Skip to main content

A Proximal Approach for Nonnegative Tensor Decomposition

  • Conference paper
  • First Online:
Latent Variable Analysis and Signal Separation (LVA/ICA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10169))

  • 1982 Accesses

Abstract

This communication deals with N-th order tensor decompositions. More precisely, we are interested in the (Canonical) Polyadic Decomposition. In our case, this problem is formulated under a variational approach where the considered criterion to be minimized is composed of several terms: one accounting for the fidelity to data and others that can represent not only regularization (such as sparsity prior) but also hard constraints (such as nonnegativity). The resulting optimization problem is solved by using the Block-Coordinate Variable Metric Forward-Backward (BC-VMFB) algorithm. The robustness and efficiency of the suggested approach is illustrated on realistic synthetic data such as those encountered in the context of environmental data analysis and fluorescence spectroscopy. Our simulations are performed on 4-th order tensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In our case, the easiest way to proceed is to consider that each block matches a loading matrix, but other choices could have been made.

  2. 2.

    In practice, elementwise operations are performed instead making it possible to avoid memory issues.

References

  1. Bro, R.: Parafac: tutorial and applications. Chemom. Intell. Lab. Syst. 38(2), 149–171 (1997)

    Article  Google Scholar 

  2. Carroll, P., Chang, J.J.: Analysis of individual differences in multi-dimensional scaling via n-way generalization of Eckart-Young decomposition. Psychometrika 35(3), 283–319 (1970)

    Article  MATH  Google Scholar 

  3. Chaux, C., Combettes, P.L., Pesquet, J.C., Wajs, V.R.: A variational formulation for frame based inverse problems. Inverse Probl. 23(4), 1495–1518 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chouzenoux, E., Pesquet, J.C., Repetti, A.: Variable metric forward-backward algorithm for minimizing the sum of a differentiable function and a convex function. J. Optim. Theory Appl. 162(1), 107–132 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chouzenoux, E., Pesquet, J.C., Repetti, A.: A block coordinate variable metric forward-backward algorithm. J. Global Optim. 66(3), 457–485 November 2016

    Google Scholar 

  6. Cichocki, A., Zdunek, R., Phan, A.H., Amari, S.I.: Non Negative Matrix and Tensor Factorizations: Application to Exploratory Multi-way Data Analysis and Blind Separation. Wiley, Chichester (2009)

    Book  Google Scholar 

  7. Combettes, P.L., Pesquet, J.C.: Proximal splitting methods in signal processing. In: Bauschke, H.H., Burachik, R., Combettes, P.L., Elser, V., Luke, D.R., Wolkowicz, H. (eds.) Fixed-point Algorithms for Inverse Problems in Science and Engineering, pp. 185–212. Springer, New York (2010)

    Google Scholar 

  8. Comon, P., Jutten, C.: Handbook of Blind Source Separation, Independent Component Analysis and Applications. Academic Press, Oxford (2010). ISBN: 978-0-12-374726-6

    Google Scholar 

  9. Franc, A.: Etude algébrique des multi-tableaux: apport de l’algèbre tensorielle. Ph.D. thesis, University of Montepellier II, Montpellier, France (1992)

    Google Scholar 

  10. Harshman, R.A.: Foundation of the Parafac procedure: models and conditions for an explanatory multimodal factor analysis. UCLA Working Papers in Phonetics, vol. 16, pp. 1–84 (1970)

    Google Scholar 

  11. Hiriart-Urruty, J.B., Lemarechal, C.: Convex Analysis and Minimization Algorithms. Springer, Heidelberg (1993)

    MATH  Google Scholar 

  12. Huang, K., Sidiropoulos, N.D., Liavas, A.P.: A flexible and efficient algorithmic framework for constrained matrix and tensor factorization. IEEE Trans. Sig. Process. 64(19), 5052–5065 (2016)

    Article  MathSciNet  Google Scholar 

  13. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kruskal, J.B.: Rank, decomposition and uniqueness for 3-way and n-way arrays. In: Coppi, R., Bolasco, S. (eds.) Multiway Data Analysis, pp. 7–18. North-Holland Publishing Co., Amsterdam (1989)

    Google Scholar 

  15. Lakowicz, J.R., Szmacinski, H., Nowaczyk, K., Berndt, K.W., Johnson, M.: Fluorescence lifetime imaging. Anal. Biochem. 202(2), 316–330 (1992)

    Article  Google Scholar 

  16. Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In: Leen, T.K., Dietterich, T.G., Tresp, V. (eds.) Advances in Neural Information Processing Systems, vol. 13, pp. 556–562. MIT Press (2001). http://papers.nips.cc/paper/1861-algorithms-for-non-negative-matrix-factorization.pdf

  17. Moreau, J.J.: Proximité et dualité dans un espace hilbertien. Bull. Soc. Math. France 93, 273–299 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  18. Phan, A.H., Tichavskỳ, P., Cichocki, A.: Fast alternating is algorithms for high order CANDECOMP\(/\)PARAFAC tensor factorizations. IEEE Trans. Sig. Proc. 61(19), 4834–4846 (2013)

    Article  Google Scholar 

  19. Repetti, A., Chouzenoux, E., Pesquet, J.C.: A preconditioned Forward-Backward approach with application to large-scale nonconvex spectral unmixing problems. In: 39th IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2014), Florence, Italie, May 2014

    Google Scholar 

  20. Sidiropoulos, N., Bro, R.: On the uniqueness of multilinear decomposition of \(N\)-way arrays. J. Chemom. 14(3), 229–239 (2000)

    Article  Google Scholar 

  21. Vervliet, N., Lathauwer, L.D.: A randomized block sampling approach to canonical polyadic decomposition of large-scale tensors. IEEE J. Sel. Top. Sig. Proces. 10(2), 284–295 (2016)

    Article  Google Scholar 

  22. Vu, X.T., Chaux, C., Thirion-Moreau, N., Maire, S.: A new penalized nonnegative third order tensor decomposition using a block coordinate proximal gradient approach: application to 3D fluorescence spectroscopy. J. Chemometr., special issue on penalty methods 3 (2017, to appear). CEM. doi:10.1002/cem.2859

  23. Xu, Y., Yin, W.: A block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completion. SIAM J. Imaging Sci. 6(3), 1758–1789 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline Chaux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Vu, X., Chaux, C., Thirion-Moreau, N., Maire, S. (2017). A Proximal Approach for Nonnegative Tensor Decomposition. In: Tichavský, P., Babaie-Zadeh, M., Michel, O., Thirion-Moreau, N. (eds) Latent Variable Analysis and Signal Separation. LVA/ICA 2017. Lecture Notes in Computer Science(), vol 10169. Springer, Cham. https://doi.org/10.1007/978-3-319-53547-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53547-0_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53546-3

  • Online ISBN: 978-3-319-53547-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics