Skip to main content

Novel Common Methodologies Between Physics and Theoretical Chemistry: Density Functional Theory

  • Chapter
  • First Online:
Correlations in Condensed Matter under Extreme Conditions

Abstract

Over the last five decades, theoretical chemistry has often been considered a highly systematic discipline, which attempts at solving Schrödinger equation for increasingly complex systems, with greater accuracy.

Translated from Italian by G.G.N. Angilella, with kind permission of Società Italiana di Fisica from R. Pucci, ‘Nuove metodologie comuni tra fisica e chimica teorica: la teoria del funzionale della densità’, Giornale di Fisica, 27 (1986), pp. 257–266 © Società Italiana di Fisica.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The distinction between molecular physicists and theoretical chemists is purely academic, and is here employed for the sake of mere comodity, essentially to indicate different methodologies, rather than different research fields. In this context, I would like to report a quote by C.A. Coulson: «There are no physicists and chemists, but problems and people who are able to solve them, and people who are not» (N.H. March, private communication).

  2. 2.

    A second Archimedes Workshop was held afterwards in 1990. See Ref. [6] [Translator’s Note].

  3. 3.

    Suffice it here to mention the contribution on Electron density and response theory, by R. McWeeny, that on Nonadditive dispersion forces, by E.A. Power, and that on Cloud of virtual photons around a hydrogen atoms, by F. Persico. See Ref. [7].

References

  1. E. Clementi, in Proceedings of the Robert A. Welch Foundation Conferences on Chemical Research, Theoretical Chemistry, vol. 16 (Welch Foundation, Houston, 1973), p. 117

    Google Scholar 

  2. R.G. Parr, in Proceedings of the NATO Advanced Study Institute on density functional methods in physics (Alcabideche, Portugal, 1983)

    Google Scholar 

  3. P.W. Anderson, Rev. Mod. Phys. 50, 191 (1978). DOI 10.1103/RevModPhys.50.191

    Article  ADS  Google Scholar 

  4. P.W. Anderson, Phys. Rev. 124, 41 (1961). DOI 10.1103/PhysRev.124.41

    Article  ADS  MathSciNet  Google Scholar 

  5. N.H. March, Adv. Phys. 6(21), 1 (1957). DOI 10.1080/00018735700101156

    Article  ADS  Google Scholar 

  6. R. Pucci, G. Piccitto (eds.), Molecular systems under high pressure: Proceedings of the II Archimedes Workshop on Molecular Solids Under Pressure, Catania, Italy, 28–31 May 1990 (North Holland, Amsterdam, 1991)

    Google Scholar 

  7. R. Pucci (ed.), Abstracts of the Archimedes Workshop on Molecular Theory: Catania, Italy, June 3–6, 1985 (Dipartimento di Fisica dell’Università, Catania, 1985)

    Google Scholar 

  8. L.H. Thomas, Math. Proc. Cambridge Phil. Soc. 23, 542 (1926). DOI 10.1017/S0305004100011683

    Article  ADS  Google Scholar 

  9. E. Fermi, Rendiconti dell’Accademia Nazionale dei Lincei 6, 602 (1927)

    Google Scholar 

  10. N.H. March, Self-Consistent Fields in Atoms (Pergamon Press, Oxford, 1975)

    Google Scholar 

  11. D.R. Hartree, Proc. Cambridge Philos. Soc. 24, 89 (1928). DOI 10.1017/S0305004100011919

    Article  ADS  Google Scholar 

  12. D.R. Hartree, Proc. Cambridge Philos. Soc. 24, 111 (1928). DOI 10.1017/S0305004100011920

    Article  ADS  Google Scholar 

  13. D.R. Hartree, Proc. Cambridge Philos. Soc. 24, 426 (1928). DOI 10.1017/S0305004100015954

    Article  ADS  Google Scholar 

  14. P.A.M. Dirac, Proc. Cambridge Phil. Soc. 26, 376 (1930). DOI 10.1017/S0305004100016108

    Article  ADS  Google Scholar 

  15. V. Fock, Z. Physik 61(1), 126 (1930). DOI 10.1007/BF01340294

    Article  ADS  Google Scholar 

  16. J.C. Slater, Phys. Rev. 81, 385 (1951). DOI 10.1103/PhysRev.81.385

    Article  ADS  Google Scholar 

  17. R.G. Parr, Annu. Rev. Phys. Chem. 34(1), 631 (1983). DOI 10.1146/annurev.pc.34.100183.003215

    Article  ADS  Google Scholar 

  18. P. Gombás, Die statistische Theorie des Atoms und ihre Anwendungen (Springer-Verlag, Vienna, 1949)

    Book  MATH  Google Scholar 

  19. P.C. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964). DOI 10.1103/PhysRev.136.B864

    Article  ADS  Google Scholar 

  20. S. Lundqvist, N.H. March (eds.). Theory of the Inhomogeneous Electron Gas (Plenum Press, New York, 1983)

    Google Scholar 

  21. B.M. Deb (ed.), The force concept in chemistry (Van Norstrand Reinhold, New York, 1981)

    Google Scholar 

  22. J. Avery, J.P. Dahl (eds.), Local density approximations in quantum chemistry and solid state physics (Plenum Press, New York, 1984)

    Google Scholar 

  23. R.M. Erdahl, V.H. Smith (eds.), Density matrices and density functionals: proceedings of the A. John Coleman symposium (Reidel, Dordrecht, 1987)

    Google Scholar 

  24. A.K. Rajagopal, in Advances in Chemical Physics, vol. 41, ed. by I. Prigogine, S.A. Rice (J. Wiley & Sons, 1979), pp. 59–193. DOI 10.1002/9780470142608.ch2

  25. R.G. Parr, in Electron distributions and the chemical bond, ed. by M.B. Hall, P. Coppens (Plenum Press, New York, 1982)

    Google Scholar 

  26. R.G. Parr, in Horizons of quantum chemistry, ed. by K. Fukui, B. Pullman (Reidel, Dordrecht, 1980)

    Google Scholar 

  27. N.H. March, in Orbital theories of molecules and solids, ed. by N.H. March (Clarendon Press, Oxford, 1974)

    Google Scholar 

  28. N.H. March, Specialist Periodical Reports: Theoretical Chemistry 4, 92 (1981)

    Google Scholar 

  29. E.H. Lieb, Rev. Mod. Phys. 53, 603 (1981). DOI 10.1103/RevModPhys.53.603

    Article  ADS  Google Scholar 

  30. S.K. Ghosh, B.M. Deb, Phys. Rep. 92(1), 1 (1982). DOI 10.1016/0370-1573(82)90134-X

    Article  ADS  Google Scholar 

  31. N.H. March, Contemp. Phys. 24, 373 (1983)

    Article  ADS  Google Scholar 

  32. R.T. Sanderson, Chemical bonds and bond energy (Academic Press, New York, 1971)

    Google Scholar 

  33. R. Ferreira, in Advances in Chemical Physics, vol. 13, ed. by I. Prigogine (J. Wiley & Sons, 1967), pp. 55–84. DOI 10.1002/9780470140154.ch4

  34. R.S. Mulliken, J. Chem. Phys. 2(11), 782 (1934). DOI 10.1063/1.1749394

    Article  ADS  Google Scholar 

  35. N.H. March, R. Pucci, in Local density approximations in quantum chemistry and solid state physics, ed. by J. Avery, J.P. Dahl (Plenum Press, New York, 1984), p. 64

    Google Scholar 

  36. R.G. Parr, R.A. Donnelly, M. Levy, W.E. Palke, J. Chem. Phys. 68(8), 3801 (1978). DOI 10.1063/1.436185

    Article  ADS  Google Scholar 

  37. K. Fukui, Theory of orientation and stereoselection (Springer, Berlin, 1975)

    Book  Google Scholar 

  38. R.B. Woodward, R. Hoffmann, The conservation of orbital symmetry (Verlag Chemie, Weinheim, 1970)

    Google Scholar 

  39. N.H. March, R. Pucci, J. Chem. Phys. 78(5), 2480 (1983). DOI 10.1063/1.445054

    Article  ADS  Google Scholar 

  40. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965). DOI 10.1103/PhysRev.140.A1133

    Article  ADS  Google Scholar 

  41. W. Yang, R.G. Parr, R. Pucci, J. Chem. Phys. 81(6), 2862 (1984). DOI 10.1063/1.447964. Reprinted in this volume, p. 307

    Article  ADS  Google Scholar 

  42. A.J. Thakkar, V.H. Smith, J. Phys. B: At. Mol. Phys. 11(22), 3803 (1978). DOI 10.1088/0022-3700/11/22/009

    Article  ADS  Google Scholar 

  43. S. Fraga, G. Malli, Many-electron systems: properties and interactions (Sanders, Philadelphia, 1968)

    Google Scholar 

  44. M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, Phys. Rev. A 16, 1782 (1977). DOI 10.1103/PhysRevA.16.1782

    Article  ADS  MathSciNet  Google Scholar 

  45. R. Pucci, N.H. March, J. Chem. Phys. 76(8), 4089 (1982). DOI 10.1063/1.443483

    Article  ADS  Google Scholar 

  46. C.A. Moore, National Bureau of Standards Circular 647 1, 34 (1958)

    Google Scholar 

  47. J.B. Mann, Atomic structure calculations. I. Hartree-Fock energy results for the elements hydrogen to lawrencium (1967). Los Alamos Scientific Laboratory Report LA-3690

    Google Scholar 

  48. J.B. Mann, Atomic structure calculations. II. Hartree-Fock wavefunctions and radial expectation values: hydrogen to lawrencium (1968). Los Alamos Scientific Laboratory Report LA-3691

