of structural relaxation in amorphous Ge2Sb2Te5. Appl. Phys. Lett. 92(19), 193511 (2008)

    Article  Google Scholar 

  26. I. Karpov, M. Mitra, D. Kau, G. Spadini, Y. Kryukov, V. Karpov, Fundamental drift of parameters in chalcogenide phase change memory. J. Appl. Phys. 102(12), 124503–124503 (2007)

    Article  Google Scholar 

  27. A. Chen, J. Hutchby, V. Zhirnov, G. Bourianoff, Emerging Nanoelectronic Devices (John Wiley & Sons, Wiley, 2014)

    Google Scholar 

  28. M. Mitra, Y. Jung, D.S. Gianola, R. Agarwal, Extremely low drift of resistance and threshold voltage in amorphous phase change nanowire devices. Appl. Phys. Lett. 96(22), 222111 (2010)

    Article  Google Scholar 

  29. E.R. Kandel, J.H. Schwartz, T.M. Jessell, S.A. Siegelbaum, A. Hudspeth, Principles of Neural Science (McGraw-Hill, New York, 2000)

    Google Scholar 

  30. J. Liang, R.G.D. Jeyasingh, H.-Y. Chen, H.-S. P. Wong, A 1.4 μA reset current phase change memory cell with integrated carbon nanotube electrodes for cross-point memory application, in Symposium on VLSI Technology (2011), pp. 100–101

    Google Scholar 

  31. F. Xiong, A.D. Liao, D. Estrada, E. Pop, Low-power switching of phase-change materials with carbon nanotube electrodes. Sci. 332(6029), 568–570 (2011)

    Article  Google Scholar 

  32. M. Kang et al., PRAM cell technology and characterization in 20 nm node size, in IEEE International Electron Devices Meeting (IEDM) (2011)

    Google Scholar 

  33. M.A. Zidan, H.A.H. Fahmy, M.M. Hussain, K.N. Salama, Memristor-based memory: the sneak paths problem and solutions. Microchem. J. 44(2), 176–183 (2013)

    Google Scholar 

  34. P. Narayanan, G.W. Burr, R. Shenoy, K. Virwani, B. Kurdi, Circuit-level benchmarking of access devices for resistive nonvolatile memory arrays, in IEEE International Electron Devices Meeting (IEDM) (2009)

    Google Scholar 

  35. L. Zhang, S. Cosemans, D.J. Wouters, G. Groeseneken, M. Jurczak, B. Govoreanu, Selector design considerations and requirements for 1 SIR RRAM crossbar array, in IEEE 6th International Memory Workshop (IMW) (2014)

    Google Scholar 

  36. L. Zhang, S. Cosemans, D.J. Wouters, G. Groeseneken, M. Jurczak, B. Govoreanu, On the optimal ON/OFF resistance ratio for resistive switching element in one-selector one-resistor crosspoint arrays. IEEE Electron Device Lett. 36(6), 570–572 (2015)

    Article  Google Scholar 

  37. Y. Sasago et al., Cross-point phase change memory with 4F 2 cell size driven by low-contact-resistivity poly-Si diode, in Symposium on VLSI Technology (2009) pp. 24–25

    Google Scholar 

  38. B.S. Kang et al., High-current-density CuO x/InZnOx thin-film diodes for cross-point memory applications. Adv. Mater. 20(16), 3066–3069 (2008)

    Article  Google Scholar 

  39. I. Baek et al., Multi-layer cross-point binary oxide resistive memory (OxRRAM) for post-NAND storage application, in IEEE International Electron Devices Meeting (IEDM) (2005)

    Google Scholar 

  40. E. Katsia et al., Poly (3-hexylthiophene)/ZnO hybrid pn junctions for microelectronics applications. Appl. Phys. Lett. 94(14), 143501 (2009)

    Article  Google Scholar 

  41. Y.C. Shin et al., (in, Sn) 2O3/TiO2/Pt Schottky-type diode switch for the TiO2 resistive switching memory array. Appl. Phys. Lett. 92(16) (2008)

    Google Scholar 

  42. M.J. Lee et al., Two series oxide resistors applicable to high speed and high density nonvolatile memory. Adv. Mater. 19(22), 3919–3923 (2007)

    Article  Google Scholar 

  43. D. Kau et al., A stackable cross point phase change memory, in IEEE International Electron Devices Meeting (IEDM) (2009)

    Google Scholar 

  44. H.-S.P. Wong, C. Ahn, J. Cao, H.-Y. Chen, S.B. Eryilmaz, S.W. Fong, J.A. Incorvia, Z. Jiang, H. Li, C. Neumann, K. Okabe, S. Qin, J. Sohn, Y. Wu, S. Yu, X. Zheng, Stanford memory trends, https://nano.stanford.edu/stanford-memory-trends, Accessed 26 Dec 2016.

