Skip to main content

Morphology and Optical Properties of SrWO4 Powders Synthesized by the Coprecipitation and Polymeric Precursor Methods

  • Chapter
  • First Online:
Recent Advances in Complex Functional Materials

Abstract

Industries are technologically dependent of new materials with a high optical efficiency for the development of electrooptical devices. In particular, ceramic oxides have a wide potential to supply this technological demand, especially those belonging to the scheelite group. A well-known scheelite in the scientific community is the strontium tungstate (SrWO4) because of their typical luminescence emissions. In addition, the main parameters responsible for the changes of physicochemical properties of any material are crystalline structure, composition, surface chemistry, particle sizes, and shapes. These parameters can be directly affected by the synthesis methods as well as due to their experimental conditions. In this chapter it was reported the synthesis of SrWO4 powders by two distinct chemical routes (coprecipitation and polymeric precursor method), which were subsequently heat-treated at different temperatures in a resistive furnace and a microwave oven. The aim of this study was to investigate the effects induced by both synthesis methods and heat treatment conditions (conventional and microwave) on the morphological aspects and optical properties of SrWO4. The details on the structural rearrangement at long and short range were investigated by means of X-ray diffraction patterns, Raman spectra, and X-ray absorption near-edge structure spectra at the W L 3 -edge, respectively. Field emission-scanning electron microscopy was an essential technique in order to verify the shape and distribution of the particle system. The optical properties were based on measurements of ultraviolet-visible absorption spectra and photoluminescence spectra at room temperature. In principle, these results were correlated to reveal a better interpretation of experimental data at the atomic level, providing new insights on the morphological and optical properties of SrWO4 crystals. Particularly, the explanations on these properties were based on structural order-disorder effects, which will be analyzed and discussed with more details along this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Minowa M, Itakura K, Moriyama S, Ootani W (1992) Measurement of the property of cooled lead molybdate as a scintillator. Nucl Instrum Methods Phys Res A 320(3):500–503. doi:http://dx.doi.org/10.1016/0168-9002(92)90945-Z

    Article  Google Scholar 

  2. Ju Z, Wei R, Gao X, Liu W, Pang C (2011) Red phosphor SrWO4:Eu3+ for potential application in white LED. Opt Mater 33(6):909–913. doi: http://dx.doi.org/10.1016/j.optmat.2011. 01.025

  3. Jia G, Tu C, Li J, Zhu Z, You Z, Wang Y, Wu B (2007) Optical spectroscopy of Yb3+ doped SrWO4 scheelite crystal. J Alloys Compd 436(1–2):341–344. doi:http://dx.doi.org/10.1016/j.jallcom.2006.07.037

  4. Parhi P, Karthik TN, Manivannan V (2008) Synthesis and characterization of metal tungstates by novel solid-state metathetic approach. J Alloys Compd 465(1–2):380–386. doi:10.1016/j.jallcom.2007.10.089

    Article  Google Scholar 

  5. Wang A, Wang C, Jia G (2009) Recent advances in strontium tungstate scheelite material. Front Chem China 5(1):61–70. doi:10.1007/s11458-009-0099-3

    Article  Google Scholar 

  6. Chen L, Gao Y (2007) Fabrication of luminescent SrWO4 thin films by a novel electrochemical method. Mater Res Bull 42(10):1823–1830. doi:10.1016/j.materresbull.2006.12.002

    Article  Google Scholar 

  7. Feng L-D, Chen X-B, Mao C-J (2010) A facile synthesis of SrWO4 nanobelts by the sonochemical method. Mater Lett 64(22):2420–2423. doi:10.1016/j.matlet.2010.08.024

    Article  Google Scholar 

  8. Sczancoski JC, Cavalcante LS, Joya MR, Espinosa JW, Pizani PS, Varela JA, Longo E (2009) Synthesis, growth process and photoluminescence properties of SrWO4 powders. J Colloid Interface Sci 330(1):227–236. doi:10.1016/j.jcis.2008.10.034

    Article  Google Scholar 

  9. Pan H, Hojamberdiev M, Zhu G (2012) Hydrothermal synthesis of quasi-monodisperse AWO4 (A = Ca, Sr, and Ba) microspheres. J Mater Sci 47(2):746–753. doi:10.1007/s10853-011-5850-8

    Article  Google Scholar 

  10. Orhan E, Anicete-Santos M, Maurera MAMA, Pontes FM, Paiva-Santos CO, Souza AG, Varela JA, Pizani PS, Longo E (2005) Conditions giving rise to intense visible room temperature photoluminescence in SrWO4 thin films: the role of disorder. Chem Phys 312(1–3):1–9. doi:10.1016/j.chemphys.2004.11.013

    Article  Google Scholar 

  11. Dong F-Q, Wu Q-S, Sun D-M, Ding Y-P (2008) Morphology-tunable synthesis of SrWO4 crystals via biomimetic supported liquid membrane (SLM) system. J Mater Sci 43(2): 641–644. doi:10.1007/s10853-007-2165-x

    Article  Google Scholar 

  12. Thongtem T, Phuruangrat A, Thongtem S (2008) Preparation and characterization of nanocrystalline SrWO4 using cyclic microwave radiation. Curr Appl Phys 8(2):189–197. doi:10.1016/j.cap.2007.08.002

    Article  Google Scholar 

  13. Sun L, Guo Q, Wu X, Luo S, Pan W, Huang K, Lu J, Ren L, Cao M, Hu C (2007) Synthesis and photoluminescent properties of strontium tungstate nanostructures. J Phys Chem C 111(2):532–537. doi:10.1021/jp064923d

    Article  Google Scholar 

  14. Cui C, Bi J, Gao D (2008) Room temperature synthesis of crystallized luminescent SrWO4 films by an adjustable galvanic cell method. J Cryst Growth 310(19):4385–4389. doi:10.1016/j.jcrysgro.2008.07.030

    Article  Google Scholar 

  15. Marques VS, Cavalcante LS, Sczancoski JC, Alcântara AFP, Orlandi MO, Moraes E, Longo E, Varela JA, Siu Li M, Santos MRMC (2010) Effect of different solvent ratios (water/ethylene glycol) on the growth process of CaMoO4 crystals and their optical properties. Cryst Growth Des 10(11):4752–4768. doi:10.1021/cg100584b

    Article  Google Scholar 

  16. Cavalcante LS, Sczancoski JC, Lima LF, Espinosa JWM, Pizani PS, Varela JA, Longo E (2008) Synthesis, characterization, anisotropic growth and photoluminescence of BaWO4. Cryst Growth Des 9(2):1002–1012. doi:10.1021/cg800817x

    Article  Google Scholar 

  17. Rotello VM (2004) Nanoparticles: building blocks for nanotechnology. In: Skaff H, Emrick T (eds) Semiconductor nanoparticles. Springer Science & Business Media, New York, pp 32–33

    Chapter  Google Scholar 

  18. Sattler KD (2010) Handbook of nanophysics: nanoparticles and quantum dots. In: Reiss G, Hütten A (eds) Magnetic nanoparticles. Taylor & Francis, New York, pp 1–2

    Google Scholar 

  19. Kakihana M (1996) Invited review “sol-gel” preparation of high temperature superconducting oxides. J Sol Gel Sci Technol 6(1):7–55. doi:10.1007/BF00402588

    Article  Google Scholar 

  20. Rahaman MN (2003) Ceramic processing and sintering, 2nd edn. Taylor & Francis, New York

    Google Scholar 

  21. Xing G, Li Y, Li Y, Wu Z, Sun P, Wang Y, Zhao C, Wu G (2011) Morphology-controllable synthesis of SrMoO4 hierarchical crystallites via a simple precipitation method. Mater Chem Phys 127(3):465–470. doi:10.1016/j.matchemphys.2011.02.034

    Article  Google Scholar 

  22. Ho K-C, Greenberg CB, MacArthur DM (1997) Proceedings of the third symposium on electrochromic materials. In: Oliveira S, Faria RC, Terezo AJ, Pereira EC, Bulhões LOS (eds) The cerium addition effect on the electrochemical properties of niobium pentoxide electrochromic thin films. Electrochemical Society, New Jersey, pp 106–118

    Google Scholar 

  23. Marques APA, de Melo DMA, Longo E, Paskocimas CA, Pizani PS, Leite ER (2005) Photoluminescence properties of BaMoO4 amorphous thin films. J Solid State Chem 178(7):2346–2353. doi:10.1016/j.jssc.2005.05.024

    Article  Google Scholar 

  24. Anicete-Santos M, Picon FC, Escote MT, Leite ER, Pizani PS, Varela JA, Longo E (2006) Room-temperature photoluminescence in structurally disordered SrWO4. Appl Phys Lett 88(21):211913. doi:10.1063/1.2207491

    Article  Google Scholar 

  25. Rahaman NR (2007) Sintering of ceramics. CRC Press, New York

    Book  Google Scholar 

  26. Barani K, Koleini SMJ, Rezai B, Khodadadi A (2012) The effect of sample geometry and placement of sample on microwave processing of iron ore. Int J Appl Phys Math 2:131–134. doi:10.7763/IJAPM

    Article  Google Scholar 

  27. Marques APA, Longo VM, de Melo DMA, Pizani PS, Leite ER, Varela JA, Longo E (2008) Shape controlled synthesis of CaMoO4 thin films and their photoluminescence property. J Solid State Chem 181(5):1249–1257. doi:10.1016/j.jssc.2008.01.051

    Article  Google Scholar 

  28. http://www.edg.com.br. Accessed 16 Oct 2015

  29. http://www.maitec.com.br/. Accessed 16 Oct 2015

  30. Barros BS, de Lima AC, da Silva ZR, Melo DMA, Alves-Jr S (2012) Synthesis and photoluminescent behavior of Eu3+-doped alkaline-earth tungstates. J Phys Chem Solids 73(5):635–640. doi:10.1016/j.jpcs.2011.12.026

    Article  Google Scholar 

  31. Yoon J-W, Ryu JH, Shim KB (2006) Photoluminescence in nanocrystalline MMoO4 (M = Ca, Ba) synthesized by a polymerized complex method. Mater Sci Eng B 127(2–3):154–158. doi:10.1016/j.mseb.2005.10.015

    Article  Google Scholar 

  32. Errandonea D, Pellicer-Porres J, Manjón F, Segura A, Ferrer-Roca C, Kumar R, Tschauner O, Rodríguez-Hernández P, López-Solano J, Radescu S, Mujica A, Muñoz A, Aquilanti G (2005) High-pressure structural study of the scheelite tungstates CaWO4 and SrWO4. Phys Rev B 72(17). doi:10.1103/PhysRevB.72.174106

  33. Basiev TT, Sobol AA, Voronko YK, Zverev PG (2000) Spontaneous Raman spectroscopy of tungstate and molybdate crystals for Raman lasers. Opt Mater 15(3):205–216. doi:http://dx.doi.org/10.1016/S0925-3467(00)00037-9

    Article  Google Scholar 

  34. Campos AB, Simões AZ, Longo E, Varela JA, Longo VM, de Figueiredo AT, De Vicente FS, Hernandes AC (2007) Mechanisms behind blue, green, and red photoluminescence emissions in CaWO4 and CaMoO4 powders. Appl Phys Lett 91(5):051923. doi:10.1063/1.2766856

    Article  Google Scholar 

  35. Rao CNR, Müller A, Cheetham AK (2007) Nanomaterials chemistry: recent developments and new directions. In: Viswanatha R, Sarma DD (eds) Growth of nanocrystals in solution. Wiley, Weinheim, pp 140–143

    Google Scholar 

  36. Tao AR, Habas S, Yang P (2008) Shape control of colloidal metal nanocrystals. Small 4(3):310–325. doi:10.1002/smll.200701295

    Article  Google Scholar 

  37. Dalmaschio CJ, Ribeiro C, Leite ER (2010) Impact of the colloidal state on the oriented attachment growth mechanism. Nanoscale 2(11):2336–2345. doi:10.1039/c0nr00338g

    Article  Google Scholar 

  38. Cöelfen H, Antonietti M (2008) Mesocrystals and nonclassical crystallization. Wiley, Chichester, pp 230–233

    Book  Google Scholar 

  39. Yin Y, Yang F, Yang Y, Gan Z, Qin Z, Gao S, Zhou B, Li X (2011) Controlled synthesis of BaWO4 hierarchical nanostructures by exploiting oriented attachment in the solution of H2O and C2H5OH. Superlattice Microst 49(6):599–607. doi:10.1016/j.spmi.2011.03.010

    Article  Google Scholar 

  40. Cavalcante LS, Sczancoski JC, Batista NC, Longo E, Varela JA, Orlandi MO (2013) Growth mechanism and photocatalytic properties of SrWO4 microcrystals synthesized by injection of ions into a hot aqueous solution. Adv Powder Technol 24(1):344–353. doi:10.1016/j.apt.2012.08.007

    Article  Google Scholar 

  41. Oghbaei M, Mirzaee O (2010) Microwave versus conventional sintering: a review of fundamentals, advantages and applications. J Alloys Compd 494(1–2):175–189. doi:10.1016/j.jallcom.2010.01.068

    Article  Google Scholar 

  42. Spotz MS, Skamser DJ, Johnson DL (1995) Thermal stability of ceramic materials in microwave heating. J Am Ceram Soc 78(4):1041–1048. doi:10.1111/j.1151-2916.1995.tb08434.x

    Article  Google Scholar 

  43. Bunker G (2010) Introduction to XAFS: a practical guide to X-ray absorption fine structure spectroscopy. Cambridge University Press, Cambridge

    Book  Google Scholar 

  44. Gautier-Soyer M (1998) X-ray absorption spectroscopy: a tool to study the local atomic and electronic structure of ceramics. J Eur Ceram Soc 18(15):2253–2261. doi:http://dx.doi.org/10.1016/S0955-2219(98)00103-4

    Article  Google Scholar 

  45. Gracia L, Longo VM, Cavalcante LS, Beltrán A, Avansi W, Li MS, Mastelaro VR, Varela JA, Longo E, Andrés J (2011) Presence of excited electronic state in CaWO4 crystals provoked by a tetrahedral distortion: an experimental and theoretical investigation. J Appl Phys 110(4):043501. doi:10.1063/1.3615948

    Article  Google Scholar 

  46. Cavalcante LS, Sczancoski JC, Espinosa JWM, Mastelaro VR, Michalowicz A, Pizani PS, De Vicente FS, Li MS, Varela JA, Longo E (2009) Intense blue and green photoluminescence emissions at room temperature in barium zirconate powders. J Alloys Compd 471(1–2): 253–258. doi:10.1016/j.jallcom.2008.03.080

    Article  Google Scholar 

  47. Yamazoe S, Hitomi Y, Shishido T, Tanaka T (2008) XAFS study of tungsten L1- and L3-edges: structural analysis of WO3 species loaded on TiO2 as a catalyst for photo-oxidation of NH3. J Phys Chem C 112(17):6869–6879. doi: 10.1021/jp711250f

    Article  Google Scholar 

  48. Yamamoto T (2008) Assignment of pre-edge peaks in K-edge x-ray absorption spectra of 3d transition metal compounds: electric dipole or quadrupole? X-Ray Spectrom 37(6):572–584. doi:10.1002/xrs.1103

    Article  Google Scholar 

  49. Cavalcante LS, Almeida MA, Avansi W Jr, Tranquilin RL, Longo E, Batista NC, Mastelaro VR, Li MS (2012) Cluster coordination and photoluminescence properties of α-Ag2WO4 microcrystals. Inorg Chem 51(20):10675–10687. doi:10.1021/ic300948n

    Article  Google Scholar 

  50. Rodríguez-Hernández P, López-Solano J, Radescu S, Mujica A, Muñoz A, Errandonea D, Pellicer-Porres J, Segura A, Ferrer-Roca C, Manjón FJ, Kumar RS, Tschauner O, Aquilanti G (2006) Theoretical and experimental study of CaWO4 and SrWO4 under pressure. J Phys Chem Solids 67(9–10):2164–2171. doi:10.1016/j.jpcs.2006.05.011

    Article  Google Scholar 

  51. Gao W, Li Z, Sammes NM (2011) An introduction to electronic materials for engineers, 2nd edn. World Scientific, Singapore, pp 96–100

    Book  Google Scholar 

  52. Lindroos V, Franssila S, Tilli M, Paulasto-Krockel M, Lehto A, Motooka T, Airaksinen VM (2009) Handbook of silicon based MEMS materials and technologies, 1st edn. Elsevier Science, Oxford, pp 37–38

    Google Scholar 

  53. Martin PM (2011) Introduction to surface engineering and functionally engineered materials. Wiley, Hoboken, pp 409–410

    Book  Google Scholar 

  54. Kitai A (2008) Luminescent materials and applications. Wiley, Chichester

    Book  Google Scholar 

  55. Lyons JL, Janotti A, Van de Walle CG (2012) Shallow versus deep nature of Mg acceptors in nitride semiconductors. Phys Rev Lett 108(15). doi:10.1103/PhysRevLett.108.156403

  56. Longo VM, de Figueiredo AT, de Lázaro S, Gurgel MF, Costa MGS, Paiva-Santos CO, Varela JA, Longo E, Mastelaro VR, De Vicente FS, Hernandes AC, Franco RWA (2008) Structural conditions that leads to photoluminescence emission in SrTiO3: an experimental and theoretical approach. J Appl Phys 104(2):023515. doi:10.1063/1.2956741

    Article  Google Scholar 

  57. Tolvaj L, Mitsui K, Varga D (2010) Validity limits of Kubelka-Munk theory for DRIFT spectra of photodegraded solid wood. Wood Sci Technol 45(1):135–146. doi:10.1007/s00226-010-0314-x

    Article  Google Scholar 

  58. Lacomba-Perales R, Ruiz-Fuertes J, Errandonea D, Martínez-García D, Segura A (2008) Optical absorption of divalent metal tungstates: correlation between the band-gap energy and the cation ionic radius. Europhys Lett 83(3):37002. doi:10.1209/0295-5075/83/37002

    Article  Google Scholar 

  59. Marinescu DC (2011) Classical and quantum information. Elsevier Science, Oxford, pp 612–614

    Google Scholar 

  60. Cao G (2010) Annual review of nano research, vol 3. World Scientific, Singapore, pp 49–50

    Google Scholar 

  61. Rout SK, Cavalcante LS, Sczancoski JC, Badapanda T, Panigrahi S, Siu Li M, Longo E (2009) Photoluminescence property of Ba(Zr0.25Ti0.75)O3 powders prepared by solid state reaction and polymeric precursor method. Physica B 404(20):3341–3347. doi:10.1016/j.physb.2009.05.014

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the FAPESP (#2012/14004-5), CNPq, and CAPES/PNPD (20131475) for the financial support. We also thank the National Laboratory of Synchrotron Light (LNLS), Campinas, SP, Brazil, for the X-ray absorption near-edge structure measurements (XD04B-XAFS1 - 11883). Special thanks to Mr. Rorivaldo Camargo and Mrs. Madalena Turssi for operating the FE-SEM and XRD equipments, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Júlio César Sczancoski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Sczancoski, J.C., Li, M.S., Mastelaro, V.R., Longo, E., Cavalcante, L.S. (2017). Morphology and Optical Properties of SrWO4 Powders Synthesized by the Coprecipitation and Polymeric Precursor Methods. In: Longo, E., La Porta, F. (eds) Recent Advances in Complex Functional Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-53898-3_5

Download citation

Publish with us

Policies and ethics