Skip to main content

Lasers Utilising Tellurite Glass-Based Gain Media

  • Chapter
  • First Online:
Technological Advances in Tellurite Glasses

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 254))

Abstract

This chapter provides a review of laser sources based on a tellurium oxide (TeO2) glass hosts reported to date, whether in the form of bulk glass, fibre or microspheres. The majority of laser sources reported using tellurite glass as host material are based on rare-earth ion (Nd3+, Er3+, Tm3+ and Ho3+) dopants; however, there are also reports on supercontinuum generation and Raman lasing in highly nonlinear tellurite glass fibres. All of the tellurite glass-based lasers discussed in this chapter operate in the infrared spectral region with laser wavelengths around 1 μm, 1.5 μm, 1.9 μm and 2.1 μm for Nd3+, Er3+, Tm3+ and Ho3+ doping, respectively, while supercontinuum and Raman laser sources emit in the ranges 0.8–4.9 μm and 1.5–2.65 μm, respectively. The maximum optical output power reported to date from a tellurite glass laser is 1.12 W using cladding pumped fibre. Lasers operating in continuous wave, Q-switched and mode-locked regimes have also been demonstrated using rare-earth-doped tellurite glass hosts. The future prospects for lasers based on tellurite glasses are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. R.A.H. El-Mallawany, Tellurite Glasses Handbook (CRC Press, Boca Raton, FL, 2000)

    MATH  Google Scholar 

  2. P. Joshi, B. Richards, A. Jha, Reduction of OH ions in tellurite glasses using chlorine and oxygen gases. J. Mater. Res. 28(23), 3226–3233 (2013)

    Google Scholar 

  3. J. Massera et al., Processing of tellurite-based glass with low OH content. J. Am. Ceram. Soc. 94(1), 71–77 (2011)

    Article  Google Scholar 

  4. H. Ebendorff-Heidepriem et al., Extruded tellurite glass and fibers with low OH content for mid-infrared applications. Opt. Mater. Express 2(4), 432–442 (2012)

    Article  Google Scholar 

  5. A. Jha, S. Shen, M. Naftaly, Structural origin of spectral broadening of 1.5-μm emission in Er3+-doped tellurite glasses. Phys. Rev. B 62(10), 6215–6227 (2000)

    Article  ADS  Google Scholar 

  6. N. Lei, B. Xu, Z.H. Jiang, Ti:sapphire laser pumped Nd:tellurite glass laser. Opt. Commun. 127(4–6), 263–265 (1996)

    Article  ADS  Google Scholar 

  7. A. Mori, Y. Ohishi, S. Sudo, Erbium-doped tellurite glass fibre laser and amplifier. Electron. Lett. 33(10), 863–864 (1997)

    Article  Google Scholar 

  8. M.J.F. Digonnet, in Rare-Earth-Doped Fiber Lasers and Amplifiers: Second Edition, Revised and Expanded, ed. by M.J.F. Digonnet. Continuous-Wave Silica Fiber Lasers (Marcel Dekker, Inc., New York, 2001)

    Google Scholar 

  9. J.F. Wu et al., Efficient thulium-doped 2-μm germanate fiber laser. IEEE Photonics Technol. Lett. 18(1–4), 334–336 (2006)

    ADS  Google Scholar 

  10. J.F. Wu et al., Highly efficient high-power thulium-doped germanate glass fiber laser. Opt. Lett. 32(6), 638–640 (2007)

    Article  ADS  Google Scholar 

  11. P. France, Optical Fibre Lasers and Amplifiers (Blackie and Son Ltd., Glasgow, London, 1991)

    Google Scholar 

  12. W.T. Silfvast, Laser Fundamentals, 2nd edn. (Cambridge University Press, Cambridge, 2004)

    Book  Google Scholar 

  13. F.Z. Qamar, T.A. King, Self-induced pulsations, Q-switching and mode-locking in Tm-silica fibre lasers. J. Mod. Opt. 52(7), 1031–1043 (2005)