  45. P. Lennie, The cost of cortical computation. Curr. Biol. 13(6), 493–497 (2003)

    Article  Google Scholar 

  46. D. Kuzum, R.G. Jeyasingh, H.-S.P. Wong, Energy efficient programming of nanoelectronic synaptic devices for large-scale implementation of associative and temporal sequence learning, in IEEE International Electron Devices Meeting (IEDM) (2011)

    Google Scholar 

  47. J. Liang, R.G.D. Jeyasingh, H.-Y. Chen, H.-S.P. Wong, An ultra-low reset current cross-point phase change memory with carbon nanotube electrodes. IEEE Trans. Electron Devices. 59(4), 1155–1163 (2012)

    Article  Google Scholar 

  48. A. Pirovano, A. Lacaita, A. Benvenuti, F. Pellizzer, S. Hudgens, R. Bez, Scaling analysis of phase-change memory technology, in IEEE International Electron Devices Meeting (IEDM) (2003)

    Google Scholar 

  49. D. Im et al., A unified 7.5 nm dash-type confined cell for high performance PRAM device, in IEEE International Electron Devices Meeting (IEDM) (2008)

    Google Scholar 

  50. F. Xiong et al., Self-aligned nanotube–nanowire phase change memory. Nano Lett. 13(2), 464–469 (2013)

    Article  Google Scholar 

  51. S.M. Sadeghipour, L. Pileggi, M. Asheghi, Phase change random access memory, thermal analysis, in Proceedings 10th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics Systems (2006), pp. 660–665

    Google Scholar 

  52. S. Fong et al., Thermal conductivity measurement of amorphous dielectric multilayers for phase-change memory power reduction. J. Appl. Phys. 120(1), 015103 (2016)

    Article  Google Scholar 

  53. J. Wu et al., A low power phase change memory using thermally confined TaN/TiN bottom electrode, in IEEE International Electron Devices Meeting (IEDM) (2011)

    Google Scholar 

  54. C. Kim et al., Fullerene thermal insulation for phase change memory. Appl. Phys. Lett. 92(1), 013109 (2008)

    Article  Google Scholar 

  55. C. Ahn et al., Energy-efficient phase-change memory with graphene as a thermal barrier. Nano Lett. 15(10), 6809–6814 (2015)

    Article  Google Scholar 

  56. J.P. Reifenberg, D.L. Kencke, K.E. Goodson, The impact of thermal boundary resistance in phase-change memory devices. IEEE Elect. Device Lett. 29(10), 1112–1114 (2008)

    Article  Google Scholar 

  57. J.P. Reifenberg et al., Thermal boundary resistance measurements for phase-change memory devices. IEEE Elect. Device Lett. 31(1), 56–58 (2010)

    Article  Google Scholar 

  58. C.D. Wright, Y. Liu, K.I. Kohary, M.M. Aziz, R.J. Hicken, Arithmetic and biologically-inspired computing using phase-change materials. Adv. Mater. 23(30), 3408–3413 (2011)

    Article  Google Scholar 

  59. O. Bichler, M. Suri, D. Querlioz, D. Vuillaume, B. DeSalvo, C. Gamrat, Visual pattern extraction using energy-efficient “2-PCM synapse” neuromorphic architecture. IEEE Trans. Electron Devices. 59(8), 2206–2214 (2012)

    Article  Google Scholar 

  60. M. Suri et al., Phase change memory as synapse for ultra-dense neuromorphic systems: Application to complex visual pattern extraction, in IEEE Electron Devices Meeting (IEDM) (2011)

    Google Scholar 

  61. B.L. Jackson et al., Nanoscale electronic synapses using phase change devices. ACM J. Emerg. Technol. Comput. Syst. (JETC) 9(2), 12 (2013)

