Skip to main content
Log in

Reducing the thermal conductivity of silicon by nanostructure patterning

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Based on molecular dynamics simulations, we propose using nanostructure-patterned silicon for thermoelectric applications. Three typical examples are (i) fractal-like nanoporous Si, (ii) etched Si nanofilm, and (iii) quasi-periodic layered SiGe. All of them can exhibit very low thermal conductivity (less than 1.0 W m−1 K−1) and may be mass produced with standard fabrication techniques such as molecular beam epitaxy or Czochralski process. By maintaining good electronic transport of bulk Si, it is possible to achieve ZT∼5.0 at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L.D. Hicks, M.S. Dresselhaus, Phys. Rev. B 47, 12727 (1993)

    Article  ADS  Google Scholar 

  2. L.D. Hicks, M.S. Dresselhaus, Phys. Rev. B 47, 16631 (1993)

    Article  ADS  Google Scholar 

  3. D.M. Rowe, V.S. Shukla, N. Savvides, Nature 290, 765 (1981)

    Article  ADS  Google Scholar 

  4. G. Joshi, H. Lee, Y.C. Lan, X.W. Wang, G.H. Zhu, D.Z. Wang, R.W. Gould, D.C. Cuff, M.Y. Tang, M.S. Dresselhaus, G. Chen, Z.F. Ren, Nano Lett. 8, 4670 (2008)

    Article  ADS  Google Scholar 

  5. X.W. Wang, H. Lee, Y.C. Lan, G.H. Zhu, G. Joshi, D.Z. Wang, J. Yang, A.J. Muto, M.Y. Tang, J. Klatsky, S. Song, M.S. Dresselhaus, G. Chen, Z.F. Ren, Appl. Phys. Lett. 93, 193121 (2008)

    Article  ADS  Google Scholar 

  6. G.H. Zhu, H. Lee, Y.C. Lan, X.W. Wang, G. Joshi, D.Z. Wang, J. Yang, D. Vashaee, H. Guilbert, A. Pillitteri, M.S. Dresselhaus, G. Chen, Z.F. Ren, Phys. Rev. Lett. 102, 196803 (2009)

    Article  ADS  Google Scholar 

  7. S.-M. Lee, D.G. Cahill, R. Venkatasubramanian, Appl. Phys. Lett. 70, 2957 (1997)

    Article  ADS  Google Scholar 

  8. S.T. Huxtable, A.R. Abramson, C.-L. Tien, A. Majumdar, C. LaBounty, X. Fan, G. Zeng, J.E. Bowers, A. Shakouri, E.T. Croke, Appl. Phys. Lett. 80, 1737 (2002)

    Article  ADS  Google Scholar 

  9. V. Samvedi, V. Tomar, J. Appl. Phys. 105, 013541 (2009)

    Article  ADS  Google Scholar 

  10. V. Samvedi, V. Tomar, Nanotechnology 20, 365701 (2009)

    Article  Google Scholar 

  11. D. Li, Y. Wu, P. Kim, L. Shi, P. Yang, A. Majumdar, Appl. Phys. Lett. 83, 2934 (2003)

    Article  ADS  Google Scholar 

  12. I. Ponomareva, D. Srivastava, M. Menon, Nano Lett. 7, 1155 (2007)

    Article  ADS  Google Scholar 

  13. A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, P. Yang, Nature 451, 163 (2008)

    Article  ADS  Google Scholar 

  14. A.I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J. Yu, W.A. Goddard, J.R. Heath, Nature 451, 168 (2008)

    Article  ADS  Google Scholar 

  15. N. Mingo, L. Yang, D. Li, A. Majumdar, Nano Lett. 3, 1713 (2003)

    Article  ADS  Google Scholar 

  16. N. Mingo, D.A. Broido, Phys. Rev. Lett. 93, 246106 (2004)

    Article  ADS  Google Scholar 

  17. D. Donadio, G. Galli, Phys. Rev. Lett. 102, 195901 (2009)

    Article  ADS  Google Scholar 

  18. J. Chen, G. Zhang, B. Li, Appl. Phys. Lett. 95, 073117 (2009)

    Article  ADS  Google Scholar 

  19. J-H. Lee, J.C. Grossman, J. Reed, G. Galli, Appl. Phys. Lett. 91, 223110 (2007)

    Article  ADS  Google Scholar 

  20. C. Bera, N. Mingo, S. Volz, Phys. Rev. Lett. 104, 115502 (2010)

    Article  ADS  Google Scholar 

  21. J. Tang, H. Wang, D.H. Lee, M. Fardy, Z. Huo, T.P. Russell, P. Yang, Nano Lett. 10, 4279 (2010)

    Article  ADS  Google Scholar 

  22. P.E. Hopkins, C.M. Reinke, M.F. Su, R.H. Olsson III, E.A. Shaner, Z.C. Leseman, J.R. Serrano, L.M. Phinney, I. El-Kady, Nano Lett. 11, 107 (2011)

    Article  ADS  Google Scholar 

  23. J.-H. Lee, G.A. Galli, J.C. Grossman, Nano Lett. 8, 3750 (2008)

    Article  ADS  Google Scholar 

  24. S. Plimpton, J. Comput. Phys. 117, 1 (1995). Code available at: http://lammps.sandia.gov/download.html

    Article  MATH  ADS  Google Scholar 

  25. W.G. Hoover, D.J. Evans, R.B. Hickman, A.J.C. Ladd, W.T. Ashurst, B. Moran, Phys. Rev. B 22, 1690 (1980)

    ADS  Google Scholar 

  26. W.G. Hoover, A.J.C. Ladd, B. Moran, Phys. Rev. Lett. 48, 1818 (1982)

    Article  ADS  Google Scholar 

  27. D. MacGowan, D.J. Evans, Phys. Rev. A 34, 2133 (1986)

    Article  ADS  Google Scholar 

  28. D. MacGowan, D.J. Evans, Phys. Rev. A 36, 948 (1987)

    Article  ADS  Google Scholar 

  29. G.V. Paolini, G. Ciccotti, Phys. Rev. A 35, 5156 (1987)

    Article  ADS  Google Scholar 

  30. P. Sindzingre, G. Ciccotti, C. Massobrio, D. Frenkel, Chem. Phys. Lett. 136, 35 (1987)

    Article  ADS  Google Scholar 

  31. R. Vogelsang, C. Hoheisel, G. Paolini, G. Ciccotti, Phys. Rev. A 36, 3964 (1987)

    Article  ADS  Google Scholar 

  32. P.K. Schelling, S.R. Phillpot, P. Keblinski, Phys. Rev. B 65, 144306 (2002)

    Article  ADS  Google Scholar 

  33. F.H. Stillinger, T.A. Weber, Phys. Rev. B 31, 5262 (1985)

    Article  ADS  Google Scholar 

  34. J. Tersoff, Phys. Rev. B 39, 5566 (1989)

    Article  ADS  Google Scholar 

  35. T. Markussen, A.P. Jauho, M. Brandbyge, Nano Lett. 8, 3771 (2008)

    Article  ADS  Google Scholar 

  36. Q.H. Tang, Mol. Phys. 102, 1959 (2004)

    Article  ADS  Google Scholar 

  37. L. Sun, J.Y. Murthy, Appl. Phys. Lett. 89, 171919 (2006)

    Article  ADS  Google Scholar 

  38. G. Kresse, J. Hafner, Phys. Rev. B 47, 558 (1993)

    Article  ADS  Google Scholar 

  39. G. Kresse, J. Hafner, Phys. Rev. B 49, 14251 (1994)

    Article  ADS  Google Scholar 

  40. G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the “973 Program” of China (Grant No. 2007CB607501), the National Natural Science Foundation (Grant No. 51172167), and the Program for New Century Excellent Talents in University. We also acknowledge financial support from the interdiscipline and postgraduate programs under the “Fundamental Research Funds for the Central Universities”. All the calculations were performed in the PC Cluster from Sugon Company of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. J. Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wen, Y.W., Liu, H.J., Pan, L. et al. Reducing the thermal conductivity of silicon by nanostructure patterning. Appl. Phys. A 110, 93–98 (2013). https://doi.org/10.1007/s00339-012-7417-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7417-1

Keywords

Navigation