    Article  ADS  Google Scholar 

  14. M. Morin, R. Larose, F. Brunet, in Rare Earth Doped Fiber Lasers and Amplifiers: Second Edition, Revised and Expanded, ed. by M.J.F. Digonnet. Q-Switched Fiber Lasers (Mercel Dekker Inc., New York, 2001)

    Google Scholar 

  15. M.J. Weber, J.D. Myers, D.H. Blackburn, Optical properties of Nd3+ in tellurite and phosphotellurite glasses. J. Appl. Phys. 52(4), 2944–2949 (1981)

    Article  ADS  Google Scholar 

  16. M. Naftaly, S. Shen, A. Jha, Tm3+-doped tellurite glass for a broadband amplifier at 1.47 μm. Appl. Optics 39(27), 4979–4984 (2000)

    Article  ADS  Google Scholar 

  17. R. El-Mallawany et al., Study of luminescence properties of Er3+-ions in new tellurite glasses. Opt. Mater. 26(3), 267–270 (2004)

    Article  ADS  Google Scholar 

  18. J.C. Michel, D. Morin, F. Auzel, Spectroscopic properties and laser effect of tellurite and phosphate glasses strongly doped with neodyme. Rev. Phys. Appl. 13(12), 859–866 (1978)

    Article  Google Scholar 

  19. H. Kalaycioglu et al., Lasing at 1065 nm in bulk Nd3+-doped telluride-tungstate glass. Opt. Commun. 281(24), 6056–6060 (2008)

    Article  ADS  Google Scholar 

  20. A. Miguel et al., Spectral study of the stimulated emission of Nd3+ in fluorotellurite bulk glass. Opt. Express 21(8), 9298–9307 (2013)

    Article  ADS  Google Scholar 

  21. M.J.V. Bell et al., Laser emission of a Nd-doped mixed tellurite and zinc oxide glass. J. Opt. Soc. Am. B 31(7), 1590–1594 (2014)

    Article  ADS  Google Scholar 

  22. I. Iparraguirre et al., Laser action and upconversion of Nd3+ in tellurite bulk glass. J. Non Cryst. Solids 353(8–10), 990–992 (2007)

    Article  ADS  Google Scholar 

  23. J.S. Wang et al., Neodymium-doped tellurite single-mode fiber laser. Opt. Lett. 19(18), 1448–1449 (1994)

    Article  ADS  Google Scholar 

  24. K. Sasagawa et al., Nd-doped tellurite glass microsphere laser. Electron. Lett. 38(22), 1355–1357 (2002)

    Article  Google Scholar 

  25. J.J. Dong et al., Dual-pumped tellurite fiber amplifier and tunable laser using Er3+/Ce3+ codoping scheme. IEEE Photonics Technol. Lett. 23(11), 736–738 (2011)

    Article  ADS  Google Scholar 

  26. S. Shen, B. Richards, A. Jha, Enhancement in pump inversion efficiency at 980 nm in Er3+, Er3+/Eu3+ and Er3+/Ce3+ doped tellurite glass fibers. Opt. Express 14(12), 5050–5054 (2006)

    Article  ADS  Google Scholar 

  27. M. Irannejad et al., Erbium-ion-doped tellurite glass fibers and waveguides-devices and future prospective: part II. Int. J. Appl. Glass Sci. 4(3), 202–213 (2013)

    Article  Google Scholar 

  28. X. Peng et al., Fiber-taper-coupled L-band Er3+-doped tellurite glass microsphere laser. Appl. Phys. Lett. 82(10), 1497–1499 (2003)

    Article  ADS  Google Scholar 

  29. X. Peng et al., Temperature dependence of the wavelength and threshold of fiber-taper-coupled L-band Er3+-doped tellurite glass microsphere laser. Appl. Phys. Lett. 83(26), 5380–5382 (2003)

    Article  ADS  Google Scholar 

  30. M. Pollnau, S.D. Jackson, in Solid-State Mid-Infrared Laser Sources, ed. by I.T. Sorokina, K.L. Vodopyanov. Mid-Infrared Fiber Lasers (Springer-Verlag, Berlin, 2003)

    Google Scholar 

  31. F. Fusari et al., Spectroscopic and lasing performance of Tm3+-doped bulk TZN and TZNG tellurite glasses operating around 1.9 μm. Opt. Express 16(23), 19146–19151 (2008)

    Article  ADS  Google Scholar 

  32. F. Fusari et al., Tunable laser operation of a Tm3+-doped tellurite glass laser near 2 μm pumped by a 1211 nm semiconductor disk laser. Opt. Mater. 32(9), 1007–1010 (2010)

    Article  ADS  Google Scholar 

  33. B. Richards et al., Infrared emission and energy transfer in Tm3+, Tm3+-Ho3+ and Tm3+-Yb3+-doped tellurite fibre. Opt. Express 15(11), 6546–6551 (2007)

    Article  ADS  Google Scholar 

  34. B. Richards et al., ~2 μm Tm 3+ /Yb 3+ -doped tellurite fibre laser. J. Mater. Sci. Mater. Electron. 20, 317–320 (2009)

    Article  Google Scholar 

  35. B. Richards et al., Efficient ~2 μm Tm3+-doped tellurite fiber laser. Opt. Lett. 33(4), 402–404 (2008)

    Article  ADS  Google Scholar 

  36. S.D. Jackson, Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2 μm Tm3+-doped silica fibre lasers. Opt. Commun. 230(1–3), 197–203 (2004)

    Article  ADS  Google Scholar 

  37. T. Yamamoto, Y. Miyajima, T. Komukai, 1.9-μm Tm-doped silica fiber laser-pumped at 1.57-μm. Electron. Lett. 30(3), 220–221 (1994)

    Article  Google Scholar 

  38. R.M. Percival et al., A 1.6-μm pumped 1.9-μm thulium-doped fluoride fiber laser and amplifier of very high-efficiency. IEEE J. Quantum Electron. 31(3), 489–493 (1995)

    Article  ADS  Google Scholar 

  39. B. Richards, Tellurite glass mid-infrared (1.9–2.1 um) fibre lasers (Institute for Materials Research, University of Leeds, 2008)

    Google Scholar 

  40. K.F. Li, G.A. Zhang, L.L. Hu, Watt-level ~2 μm laser output in Tm3+-doped tungsten tellurite glass double-cladding fiber. Opt. Lett. 35(24), 4136–4138 (2010)

    Article  ADS  Google Scholar 

  41. K.F. Li et al., Tm3+ and Tm3+-Ho3+ co-doped tungsten tellurite glass single mode fiber laser. Opt. Express 20(9), 10115–10121 (2012)

    Article  ADS  Google Scholar 

  42. S. Gao et al., ~2 μm single-mode laser output in Tm3+-doped tellurium germanate double-cladding fiber. IEEE Photonics Technol. Lett. PP(99), 1–1 (2015)

    Google Scholar 

  43. C.J. Hill, A. Jha, Development of novel ternary tellurite glasses for high temperature fiber optic mid-IR chemical sensing. J. Non Cryst. Solids 353(13–15), 1372–1376 (2007)

    Article  ADS  Google Scholar 

  44. X. Jiang et al., Investigation on germanium oxide-based glasses for infrared optical fibre development. Opt. Mater. 31(11), 1701–1706 (2009)

    Article  ADS  Google Scholar 

  45. B. Richards et al., Tellurite glass lasers operating close to 2 mm. Laser Phys. Lett. 7(3), 177–193 (2010)

    Article  Google Scholar 

  46. B.M. Walsh et al., Optical properties of Tm3+ ions in alkali germanate glass. J. Non Cryst. Solids 352(50–51), 5344–5352 (2006)

    Article  ADS  Google Scholar 

  47. S. Shen et al., The effect of composition on the emission spectra of Tm3+-doped tellurite glasses for an S-band amplifier operating at 1.46 mm. J. Non Cryst. Solids 326, 510–514 (2003)

    Article  ADS  Google Scholar 

  48. J.F. Wu, S.B. Jiang, N. Peyghambarian, 1.5-μm-band thulium-doped microsphere laser originating from self- terminating transition. Opt. Express 13(25), 10129–10133 (2005)

    Article  ADS  Google Scholar 

  49. Y. Tsang et al., Tm3+/Ho3+ codoped tellurite fiber laser. Opt. Lett. 33(11), 1282–1284 (2008)

    Article  ADS  Google Scholar 

  50. F. Fusari et al., Femtosecond mode-locked Tm3+ and Tm3+-Ho3+ doped 2 μm glass lasers. Opt. Express 18(21), 22090–22098 (2010)

    Article  ADS  Google Scholar 

  51. Y. Tsang et al., A Yb3+/Tm3+/Ho3+ triply-doped tellurite fibre laser. Opt. Express 16(14), 10690–10695 (2008)

    Article  ADS  Google Scholar 

  52. S.D. Jackson, Recent advances in high-power silica-fibre lasers operating at 2 μm. SPIE 6801 (2008)

    Google Scholar 

  53. S.D. Jackson, F. Bugge, G. Erbert, High-power and highly efficient diode-cladding-pumped Ho3+-doped silica fiber lasers. Opt. Lett. 32(22), 3349–3351 (2007)

    Article  ADS  Google Scholar 

  54. S.D. Jackson, Midinfrared holmium fiber lasers. IEEE J. Quantum Electron. 42(1–2), 187–191 (2006)

    Article  ADS  Google Scholar 

  55. A. Hemming et al., High power operation of cladding pumped holmium-doped silica fibre lasers. Opt. Express 21(4), 4560–4566 (2013)

    Article  ADS  Google Scholar 

  56. C. Yao et al., Holmium-doped fluorotellurite microstructured fibers for 2.1 mm lasing. Opt. Lett. 40(20), 4695–4698 (2015)

    Article  ADS  Google Scholar 

  57. A. Mori et al., Ultra-wide-band tellurite-based fiber Raman amplifier. J. Lightwave Technol. 21(5), 1300–1306 (2003)

    Article  ADS  Google Scholar 

  58. R. Stegeman et al., Tellurite glasses with peak absolute Raman gain coefficients up to 30 times that of fused silica. Opt. Lett. 28(13), 1126–1128 (2003)

    Article  ADS  Google Scholar 

  59. R. Jose et al., Tailoring of Raman gain bandwidth of tellurite glasses for designing gain-flattened fiber Raman amplifiers. J. Opt. Soc. Am. B 25(3), 373–382 (2008)

    Article  ADS  Google Scholar 

  60. V.V.R.K. Kumar et al., Tellurite photonic crystal fiber. Opt. Express 11(20), 2641–2645 (2003)

    Article  ADS  Google Scholar 

  61. G.S. Qin et al., Widely tunable ring-cavity tellurite fiber Raman laser. Opt. Lett. 33(17), 2014–2016 (2008)

    Article  ADS  Google Scholar 

  62. M.Y. Koptev et al., Widely tunable mid-infrared fiber laser source based on soliton self-frequency shift in microstructured tellurite fiber. Opt. Lett. 40(17), 4094–4097 (2015)

    Article  ADS  Google Scholar 

  63. P. Domachuk et al., Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs. Opt. Express 16(10), 7161–7168 (2008)

    Article  ADS  Google Scholar 

  64. M.S. Liao et al., Tellurite microstructure fibers with small hexagonal core for supercontinuum generation. Opt. Express 17(14), 12174–12182 (2009)

    Article  ADS  Google Scholar 

  65. M.S. Liao et al., A highly non-linear tellurite microstructure fiber with multi-ring holes for supercontinuum generation. Opt. Express 17(18), 15481–15490 (2009)

    Article  ADS  Google Scholar 

  66. D. Buccoliero et al., Thulium pumped high power supercontinuum in loss-determined optimum lengths of tellurite photonic crystal fiber. Appl. Phys. Lett. 97(6), 061106–(1–3) (2010)

    Google Scholar 

  67. M.S. Liao et al., Five-order SRSs and supercontinuum generation from a tapered tellurite microstructured fiber with longitudinally varying dispersion. Opt. Express 19(16), 15389–15396 (2011)

    Article  ADS  Google Scholar 

  68. M.S. Liao et al., Supercontinuum generation in short tellurite microstructured fibers pumped by a quasi-CW laser. Opt. Lett. 37(11), 2127–2129 (2012)

    Article  ADS  Google Scholar 

  69. G. Ghosh, Sellmeier coefficients and chromatic dispersions for some tellurite glasses. J. Am. Ceram. Soc. 78(10), 2828–2830 (1995)

    Article  Google Scholar 

  70. V. Ta’eed et al., Ultrafast all-optical chalcogenide glass photonic circuits. Opt. Express 15(15), 9205–9221 (2007)

    Article  ADS  Google Scholar 

  71. X. Zhu, R. Jain, 10-W-level diode-pumped compact 2.78 μm ZBLAN fiber laser. Opt. Lett. 32(1), 26–28 (2007)

    Article  ADS  Google Scholar 

  72. S.D. Jackson, Continuous wave 2.9 μm dysprosium-doped fluoride fiber laser. Appl. Phys. Lett. 83(7), 1316–1318 (2003)

    Article  ADS  Google Scholar 

  73. T. Sumiyoshi et al., High-power continuous-wave 3- and 2-μm cascade Ho3+:ZBLAN fiber laser and its medical applications. IEEE J. Sel. Top Quantum Electron. 5(4), 936–943 (1999)

    Article  Google Scholar 

  74. J. Schneide, C. Carbonnier, U.B. Unrau, Characterization of a Ho3+-doped fluoride fiber laser with a 3.9-μm emission wavelength. Appl. Optics 36(33), 8595–8600 (1997)

    Article  ADS  Google Scholar 

  75. S.D. Jackson, T.A. King, CW operation of a 1.064-μm pumped Tm-Ho-doped silica fiber laser. IEEE J. Quantum Electron. 34(9), 1578–1587 (1998)

    Article  ADS  Google Scholar 

  76. H. Jiang, L. Zhang, Y. Feng, Silica-based fiber Raman laser at > 2.4 mm. Opt. Lett. 40(14), 3249–3252 (2015)

    Article  ADS  Google Scholar 

  77. Y. Guo et al., Er3+-doped fluoro-tellurite glass: A new choice for 2.7 μm lasers. Mater. Lett. 80, 56–58 (2012)

    Article  Google Scholar 

  78. H. Zhan et al., Intense 2.7 mm emission of Er3+-doped water-free fluorotellurite glasses. Opt. Lett. 37(16), 3408–3410 (2012)

    Article  ADS  Google Scholar 

  79. H. Zhong et al., 2.7 μm emission of Nd3+, Er3+ codoped tellurite glass. J. Appl. Phys. 106(8), 083114 (2009)

    Article  ADS  Google Scholar 

  80. B.D.O. Richards et al., Mid-IR (3–4 μm) fluorescence and ASE studies in Dy3+ doped tellurite and germanate glasses and a fs laser inscribed waveguide. Laser Phys. Lett. 10(8), 085802 (2013)

    Article  ADS  Google Scholar 

  81. L. Gomes et al., Spectroscopy of mid-infrared (2.9 mm) fluorescence and energy transfer in Dy3+-doped tellurite glasses. J. Opt. Soc. Am. B 31(3), 429–435 (2014)

    Article  ADS  Google Scholar 

  82. M. Irannejad et al., Active glass waveguide amplifier on GaAs by UV-pulsed laser deposition and femtosecond laser inscription. Laser Phys. Lett. 9(5), 329 (2012)

    Article  ADS  Google Scholar 

  83. Z. Zhanxiang et al., Active glass–polymer superlattice structure for photonic integration. Nanotechnology 23(22), 225302 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Billy D. O. Richards .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Richards, B.D.O., Jha, A. (2017). Lasers Utilising Tellurite Glass-Based Gain Media. In: Rivera, V., Manzani, D. (eds) Technological Advances in Tellurite Glasses. Springer Series in Materials Science, vol 254. Springer, Cham. https://doi.org/10.1007/978-3-319-53038-3_6

Download citation

Publish with us

Policies and ethics