    Google Scholar 

  62. M.J. Breitwisch, R.W. Cheek, C.H. Lam, D.S. Modha, B. Rajendran, System for electronic learning synapse with spike-timing dependent plasticity using phase change memory, ed: Google Patents (2013)

    Google Scholar 

  63. D.-H. Kang, H.-G. Jun, K.-C. Ryoo, H. Jeong, H. Sohn, Emulation of spike-timing dependent plasticity in nano-scale phase change memory. Neurobiologia. 155, 153–158 (2015)

    Google Scholar 

  64. Y. Zhong, Y. Li, L. Xu, X. Miao, Simple square pulses for implementing spike-timing-dependent plasticity in phase-change memory. Phys. Status Solidi (RRL)-Rapid Res. Lett. 9(7), 414–419 (2015)

    Article  Google Scholar 

  65. S.B. Eryilmaz et al., Experimental demonstration of array-level learning with phase change synaptic devices, in IEEE International Electron Devices Meeting (IEDM) (2013)

    Google Scholar 

  66. G.W. Burr et al., Experimental demonstration and tolerancing of a large-scale neural network (165 000 synapses) using phase-change memory as the synaptic weight element. IEEE Trans. Electron Devices. 62(11), 3498–3507 (2015)

    Article  Google Scholar 

  67. S. Kim et al., NVM neuromorphic core with 64 k–cell (256-by-256) phase change memory synaptic array with on-chip neuron circuits for continuous in-situ learning, in IEEE International Electron Devices Meeting (IEDM) (2015)

    Google Scholar 

  68. S. Ambrogio et al., Unsupervised learning by spike timing dependent plasticity in phase change memory (PCM) synapses, Frontiers in Neuroscience, vol. 10, (2016)

    Google Scholar 

  69. J. An, C. Choi, Y. Shindo, Y. Sutou, H. Jeong, Y. Song, Investigation of an erasing method for synaptic behaviour in a phase change device using Ge1Cu2Te3 (GCT). Electron. Lett. 52(18), 1514–1516 (2016)

    Article  Google Scholar 

  70. S.B. Eryilmaz et al., Brain-like associative learning using a nanoscale non-volatile phase change synaptic device array, Frontiers in Neuroscience, vol. 8, no. 205, (2014)

    Google Scholar 

  71. G. Close et al., Device, circuit and system-level analysis of noise in multi-bit phase-change memory, in IEEE International Electron Devices Meeting (IEDM) (2010)

    Google Scholar 

  72. F. Bedeschi et al., A bipolar-selected phase change memory featuring multi-level cell storage. IEEE J. Solid State Circuits. 44(1), 217–227 (2009)

    Article  Google Scholar 

  73. K. Gerrow, A. Triller, Synaptic stability and plasticity in a floating world. Curr. Opin. Neurobiol. 20(5), 631–639 (2010)

    Article  Google Scholar 

  74. D. Hebb, Organization of Behavior (Science Editions, New York, 1961)

    Google Scholar 

  75. H. Markram, W. Gerstner, P.J. Sjöström, A history of spike-timing-dependent plasticity. Spike-Timing Dependent Plasticity, 11 (2011)

    Google Scholar 

  76. H.Z. Shouval, S. Samuel, G.M. Wittenberg, Spike timing dependent plasticity: a consequence of more fundamental learning rules. Spike-Timing Dependent Plasticity, 60 (2010)

    Google Scholar 

  77. G.M. Wittenberg, S.S.-H. Wang, Malleability of spike-timing-dependent plasticity at the CA3–CA1 synapse. J. Neurosci. 26(24), 6610–6617 (2006)

    Article  Google Scholar 

  78. R.C. Froemke, J.J. Letzkus, B.M. Kampa, G.B. Hang, G.J. Stuart, Dendritic synapse location and neocortical spike-timing-dependent plasticity. Spike-Timing Dependent Plasticity, 118 (2010)

    Google Scholar 

  79. N. Caporale, Y. Dan, Spike timing-dependent plasticity: a Hebbian learning rule. Annu. Rev. Neurosci. 31, 25–46 (2008)

    Article  Google Scholar 

  80. P.J. Sjöström, E.A. Rancz, A. Roth, M. Häusser, Dendritic excitability and synaptic plasticity. Physiol. Rev. 88(2), 769–840 (2008)