    Google Scholar 

  49. R. Pucci, N.H. March, J. Chem. Phys. 76(12), 6091 (1982). DOI 10.1063/1.443013

    Article  ADS  Google Scholar 

  50. R. Pucci, N.H. March, J. Chem. Phys. 78(5), 2466 (1983). DOI 10.1063/1.445051

    Article  ADS  Google Scholar 

  51. R. Pucci, N.H. March, Int. J. Quantum Chem. 29(4), 949 (1986). DOI 10.1002/qua.560290431

    Article  Google Scholar 

  52. N.H. March, Proc. Cambridge Philos. Soc. 48, 665 (1952). DOI 10.1017/S0305004100076441. Reprinted in Ref. [76]

    Article  ADS  Google Scholar 

  53. K.H. Hellwege (ed.), Structure data of free polyatomic molecules (Springer, Berlin, 1976)

    Google Scholar 

  54. R. Pucci, N.H. March, Phys. Rev. A 33, 3511 (1986). DOI 10.1103/PhysRevA.33.3511

    Article  ADS  Google Scholar 

  55. W. Su, J. Schrieffer, A. Heeger, Phys. Rev. B 22(4), 2099 (1980). DOI 10.1103/PhysRevB.22.2099

    Article  ADS  Google Scholar 

  56. E. Lieb, F. Wu, Phys. Rev. Lett. 20(25), 1445 (1968). DOI 10.1103/PhysRevLett.20.1445

    Article  ADS  Google Scholar 

  57. S. Mazumdar, S.N. Dixit, Phys. Rev. Lett. 51, 292 (1983). DOI 10.1103/PhysRevLett.51.292

    Article  ADS  Google Scholar 

  58. M. Baldo, R. Pucci, P. Tomasello, Int. J. Quantum Chem. 23(3), 1111 (1983). DOI 10.1002/qua.560230335

    Article  Google Scholar 

  59. M. Baldo, G. Piccitto, R. Pucci, P. Tomasello, Phys. Lett. A 95(3–4), 201 (1983). DOI 10.1016/0375-9601(83)90835-6

  60. R. Pucci, M. Baldo, A. Martín-Rodero, G. Piccitto, P. Tomasello, Int. J. Quantum Chem. 26(5), 783 (1984). DOI 10.1002/qua.560260518

    Article  Google Scholar 

  61. G. Del Re, in Quantum chemistry of polymers: solid state aspects, ed. by J. Ladik, J.M. André, M. Seel (Reidel, Dordrecht, 1984)

    Google Scholar 

  62. G. Del Re, in Pucci [7]

    Google Scholar 

  63. M. Seel, in Pucci [7]

    Google Scholar 

  64. F.C. Tompkins, Chemisorption of gases on metals (Academic Press, London, 1978)

    Google Scholar 

  65. D.M. Newns, Phys. Rev. 178, 1123 (1969). DOI 10.1103/PhysRev.178.1123

    Article  ADS  Google Scholar 

  66. M. Baldo, R. Pucci, F. Flores, G. Piccitto, A. Martin-Rodero, Phys. Rev. B 28, 6640 (1983). DOI 10.1103/PhysRevB.28.6640

    Article  ADS  Google Scholar 

  67. J.E. Inglesfield, J. Phys. C: Solid State Phys. 14(26), 3795 (1981). DOI 10.1088/0022-3719/14/26/015

    Article  ADS  Google Scholar 

  68. J.K. Nørskov, N.D. Lang, Phys. Rev. B 21, 2131 (1980). DOI 10.1103/PhysRevB.21.2131

    Article  ADS  Google Scholar 

  69. K.H. Johnson, in Avery and Dahl [22]

    Google Scholar 

  70. G. Piccitto, F. Siringo, M. Baldo, R. Pucci, Surf. Sci. 167(2-133), 437 (1986). DOI 10.1016/0039-6028(86)90716-8

    Article  ADS  Google Scholar 

  71. N.D. Lang, W. Kohn, Phys. Rev. B 1, 4555 (1970). DOI 10.1103/PhysRevB.1.4555

    Article  ADS  Google Scholar 

  72. G.A. Benesh, J.E. Inglesfield, J. Phys. C: Solid State Phys. 17(9), 1595 (1984). DOI 10.1088/0022-3719/17/9/016

    Article  ADS  Google Scholar 

  73. P. Nordlander, S. Holloway, J.K. Nørskov, Surf. Sci. 136(1), 59 (1984). DOI 10.1016/0039-6028(84)90655-1

    Article  ADS  Google Scholar 

  74. O. Gunnarsson, H. Hjelmberg, B.I. Lundqvist, Surf. Sci. 63, 348 (1977). DOI 10.1016/0039-6028(77)90350-8

    Article  ADS  Google Scholar 

  75. G.B. Blanchet, N. Dinardo, E.W. Plummer, Surf. Sci. 118(3), 496 (1982). DOI 10.1016/0039-6028(82)90201-1

    Article  ADS  Google Scholar 

  76. N.H. March, G.G.N. Angilella (eds.), Many-body Theory of Molecules, Clusters, and Condensed Phases (World Scientific, Singapore, 2009)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Pucci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Pucci, R. (2017). Novel Common Methodologies Between Physics and Theoretical Chemistry: Density Functional Theory. In: Angilella, G., La Magna, A. (eds) Correlations in Condensed Matter under Extreme Conditions. Springer, Cham. https://doi.org/10.1007/978-3-319-53664-4_21

Download citation

Publish with us

Policies and ethics