Skip to main content

Modeling Thermal Transport in Nano-Porous Semiconductors

  • Chapter
  • First Online:
Submicron Porous Materials

Abstract

Thermal transport in nano-Porous material has drawn the attention of several research groups during the last decade due to the ability of such structures to tailor efficiently the thermal properties of materials and more specifically to lower drastically the thermal conductivity of semiconductors. The present chapter recalls the basics of thermal transport in porous media from different standpoints. After a short introduction and review of the literature, analytic models that characterize heat propagation in porous media are given. Their limitations, especially in what concerns heat carriers scattering with pores when characteristic sizes become very small is pointed out and alternatives are suggested. In a second time, Monte Carlo modeling techniques, which are well designed for mesoscopic length-scales, are introduced and their use for thermal conductivity appraisal of nano-porous media is discussed. Improvement of such technique to reduce computation time and to model thin films with high porosity is then exposed with Effective Monte Carlo model. Simulation results for silicon and germanium support this part. The last section of the chapter is devoted to Molecular Dynamic (MD) modeling of nano-porous structures. Again, practical details on Equilibrium MD are proposed with a specific attention paid to crystalline and amorphous phases modeling. Then simulation results for various kinds of a-Si and c-Si nano-porous structures are discussed before concluding on all these methods and models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Canham LT (1990) Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl Phys Lett 57(10):1046

    Article  Google Scholar 

  2. Cullis AG, Canham LT, Calcott PDJ (1997) The structural and luminescence properties of porous silicon. J Appl Phys 82(3):909

    Article  Google Scholar 

  3. Granitzer Petra, Rumpf Klemens (2010) Porous SiliconA Versatile Host Material. Mater. 3(2):943–998

    Article  Google Scholar 

  4. Buriak JM (2006) High surface area silicon materials: fundamentals and new technology. Philos Trans R Soc A 364(1838):217–225

    Article  Google Scholar 

  5. Kelly A (2006) Why engineer porous materials? Philos Trans R Soc A 364(1838):5–14

    Article  Google Scholar 

  6. Stewart MP, Buriak JM (2000) Chemical and biological applications of porous silicon technology. Adv Mater 12(12):859–869

    Article  Google Scholar 

  7. Cahill DG, Ford WK, Goodson KE, Mahan GD, Majumdar A, Maris HJ, Merlin R, Phillpot SR (2003) Nanoscale thermal transport. J Appl Phys 93(2):793

    Article  Google Scholar 

  8. Benedetto G, Boarino L, Spagnolo R (1997) Evaluation of thermal conductivity of porous silicon layers by a photoacoustic method. Appl Phys A-Mater Sci Process 64(2):155–159

    Article  Google Scholar 

  9. Gesele G, Linsmeier J, Drach V, Fricke J, Arens-Fischer R (1997) Temperature-dependent thermal conductivity of porous silicon. J Appl Phys D: Appl Phys 30(21):2911

    Google Scholar 

  10. Ziman (1972) Electrons and phonons: the theory of transport phenomena in solids. Clarendon press

    Google Scholar 

  11. Chao Y (2011) 1.16 optical properties of nanostructured silicon. In: Comprehensive nanoscience and technology, vol 1. Elsevier edition

    Google Scholar 

  12. Olsson RH III, El-Kady I (2009) Microfabricated phononic crystal devices and applications. Meas Sci Technol 20(1):012002

    Article  Google Scholar 

  13. Hopkins PE, Reinke CM, Su MF, Olsson RH, Shaner EA, Leseman ZC, Serrano JR, Phinney LM, El-Kady I (2011) Reduction in the thermal conductivity of single crystalline silicon by phononic crystal patterning. Nano Lett 11(1):107–112

    Google Scholar 

  14. Xiong Z, Zhao F, Yang J, Hu X (2010) Comparison of optical absorption in Si nanowire and nanoporous Si structures for photovoltaic applications. Appl Phys Lett 96(18):181903

    Article  Google Scholar 

  15. Maldovan M (2013) Narrow low-frequency spectrum and heat management by thermocrystals. Phys Rev Lett 110(2):025902

    Article  Google Scholar 

  16. Yang R, Chen G, Dresselhaus M (2005) Thermal conductivity of simple and tubular nanowire composites in the longitudinal direction. Phys Rev B 72(12):125418

    Article  Google Scholar 

  17. Minnich A, Chen G (2007) Modified effective medium formulation for the thermal conductivity of nanocomposites. Appl Phys Lett 91(7):073105

    Article  Google Scholar 

  18. Jeng M-S, Yang R, Song D, Chen G (2008) Modeling the thermal conductivity and phonon transport in nanoparticle composites using Monte Carlo simulation. J Heat Transf 130(4):042410

    Article  Google Scholar 

  19. Chung JD, Kaviany M (2000) Effects of phonon pore scattering and pore randomness on effective conductivity of porous silicon. Int J Heat Mass Transf 43(4):521–538

    Google Scholar 

  20. Randrianalisoa J, Baillis D (2008) Monte Carlo simulation of cross-plane thermal conductivity of nanostructured porous silicon films. J Appl Phys 103(5):053502

    Article  Google Scholar 

  21. Prasher R (2006) Thermal conductivity of composites of aligned nanoscale and microscale wires and pores. J Appl Phys 100(3):034307

    Article  Google Scholar 

  22. Prasher R (2006) Transverse thermal conductivity of porous materials made from aligned nano- and microcylindrical pores. J Appl Phys 100(6):064302

    Article  Google Scholar 

  23. Hao Q, Chen G, Jeng M-S (2009) Frequency-dependent Monte Carlo simulations of phonon transport in two-dimensional porous silicon with aligned pores. J Appl Phys 106(11):114321

    Article  Google Scholar 

  24. Romano G, Carlo A, Grossman JC (2012) Mesoscale modeling of phononic thermal conductivity of porous Si: interplay between porosity, morphology and surface roughness. J Comput Electron 11(1):8–13

    Article  Google Scholar 

  25. Hsieh T-Y, Lin H, Hsieh T-J, Huang J-C (2012) Thermal conductivity modeling of periodic porous silicon with aligned cylindrical pores. J Appl Phys 111(12):124329

    Article  Google Scholar 

  26. Reinke CM, Su MF, Davis BL, Kim B, Hussein MI, Leseman ZC, Olsson-III RH, El-Kady I (2011) Thermal conductivity prediction of nanoscale phononic crystal slabs using a hybrid lattice dynamics-continuum mechanics technique. AIP Adv 1(4):041403

    Google Scholar 

  27. Dechaumphai E, Chen R (2012) Thermal transport in phononic crystals: the role of zone folding effect. J Appl Phys 111(7):073508

    Article  Google Scholar 

  28. Hopkins PE, Rakich PT, Olsson RH, El-kady IF, Phinney LM (2009) Origin of reduction in phonon thermal conductivity of microporous solids. Appl Phys Lett 95(16):161902

    Article  Google Scholar 

  29. Jain A, Yu Y-J, McGaughey AJH (2013) Phonon transport in periodic silicon nanoporous films with feature sizes greater than 100 nm. Phys Rev B 87(19):195301

    Article  Google Scholar 

  30. Lee J-H, Grossman JC, Reed J, Galli G (2007) Lattice thermal conductivity of nanoporous Si: molecular dynamics study. Appl Phys Lett 91(22):223110

    Article  Google Scholar 

  31. He Y, Donadio D, Lee J-H, Grossman JC, Galli G (2011) Thermal transport in nanoporous silicon: interplay between disorder at mesoscopic and atomic scales. ACS Nano 5(3):1839–1844

    Article  Google Scholar 

  32. Fang J, Pilon L (2011) Scaling laws for thermal conductivity of crystalline nanoporous silicon based on molecular dynamics simulations. J Appl Phys 110(6):064305

    Article  Google Scholar 

  33. Şopu D, Kotakoski J, Albe K (2011) Finite-size effects in the phonon density of states of nanostructured germanium: a comparative study of nanoparticles, nanocrystals, nanoglasses, and bulk phases. Phys Rev B 83(24):245416

    Google Scholar 

  34. Jean V, Fumeron S, Termentzidis K, Tutashkonko S, Lacroix D (2014) Monte Carlo simulations of phonon transport in nanoporous silicon and germanium. J Appl Phys 115(2):024304

    Article  Google Scholar 

  35. Isaiev M, Tutashkonko S, Jean V, Termentzidis K, Nychyporuk T, Andrusenko D, Marty O, Burbelo RM, Lacroix D, Lysenko V (2014) Thermal conductivity of meso-porous germanium. Appl Phys Lett 105(3):031912

    Article  Google Scholar 

  36. Verdier M, Termentzidis K, Lacroix D (2016) Crystalline-amorphous silicon nano-composites: nano-pores and nano-inclusions impact on the thermal conductivity. J Appl Phys 119(17):175104

    Article  Google Scholar 

  37. Xia R, Wu RN, Liu YL, Sun XY (2015) The role of computer simulation in nanoporous metals—a review. Materials 8(8):5060

    Google Scholar 

  38. Dettori R, Melis C, Cartoixà X, Rurali R, Colombo Luciano (2015) Model for thermal conductivity in nanoporous silicon from atomistic simulations. Phys Rev B 91:054305

    Article  Google Scholar 

  39. Guo R, Huang B (2014) Thermal transport in nanoporous Si: anisotropy and junction effects. Int J Heat Mass Transf 77:131–139

    Article  Google Scholar 

  40. Wen YW, Liu HJ, Pan L, Tan XJ, Lv HY, Shi J, Tang XF (2013) Reducing the thermal conductivity of silicon by nanostructure patterning. Appl Phys A 110(1):93–98

    Article  Google Scholar 

  41. Fang J, Pilon L (2012) Tuning thermal conductivity of nanoporous crystalline silicon by surface passivation: a molecular dynamics study. Appl Phys Lett 101(1)

    Google Scholar 

  42. Fang J, Pilon L (2011) Scaling laws for thermal conductivity of crystalline nanoporous silicon based on molecular dynamics simulations. J Appl Phys 110(6)

    Google Scholar 

  43. Lee J-H, Galli GA, Grossman JC (2008) Nanoporous Si as an efficient thermoelectric material. Nano Lett 8(11):3750–3754. PMID: 18947211

    Google Scholar 

  44. Lee J-H, Grossman JC, Reed J, Galli G (2007) Lattice thermal conductivity of nanoporous Si: molecular dynamics study. Appl Phys Lett 91(22)

    Google Scholar 

  45. Nan C-W (1993) Physics of inhomogeneous inorganic materials. Prog Mater Sci 37(1):1–116

    Article  Google Scholar 

  46. Maxwell JC (1904) A treatise on electricity and magnetism, vol 1, 3rd edn. Clarendon Press, Oxford

    Google Scholar 

  47. Rayleigh JWL (1892) On the influence of obstacles arranged in rectangular order upon the properties of a medium 34:481–502

    Google Scholar 

  48. Kandula M (2011) On the effective thermal conductivity of porous packed beds with uniform spherical particles. J Porous Media 14(10):919–926

    Article  Google Scholar 

  49. Hasselman DPH, Johnson LF (1987) Effective thermal conductivity of composites with interfacial thermal barrier resistance. J Compos Mater 21:508–515

    Article  Google Scholar 

  50. Nan C-W, Birringer R, Clarke DR, Gleiter H (1997) Effective thermal conductivity of particulate composites with interfacial thermal resistance. J Appl Phys 81(10):6692

    Article  Google Scholar 

  51. Chen G, Borca-Tascuic D, Yang RG (2004) Encyclopedia of nanoscience and nanotechnology, vol 7. H. S. Nalwa, American Scientific Publisher edition

    Google Scholar 

  52. Zhou J, Li X, Chen G, Yang R (2010) Semiclassical model for thermoelectric transport in nanocomposites. Phys Rev B 82(11):115308

    Article  Google Scholar 

  53. Tarkhanyan RH, Niarchos DG (2013) Reduction in lattice thermal conductivity of porous materials due toinhomogeneous porosity. Int J Therm Sci 67:107–112

    Article  Google Scholar 

  54. Luo T, Chen G (2013) Nanoscale heat transfer from computation to experiment. Phys Chem Chem Phys 15(10):3389

    Article  Google Scholar 

  55. Volz S, Lemonnier D, Saulnier J-B (2001) Calmped nanowire thermal conductivity based on the phonon transport equation. Microscale Thermophys Eng 5(3):191–207

    Article  Google Scholar 

  56. Mazumder S, Majumdar A (2001) Monte Carlo study of phonon transport in solid thin films including dispersion and polarization. J Heat Transf 123(4):749

    Article  Google Scholar 

  57. Lacroix D, Joulain K, Lemonnier D (2005) Monte Carlo transient phonon transport in silicon and germanium at nanoscales. Phys Rev B 72(6)

    Google Scholar 

  58. Wong BT, Francoeur M, Meng P (2011) A Monte Carlo simulation for phonon transport within silicon structures at nanoscales with heat generation. Int J Heat Mass Transf 54(9–10):1825–1838

    Article  Google Scholar 

  59. Praud J-PM, Hadjiconstantinou NG (2011) Efficient simulation of multidimensional phonon transport using energy-based variance-reduced Monte Carlo formulations. Phys Rev B 84(20):205331

    Article  Google Scholar 

  60. Neil W, Mermin DN (1976) Solid state physics. Saunders College, Philadelphia

    Google Scholar 

  61. Holland M (1963) Analysis of lattice thermal conductivity. Phys Rev 132(6):2461–2471

    Article  Google Scholar 

  62. Pop E, Dutton RW, Goodson KE (2004) Analytic band Monte Carlo model for electron transport in Si including acoustic and optical phonon dispersion. J Appl Phys 96(9):4998

    Article  Google Scholar 

  63. Lacroix D, Traore I, Fumeron S, Jeandel G (2008) Phonon transport in silicon, influence of the dispersion properties choice on the description of the anharmonic resistive mechanisms. Eur Phys J B 67(1):15–25

    Article  Google Scholar 

  64. Singh BK, Roy MK, Menon VJ, Sood KC (2003) Dispersive effects and correction term in two-mode phonon conduction model for Ge. J Phys Chem Solids 64(12):2369–2377

    Article  Google Scholar 

  65. Chen Y, Li D, Lukes JR, Majumdar A (2005) Monte Carlo simulation of silicon nanowire thermal conductivity. J Heat Transf 127(10):1129

    Article  Google Scholar 

  66. Liu L-C, Huang M-J (2010) Thermal conductivity modeling of micro- and nanoporous silicon. Int J Therm Sci 49(9):1547–1554

    Article  Google Scholar 

  67. Lacroix D, Joulain K, Terris D, Lemonnier D (2006) Monte Carlo simulation of phonon confinement in silicon nanostructures: application to the determination of the thermal conductivity of silicon nanowires. Appl Phys Lett 89(10):103104

    Article  Google Scholar 

  68. Chen G (1998) Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices. Phys Rev B 57(23):14958–14973

    Article  Google Scholar 

  69. Stillinger FH, Weber TA (1985) Computer simulation of local order in condensed phases of silicon. Phys Rev B 31(8):5262–5271

    Article  Google Scholar 

  70. Tersoff J (1988) New empirical approach for the structure and energy of covalent systems. Phys Rev B 37(12):6991–7000

    Article  Google Scholar 

  71. Evans DJ, Morriss GP (2007) Statistical mechanics of nonequilibrium liquids, 2nd edn. ANU E Press, Canberra

    Google Scholar 

  72. France-Lanord A, Blandre E, Albaret T, Merabia S, Lacroix D, Termentzidis K (2014) Atomistic amorphous/crystalline interface modelling for superlattices and core/shell nanowires. J Phys Condens Matter 26(5):055011

    Article  Google Scholar 

  73. Vink RLC, Barkema GT, van der Weg WF, Mousseau N (2001) Fitting the Stillinger-Weber potential to amorphous silicon. J Non-Cryst Solids 282(2–3):248–255

    Article  Google Scholar 

  74. http://lammps.sandia.gov/

  75. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19

    Article  Google Scholar 

  76. Yang L, Yang N, Li B (2014) Extreme low thermal conductivity in nanoscale 3D Si phononic crystal with spherical pores. Nano Lett 14(4):1734–1738

    Article  Google Scholar 

  77. Blandre E, Chaput L, Merabia S, Lacroix D, Termentzidis K (2015) Modeling the reduction of thermal conductivity in core/shell and diameter-modulated silicon nanowires. Phys Rev B 91(11)

    Google Scholar 

  78. Coquil T, Fang J, Pilon L (2011) Molecular dynamics study of the thermal conductivity of amorphous nanoporous silica. Int J Heat Mass Transf 54(21–22):4540–4548

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Lacroix .

Editor information

Editors and Affiliations

Appendix: Dispersion Properties and Relaxation Times

Appendix: Dispersion Properties and Relaxation Times

Parabolic fits \(\omega = c_p K^2 + v_p K\) are used to describe the dispersion properties of Si and Ge along [100] axis, for LA and TA polarizations, as suggested by Pop et al. [62]. Parameters \(c_p\) and \(v_p\) are detailed in Table 9.3.

Table 9.3 Data used to fit Si and Ge dispersion curves
Table 9.4 Relaxation time parameters for Si and Ge

Relaxation-time constants are set to fit the experimental curve that gives the bulk material conductivity as a function of the temperature \(k = f(T)\). Each scattering process has its own expression which depends of the frequency and the temperature [61]. Table 9.4 lists them for normal, umklapp and impurities scattering using the previous quadratic fits

$$\begin{aligned} \begin{array}{l} {\tau _{I}}^{-1}=B_I \omega ^4, {\tau _{N_{LA}}}^{-1}=B_L \omega ^2 T^3, {\tau _{U_{LA}}}^{-1}=B_L\omega ^2T^3 \\ {\tau _{N_{TA}}}^{-1}= \left\{ \begin{array}{l} B_{TN}\omega T^4\; \mathrm {if}\; \omega< \omega _{12},\\ 0\; \mathrm {else } \end{array} \right. \\ {\tau _{U_{TA}}}^{-1}= \left\{ \begin{array}{cc} 0\; \mathrm {if }\; \omega < \omega _{12},\\ B_{TU} \frac{\omega ^2}{\sinh {\frac{\hbar \omega }{k_BT}}}\; \mathrm {else} \end{array} \right. \end{array} \end{aligned}$$
(9.29)

\(\omega _{12}\) is the frequency which corresponds to half of the Brillouin zone for the TA mode.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Verdier, M., Termentzidis, K., Lacroix, D. (2017). Modeling Thermal Transport in Nano-Porous Semiconductors. In: Bettotti, P. (eds) Submicron Porous Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-53035-2_9

Download citation

Publish with us

Policies and ethics