    Article  Google Scholar 

  81. G. Bi, M. Poo, Synaptic modification by correlated activity: Hebb’s postulate revisited. Annu. Rev. Neurosci. 24(1), 139–166 (2001)

    Article  Google Scholar 

  82. G.-q. Bi, M.-m. Poo, Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 18(24), 10464–10472 (1998)

    Google Scholar 

  83. M. Suri, B. DeSalvo, Phase change memory and chalcogenide materials for neuromorphic applications: emphasis on synaptic plasticity, in Advances in Neuromorphic Memristor Science and Applications. (Springer, 2012), pp. 155–178

    Google Scholar 

  84. M. Suri, V. Sousa, L. Perniola, D. Vuillaume, and B. DeSalvo, Phase change memory for synaptic plasticity application in neuromorphic systems, in International Joint Conference on Neural Networks (IJCNN) (2011), pp. 619–624

    Google Scholar 

  85. D. Kuzum, R.G.D. Jeyasingh, S. Yu, H.-S.P. Wong, Low-energy robust neuromorphic computation using synaptic devices. IEEE Trans. on Electron Devices 59(12), 3489–3494 (2012)

    Article  Google Scholar 

  86. M.A. Woodin, K. Ganguly, M.-M. Poo, Coincident pre- and postsynaptic activity modifies GABAergic synapses by postsynaptic changes in Cl − transporter activity. Neuron 39(5), 807–820 (2003)

    Article  Google Scholar 

  87. T. Tuma, A. Pantazi, M. Le Gallo, A. Sebastian, E. Eleftheriou, Stochastic phase-change neurons, Nature Nanotechnology (2016)

    Google Scholar 

  88. G.W. Burr et al., Recent progress in phase-change memory technology. IEEE J. Emerging Sel. Top. Circuits Syst. 6(2), 146–162 (2016)

    Article  Google Scholar 

  89. P. Junsangsri, J. Han, F. Lombardi, A system-level scheme for resistance drift tolerance of a multilevel phase change memory, 2014 I.E. International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (2014), pp. 63–68

    Google Scholar 

  90. W. Xu, T. Zhang, A time-aware fault tolerance scheme to improve reliability of multilevel phase-change memory in the presence of significant resistance drift. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 19(8), 1357–1367 (2011)

    Article  Google Scholar 

  91. S. Kim et al., A phase change memory cell with metallic surfactant layer as a resistance drift stabilizer, in IEEE International Electron Devices Meeting (IEDM) (2013)

    Google Scholar 

  92. W.J. Wang et al., Engineering grains of Ge2Sb2Te5 for realizing fast-speed, low-power, and low-drift phase-change memories with further multilevel capabilities, in IEEE International Electron Devices Meeting (IEDM) (2012)

    Google Scholar 

  93. A. Sebastian, N. Papandreou, A. Pantazi, H. Pozidis, E. Eleftheriou, Non-resistance-based cell-state metric for phase-change memory. J. Appl. Phys., 084505 (2011)

    Google Scholar 

  94. N. Papandreou et al., Drift-resilient cell-state metric for multilevel phase-change memory, in IEEE International Electron Devices Meeting (IEDM) (2011)

    Google Scholar 

  95. M. Stanisavljevic, A. Athmanathan, N. Papandreou, H. Pozidis, and E. Eleftheriou, Phase-change memory: feasibility of reliable multilevel-cell storage and retention at elevated temperatures, in IEEE International Reliability Physics Symposium (IRPS) (2015)

    Google Scholar 

  96. A. Padilla et al., Voltage polarity effects in Ge2Sb2Te5-based phase change memory devices. J. Appl. Phys. 110, 054501 (2011)

    Article  Google Scholar 

  97. G. Novielli, A. Ghetti, E. Varesi, A. Mauri, R. Sacco, Atomic migration in phase change materials, in IEEE International Electron Devices Meeting (IEDM) (2013)

    Google Scholar 

  98. K. Do, D. Lee, D.-H. Ko, H. Sohn, M.-H. Cho, TEM study on volume changes and void formation in Ge2Sb2Te5 films, with repeated phase changes. Electrochem. Solid St. 13(8), H284–H286 (2010)

    Article  Google Scholar 

  99. D.H. Im et al., A unified 7.5 nm dash-type confined cell for high performance PRAM device, in IEEE International Electron Devices Meeting (IEDM) (2008)

    Google Scholar 

  100. I.S. Kim et al., High performance PRAM cell scalable to sub-20 nm technology with below 4F2 cell size, extendable to DRAM applications, in Symposium on VLSI Technology (2010), pp. 203–204

    Google Scholar 

  101. M.B. Sky et al., Crystalline-as-deposited ALD phase change material confined PCM cell for high density storage class memory, in IEEE International Electron Devices Meeting (IEDM) (2015)

    Google Scholar 

  102. H.L. Lung et al., Novel low power phase change memory using inter-granular switching, in Symposium on VLSI Technology (2016), pp. 128–129

    Google Scholar 

  103. D.H. Kang et al., Considerations on highly scalable and easily stackable phase change memory cell array for low-cost and high-performance applications, in Non-Volatile Memory Technology Symposium (NVMTS) (2014)

    Google Scholar 

  104. W.S. Khwa et al., A novel inspection and annealing procedure to rejuvenate phase change memory from cycling-induced degradations for storage class memory applications, in IEEE International Electron Devices Meeting (IEDM) (2014)

    Google Scholar 

  105. H. Cheng et al., A thermally robust phase change memory by engineering the Ge/N concentration in (Ge,N)xSbyTez phase change material, in IEEE International Electron Devices Meeting (IEDM) (2012)

    Google Scholar 

  106. J. Lee et al., Scalable high-performance phase-change memory employing cvd gebite. IEEE Electron. Device Lett. 32(8), 1113–1115 (2011)

    Article  Google Scholar 

  107. H. Cheng et al., Novel fast-switching and high-data retention phase-change memory based on new Ga-Sb-Ge material, in IEEE International Electron Devices Meeting (IEDM) (2015)

    Google Scholar 

  108. Y. Lu et al., SnSb 4/SiO 2 multilayered thin films for phase change memory applications. J. Non Cryst. Solids. 432, 505–509 (2016)

    Article  Google Scholar 

  109. T. Ohyanagi et al., Charge-injection phase change memory with high-quality GeTe/Sb2Te3 superlattice featuring 70-μA RESET, 10-ns SET and 100 M endurance cycles operations, in IEEE International Electron Devices Meeting (IEDM) (2013)

    Google Scholar 

  110. M. Tai et al., 1T-1R pillar-type topological-switching random access memory (TRAM) and data retention of GeTe/Sb2Te3 super-lattice films, in Symposium on VLSI Technology (2014)

    Google Scholar 

  111. G.W. Burr et al., Access devices for 3D crosspoint memorya. J. Vac. Sci. Technol. B 32(4), 040802 (2014)

    Article  Google Scholar 

  112. W. Czubatyj, S.J. Hudgens, Invited paper: Thin-film ovonic threshold switch: Its operation and application in modern integrated circuits. Electron. Mater. Lett. 8(2), 157–167 (2012)

    Article  Google Scholar 

  113. S. Kim et al., Performance of threshold switching in chalcogenide glass for 3D stackable selector, Symposium on VLSI Technology (2013)

    Google Scholar 

  114. M.-J. Lee et al., Highly-scalable threshold switching select device based on chaclogenide glasses for 3D nanoscaled memory arrays, in IEEE International Electron Devices Meeting (IEDM) (2012)

    Google Scholar 

  115. H. Yang et al., Novel selector for high density non-volatile memory with ultra-low holding voltage and 107 on/off ratio, in Symposium on VLSI Technology (2015), pp. 130–131

    Google Scholar 

Download references

Acknowledgments

DK acknowledges the Office of Naval Research Young Investigator Award. SWF and HSPW are supported in part by the member companies of the Stanford Non-Volatile Memory Technology Research Initiative (NMTRI), member companies of the Stanford SystemX Alliance, and the National Science Foundation (Grant #DGE-4747 and Expeditions in Computing [Award # 1317560]).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H.-S. Philip Wong or Duygu Kuzum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Shi, Y., Fong, S., Wong, HS.P., Kuzum, D. (2017). Synaptic Devices Based on Phase-Change Memory. In: Yu, S. (eds) Neuro-inspired Computing Using Resistive Synaptic Devices. Springer, Cham. https://doi.org/10.1007/978-3-319-54313-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54313-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54312-3

  • Online ISBN: 978-3-319-54313-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics