Skip to main content

Defining the Lethal Triad

  • Chapter
  • First Online:
Damage Control Management in the Polytrauma Patient

Abstract

Worldwide, trauma leads to millions of deaths and severe injuries each year. Analysis of the leading causes of death in trauma patients reveals that hemorrhage is one of the most common and preventable etiologies in the acute period [1]. For those that survive the initial insult, the cause of both morbidity and late mortality after trauma is, in part, excessive inflammation and a vicious cascade of coagulation abnormalities. Thus, traumatic hemorrhage can be broadly categorized into two groups: (1) early surgical bleeding and (2) coagulopathy. Surgical bleeding is secondary to the injury (e.g., splenic laceration, femur fracture), and treatment often involves mechanical control through surgical or interventional procedures. Coagulopathy following trauma presents in two distinct forms. It is now widely recognized that severe injury is characterized by a unique, endogenous coagulopathy, referred to as the acute traumatic coagulopathy (ATC) that may be present on admission in as many as 30% of injured patients [2]. This devastating condition presents a major obstacle in the care of trauma patients and is an evolving area of active research. The second form of coagulopathy following trauma is a consequence of iatrogenic factors and resuscitation. Previous resuscitation strategies involving large volumes of crystalloid and/or packed red blood cells in isolation (without blood component therapy) led to a dilutional coagulopathy. Although this remains a clinically important challenge, modern resuscitation strategies that limit crystalloid and focus on 1:1:1 ratio-based transfusion have limited this component substantially [3, 4]. In this chapter, we will focus on the previously named “lethal triad” which links coagulopathy with hypothermia and acidosis as major contributors to the ongoing hemorrhage despite control of surgical bleeding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sauaia AM, Moore FAM, Moore EEM, et al. Epidemiology of trauma deaths: a reassessment. J Trauma Inj Infect Crit Care. 1995;38(2):185–93.

    Article  CAS  Google Scholar 

  2. Neal MD, Moore HB, Moore EE, et al. Clinical assessment of trauma-induced coagulopathy and its contribution to postinjury mortality: a TACTIC proposal. J Trauma Acute Care Surg. 2015;79(3):490–2. doi:10.1097/TA.0000000000000793.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Neal MD, Hoffman MK, Cuschieri J, et al. Crystalloid to packed red blood cell transfusion ratio in the massively transfused patient: when a little goes a long way. J Trauma Acute Care Surg. 2012;72(4):892–8. doi:10.1097/TA.0b013e31823d84a7.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Holcomb JB, Tilley BC, Baraniuk S, et al. Transfusion of plasma, platelets, and red blood cells in a 1:1:1 vs a 1:1:2 ratio and mortality in patients with severe trauma: the PROPPR randomized clinical trial. JAMA. 2015;313(5):471–82. doi:10.1001/jama.2015.12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hardaway RM. The significance of coagulative and thrombotic changes after haemorrhage and injury. J Clin Pathol Suppl (R Coll Pathol). 1970;4:110–20. doi:10.1136/jcp.s3-4.1.110.

    Article  CAS  Google Scholar 

  6. Hardaway RM, Brune WH, Geever EF, Burns JW, Mock HP. Studies on the role of intravascular coagulation in irreversible hemorrhagic shock. Ann Surg. 1962;155:241–50. doi:10.1097/00006534-196206000-00034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Attar S, Mansberger AR, Irani B, Kirby W, Masaitis C, Cowley RA. Coagulation changes in clinical shock. II. Effect of septic shock on clotting times and fibrinogen in humans. Ann Surg. 1966;164(1):41–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Simmons RL, Collins JA, Heisterkamp CA, Mills DE, Andren R, Phillips LL. Coagulation disorders in combat casualties. I. Acute changes after wounding. II. Effects of massive transfusion. 3. Post-resuscitative changes. Ann Surg. 1969;169(4):455–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Molot MD. Coagulopathy after major combat injury. Evaluation. 1971:243–6.

    Google Scholar 

  10. Olson JD, Kaufman HH, Moake J, et al. The incidence and significance of hemostatic abnormalities in patients with head injuries. Neurosurgery. 1989;24(6):825–32. http://www.ncbi.nlm.nih.gov/pubmed/2747858. Accessed 4 Aug 2015

    Article  CAS  PubMed  Google Scholar 

  11. Kashuk JL, Moore EE, Millikan JS, Moore JB. Major abdominal vascular trauma – a unified approach. J Trauma. 1982;22(8):672–9. http://www.ncbi.nlm.nih.gov/pubmed/6980992. Accessed 4 Aug 2015

    Article  CAS  PubMed  Google Scholar 

  12. Moore EE. Staged laparotomy for the hypothermia, acidosis, and coagulopathy syndrome. Am J Surg. 1996;172:405–10.

    Article  CAS  PubMed  Google Scholar 

  13. Luna GK, Maier RV, Pavlin EG, Anardi D, Copass MK, Oreskovich MR. Incidence and effect of hypothermia in seriously injured patients. J Trauma. 1987;27(9):1014–8. doi:10.1097/00005373-198709000-00010.

    Article  CAS  PubMed  Google Scholar 

  14. Jurkovich GJ, Greiser WB, Luterman A, Curreri PW. Hypothermia in trauma victims: an ominous predictor of survival. J Trauma. 1987;27(9):1019–24.

    Article  CAS  PubMed  Google Scholar 

  15. Van Poucke S, Stevens K, Marcus AE, Lancé M. Hypothermia: effects on platelet function and hemostasis. Thromb J. 2014;12(1):31. doi:10.1186/s12959-014-0031-z.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Eddy VA, Morris JA, Cullinane DC. Hypothermia, coagulopathy, and acidosis. Surg Clin North Am. 2000;80(3):845–54. doi:10.1016/S0039-6109(05)70099-2.

    Article  CAS  PubMed  Google Scholar 

  17. Kirkpatrick AW, Chun R, Brown R, Simons RK. Traumatologie et soins critiques hypothermia and the trauma patient. Trauma Crit Care. 1999;42(October):333–43.

    Google Scholar 

  18. Wolberg AS, Meng ZH, Monroe DM 3rd, Hoffman M. A systematic evaluation of the effect of temperature on coagulation enzyme activity and platelet function. J Trauma. 2004;56(6):1221–8.

    Google Scholar 

  19. DDP W, Trask AM, Soeken KP, PMM P, Dols SM (ASCP), CMM K. Hypothermic coagulopathy in trauma: effect of varying levels of hypothermia on enzyme speed, platelet function, and fibrinolytic activity. J Trauma-Injury Infect Crit Care. 1998;44:846–54.

    Article  Google Scholar 

  20. Broder G, Weil MH. Excess lactate: an index of reversibility of shock in human patients. Science. 1964;143(3613):1457–9. http://www.ncbi.nlm.nih.gov/pubmed/14107454. Accessed 10 May 2015

    Article  CAS  PubMed  Google Scholar 

  21. Abramson D, Scalea TM, Hitchcock R, Trooskin SZ, Henry SM, Greenspan J. Lactate clearance and survival following injury. J Trauma. 1993;35(4):584–8; discussion 588-589. http://www.ncbi.nlm.nih.gov/pubmed/8411283. Accessed 1 July 2015.

  22. Cosgriff NM, Moore EE, Sauaia AM, Kenny-Moynihan MM, Burch JM, Galloway BM. Predicting life-threatening coagulopathy in the massively transfused trauma patient: hypothermia and acidoses revisited. J Trauma-Injury Infect Crit Care. 1997;42(5):857–61.

    Google Scholar 

  23. Dunn EL, Moore EE, Breslich DJ, Galloway WB. Acidosis-induced coagulopathy. Surg Forum. 1979;30:471–3. http://www.ncbi.nlm.nih.gov/pubmed/538668. Accessed 6 Aug 2015.

    CAS  PubMed  Google Scholar 

  24. Engström M, Schött U, Romner B, Reinstrup P. Acidosis impairs the coagulation: a thromboelastographic study. J Trauma. 2006;61(3):624–8. doi:10.1097/01.ta.0000226739.30655.75.

    Article  PubMed  Google Scholar 

  25. Meng ZH, Wolberg AS, Monroe DM, Hoffman M. The effect of temperature and pH on the activity of factor VIIa: implications for the efficacy of high-dose factor VIIa in hypothermic and acidotic patients. J Trauma. 2003;55(5):886–91. doi:10.1097/01.TA.0000066184.20808.A5.

    Article  CAS  PubMed  Google Scholar 

  26. Martini WZP, Pusateri AEP, Uscilowicz JMB, Delgado AVP, Holcomb JBM. Independent contributions of hypothermia and acidosis to coagulopathy in swine. J Trauma-Injury Infect Crit Care. 2005;58:1002–9.

    Article  Google Scholar 

  27. Martini WZ, Dubick MA, Pusateri AE, Park MS, Ryan KL, Holcomb JB. Does bicarbonate correct coagulation function impaired by acidosis in swine? J Trauma. 2006;61(1):99–106. doi:10.1097/01.ta.0000215574.99093.22.

    Article  CAS  PubMed  Google Scholar 

  28. Armand R, Hess JR. Treating coagulopathy in trauma patients. Transfus Med Rev. 2003;17(3):223–31. doi:10.1016/S0887-7963(03)00022-1.

    Article  PubMed  Google Scholar 

  29. Brohi K, Singh J, Heron M, Coats T. Acute traumatic coagulopathy. J Trauma. 2003;54(6):1127–30. doi:10.1097/ACO.0b013e3283509675.

    Article  PubMed  Google Scholar 

  30. MacLeod JB, Lynn M, McKenney MG, Cohn SM, Murtha M. Early coagulopathy predicts mortality in trauma. J Trauma. 2003;55(1):39–44. doi:10.1097/01.TA.0000075338.21177.EF.

  31. Wohlauer MV, Moore EE, Thomas S, et al. Early platelet dysfunction: an unrecognized role in the acute coagulopathy of trauma. J Am Coll Surg. 2012;214(5):739–46. doi:10.1016/j.jamcollsurg.2012.01.050.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Gando S, Wada H, Thachil J. Differentiating disseminated intravascular coagulation (DIC) with the fibrinolytic phenotype from coagulopathy of trauma and acute coagulopathy of trauma-shock (COT/ACOTS). J Thromb Haemost. 2013;11(5):826–35. doi:10.1111/jth.12190.

  33. MacLeod JB, Winkler AM, McCoy CC, Hillyer CD, Shaz BH. Early trauma induced coagulopathy (ETIC): prevalence across the injury spectrum. Injury. 2014;45(5):910–5. doi:10.1016/j.injury.2013.11.004.

  34. Gonzalez E, Moore EE, Moore HB, Chapman MP, Silliman CC, Banerjee A. Trauma-induced coagulopathy: an institution’s 35 year perspective on practice and research. Scand J Surg. 2014;103(2):89–103. doi:10.1177/1457496914531927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hardaway RM, McKay DG. Disseminated intravascular coagulation: a cause of shock. Ann Surg. 1959;149(4):462–70. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1451031&tool=pmcentrez&rendertype=abstract. Accessed 11 Aug 2015.

  36. Gando S, Sawamura A, Hayakawa M. Trauma, shock, and disseminated intravascular coagulation: lessons from the classical literature. Ann Surg. 2011;254(1):10–9. doi:10.1097/SLA.0b013e31821221b1.

    Article  PubMed  Google Scholar 

  37. Cohen MJ. Acute traumatic coagulopathy: clinical characterization and mechanistic investigation. Thromb Res. 2014;133(SUPPL. 1):S25–7. doi:10.1016/j.thromres.2014.03.013.

    Article  PubMed  Google Scholar 

  38. Hess JR, Lawson JH. The coagulopathy of trauma versus disseminated intravascular coagulation. J Trauma. 2006;60(6 Suppl):S12–9. doi:10.1097/01.ta.0000199545.06536.22.

    Article  PubMed  Google Scholar 

  39. Rizoli S, Nascimento B, Key N, et al. Disseminated intravascular coagulopathy in the first 24 hours after trauma: the association between ISTH score and anatomopathologic evidence. J Trauma. 2011;71(5 Suppl 1):S441–7. doi:10.1097/TA.0b013e318232e688.

    Article  CAS  PubMed  Google Scholar 

  40. Esmon CT. The protein C pathway. Chest J. 2003;124(3_suppl):26S. doi:10.1378/chest.124.3_suppl.26S.

    Article  CAS  Google Scholar 

  41. Brohi K, Cohen MJ, Ganter MT, Matthay MA, Mackersie RC, Pittet J-F. Acute traumatic coagulopathy: initiated by hypoperfusion: modulated through the protein C pathway? Ann Surg. 2007;245(5):812–8. doi:10.1097/01.sla.0000256862.79374.31.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Chesebro BB, Rahn P, Carles M, et al. Increase in activated protein C mediates acute traumatic coagulopathy in mice. Shock. 2009;32(6):659–65. doi:10.1097/SHK.0b013e3181a5a632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cohen MJ, Call M, Nelson M, et al. Critical role of activated protein C in early coagulopathy and later organ failure, infection and death in trauma patients. Ann Surg. 2012;255(2):379–85. doi:10.1097/SLA.0b013e318235d9e6.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Dobson GP, Letson HL, Sharma R, Sheppard FR, Cap AP. Mechanisms of early trauma-induced coagulopathy. J Trauma Acute Care Surg. 2015;79(2):301–9. doi:10.1097/TA.0000000000000729.

    Article  CAS  PubMed  Google Scholar 

  45. Kashuk JL, Moore EE, Sawyer M, et al. Primary fibrinolysis is integral in the pathogenesis of the acute coagulopathy of trauma. Ann Surg. 2010;252(3):434–42; discussion 443-444. doi:10.1097/SLA.0b013e3181f09191.

  46. Cotton BA, Harvin JA, Kostousouv V, et al. Hyperfibrinolysis at admission is an uncommon but highly lethal event associated with shock and prehospital fluid administration. J Trauma Acute Care Surg. 2012;73(2):365–70. doi:10.1097/TA.0b013e31825c1234.

    Article  CAS  PubMed  Google Scholar 

  47. Chapman MP, Moore EE, Ramos CR, et al. Fibrinolysis greater than 3% is the critical value for initiation of antifibrinolytic therapy. J Trauma Acute Care Surg. 2013;75(6):961–7; discussion 967. doi:10.1097/TA.0b013e3182aa9c9f.

  48. Moore EE, Moore HB, Gonzalez E, et al. Postinjury fibrinolysis shutdown: rationale for selective tranexamic acid. J Trauma Acute Care Surg. 2015;78(6 Suppl 1):S65–9. doi:10.1097/TA.0000000000000634.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Stein SC, Smith DH. Coagulopathy in traumatic brain injury. Neurocrit Care. 2004;1(4):479–88. doi:10.1385/NCC:1:4:479.

    Article  PubMed  Google Scholar 

  50. Harhangi BS, Kompanje EJ, Leebeek FW, Maas AI. Coagulation disorders after traumatic brain injury. Acta Neurochir. 2008;150(2):165–75; discussion 175. doi:10.1007/s00701-007-1475-8.

  51. Epstein DS, Mitra B, O’Reilly G, Rosenfeld JV, Cameron PA. Acute traumatic coagulopathy in the setting of isolated traumatic brain injury: a systematic review and meta-analysis. Injury. 2014;45(5):819–24. doi:10.1016/j.injury.2014.01.011.

    Article  PubMed  Google Scholar 

  52. McCully SP, Schreiber MA. Traumatic brain injury and its effect on coagulopathy. Semin Thromb Hemost. 2013;39(8):896–901. doi:10.1055/s-0033-1357484.

    Article  CAS  PubMed  Google Scholar 

  53. Huber-Wagner S, Qvick M, Mussack T, et al. Massive blood transfusion and outcome in 1062 polytrauma patients: a prospective study based on the Trauma Registry of the German Trauma Society. Vox Sang. 2007;92(1):69–78. doi:10.1111/j.1423-0410.2006.00858.x.

    Article  CAS  PubMed  Google Scholar 

  54. Cotton BA, Dossett LA, Haut ER, et al. Multicenter validation of a simplified score to predict massive transfusion in trauma. J Trauma. 2010;69(Suppl 1):S33–9. doi:10.1097/TA.0b013e3181e42411.

    Article  PubMed  Google Scholar 

  55. Brockamp T, Nienaber U, Mutschler M, et al. Predicting on-going hemorrhage and transfusion requirement after severe trauma: a validation of six scoring systems and algorithms on the TraumaRegister DGU. Crit Care. 2012;16(4):R129. doi:10.1186/cc11432.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kamal AH, Tefferi A, Pruthi RK. How to interpret and pursue an abnormal prothrombin time, activated partial thromboplastin time, and bleeding time in adults. Mayo Clin Proc. 2007;82(7):864–73. doi:10.4065/82.7.864.

    Article  CAS  PubMed  Google Scholar 

  57. Tripodi A, Caldwell SH, Hoffman M, Trotter JF, Sanyal AJ. Review article: the prothrombin time test as a measure of bleeding risk and prognosis in liver disease. Aliment Pharmacol Ther. 2007;26(2):141–8. doi:10.1111/j.1365-2036.2007.03369.x.

    Article  CAS  PubMed  Google Scholar 

  58. McCully SP, Fabricant LJ, Kunio NR, et al. The International normalized ratio overestimates coagulopathy in stable trauma and surgical patients. J Trauma Acute Care Surg. 2013;75(6):947–53. doi:10.1097/TA.0b013e3182a9676c.

    Article  PubMed  Google Scholar 

  59. Dzik WH. Predicting hemorrhage using preoperative coagulation screening assays. Curr Hematol Rep. 2004;3(5):324–30. http://www.ncbi.nlm.nih.gov/pubmed/15341698. Accessed 12 Aug 2015.

    PubMed  Google Scholar 

  60. Cap A, Hunt BJ. The pathogenesis of traumatic coagulopathy. Anaesthesia. 2015;70(Suppl 1):96–101. e32-e34 doi:10.1111/anae.12914.

    Article  PubMed  Google Scholar 

  61. Nystrup, et al. Reduced clot strength upon admission, evaluated by thromboelastography (TEG), in trauma patients is independently associated with increased 30-day mortality. Scand J Trauma Resuscitation Emerg Med. 2011;19:52.

    Article  Google Scholar 

  62. Bolliger D, Seeberger MD, Tanaka KA. Principles and practice of thromboelastography in clinical coagulation management and transfusion practice. Transfus Med Rev. 2012;26(1):1–13. doi:10.1016/j.tmrv.2011.07.005.

    Article  PubMed  Google Scholar 

  63. Wang S-C, Shieh J-F, Chang K-Y, et al. Thromboelastography-guided transfusion decreases intraoperative blood transfusion during orthotopic liver transplantation: randomized clinical trial. Transplant Proc. 2010;42(7):2590–3. doi:10.1016/j.transproceed.2010.05.144.

    Article  PubMed  Google Scholar 

  64. Johansson PI, Sølbeck S, Genet G, Stensballe J, Ostrowski SR. Coagulopathy and hemostatic monitoring in cardiac surgery: an update. Scand Cardiovasc J. 2015. http://www.tandfonline.com/doi/full/10.3109/14017431.2012.671487. Accessed 21 Aug 2015.

  65. Shore-Lesserson L, Manspeizer HE, DePerio M, Francis S, Vela-Cantos F, Ergin MA. Thromboelastography-guided transfusion algorithm reduces transfusions in complex cardiac surgery. Anesth Analg. 1999;88(2):312–9. doi:10.1213/00000539-199902000-00016.

    CAS  PubMed  Google Scholar 

  66. Martini WZ, Cortez DS, Dubick MA, Park MS, Holcomb JB. Thrombelastography is better than PT, aPTT, and activated clotting time in detecting clinically relevant clotting abnormalities after hypothermia, hemorrhagic shock and resuscitation in pigs. J Trauma. 2008;65(3):535–43. doi:10.1097/TA.0b013e31818379a6.

    Article  PubMed  Google Scholar 

  67. Cotton BA, Faz G, Hatch QM, et al. Rapid thrombelastography delivers real-time results that predict transfusion within 1 hour of admission. J Trauma. 2011;71(2):407–14; discussion 414-417. doi:10.1097/TA.0b013e31821e1bf0.

  68. Holcomb JB, Minei KM, Scerbo ML, et al. Admission rapid thrombelastography can replace conventional coagulation tests in the emergency department: experience with 1974 consecutive trauma patients. Ann Surg. 2012;256(3):476–86. doi:10.1097/SLA.0b013e3182658180.

    Article  PubMed  Google Scholar 

  69. Hunt H, Stanworth S, Curry N, et al. Thromboelastography (TEG) and rotational thromboelastometry (ROTEM) for trauma induced coagulopathy in adult trauma patients with bleeding. Cochrane Database Syst Rev. 2015;2:CD010438. doi:10.1002/14651858.CD010438.pub2.

    Google Scholar 

  70. Inaba K, Rizoli S, Veigas PV, et al. 2014 consensus conference on viscoelastic testYbased transfusion guidelines for early trauma resuscitation: report of the panel. J Trauma Acute Care Surg. 2015;78(6):1220–9. doi:10.1097/TA.0000000000000657.

    Article  PubMed  Google Scholar 

  71. Holcomb JB, Jenkins D, Rhee P, et al. Damage control resuscitation: directly addressing the early coagulopathy of trauma. J Trauma. 2007;62(2):307–10. doi:10.1097/TA.0b013e3180324124.

    Article  PubMed  Google Scholar 

  72. Kutcher ME, Kornblith LZ, Narayan R, et al. A paradigm shift in trauma resuscitation: evaluation of evolving massive transfusion practices. JAMA Surg. 2013;148(9):834–40. doi:10.1001/jamasurg.2013.2911.

    Article  PubMed  Google Scholar 

  73. Shaz BH, Dente CJ, Nicholas J, et al. Increased number of coagulation products in relationship to red blood cell products transfused improves mortality in trauma patients. Transfusion. 2010;50(2):493–500. doi:10.1111/j.1537-2995.2009.02414.x.

    Article  CAS  PubMed  Google Scholar 

  74. Borgman MA, Spinella PC, Perkins JG, et al. The ratio of blood products transfused affects mortality in patients receiving massive transfusions at a combat support hospital. J Trauma. 2007;63(4):805–13. doi:10.1097/TA.0b013e3181271ba3.

    Article  PubMed  Google Scholar 

  75. Holcomb JB, del Junco DJ, Fox EE, et al. The prospective, observational, multicenter, major trauma transfusion (PROMMTT) study: comparative effectiveness of a time-varying treatment with competing risks. JAMA Surg. 2013;148(2):127–36. doi:10.1001/2013.jamasurg.387.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Kashuk JL, Moore EE, Johnson JL, et al. Postinjury life threatening coagulopathy: is 1:1 fresh frozen plasma:packed red blood cells the answer? J Trauma 2008;65(2):261–70; discussion 270-271. doi:10.1097/TA.0b013e31817de3e1.

  77. Davenport R, Curry N, Manson J, et al. Hemostatic effects of fresh frozen plasma may be maximal at red cell ratios of 1:2. J Trauma. 2011;70(1):90–5; discussion 95-96. doi:10.1097/TA.0b013e318202e486.

  78. Dixon J. Hemostatic resuscitation is neither hemostatic nor resuscitative in trauma hemorrhage: Khan S, Brohi K, Chana M, et al. J Trauma Acute Care Surg. 2014;76:561–8. J Emerg Med. 2014;46(6):877–8. doi:10.1016/j.jemermed.2014.04.010.

  79. Tapia NM, Chang A, Norman M, et al. TEG-guided resuscitation is superior to standardized MTP resuscitation in massively transfused penetrating trauma patients. J Trauma Acute Care Surg. 2013;74(2):378–85; discussion 385-386. doi:10.1097/TA.0b013e31827e20e0.

  80. Schöchl H, Nienaber U, Hofer G, et al. Goal-directed coagulation management of major trauma patients using thromboelastometry (ROTEM)-guided administration of fibrinogen concentrate and prothrombin complex concentrate. Crit Care. 2010;14(2):R55. doi:10.1186/cc8948.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Kashuk JL, Moore EE, Sawyer M, et al. Postinjury coagulopathy management: goal directed resuscitation via POC thrombelastography. Ann Surg. 2010;251(4):604–14. doi:10.1097/SLA.0b013e3181d3599c.

    Article  PubMed  Google Scholar 

  82. Schöchl H, Maegele M, Solomon C, Görlinger K, Voelckel W. Early and individualized goal-directed therapy for trauma-induced coagulopathy. Scand J Trauma Resusc Emerg Med. 2012;20(1):15. doi:10.1186/1757-7241-20-15.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Da Luz LT, Nascimento B, Shankarakutty AK, Rizoli S, Adhikari NK. Effect of thromboelastography (TEG®) and rotational thromboelastometry (ROTEM®) on diagnosis of coagulopathy, transfusion guidance and mortality in trauma: descriptive systematic review. Crit Care. 2014;18(5):518. doi:10.1186/s13054-014-0518-9.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Henry DA, Carless PA, Moxey AJ, et al. Anti-fibrinolytic use for minimising perioperative allogeneic blood transfusion. Cochrane Database Syst Rev. 2007;4:CD001886. doi:10.1002/14651858.CD001886.pub2.

    Google Scholar 

  85. Shakur H, Roberts I, Bautista R, et al. Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): a randomised, placebo-controlled trial. Lancet. 2010;376(9734):23–32. doi:10.1016/S0140-6736(10)60835-5.

    Article  CAS  PubMed  Google Scholar 

  86. Morrison JJ, Dubose JJ, Rasmussen TE, Midwinter MJ. Military application of tranexamic acid in trauma emergency resuscitation (MATTERs) study. Arch Surg. 2012;147(2):113–9. doi:10.1001/archsurg.2011.287.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew D. Neal MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Dyer, M., Neal, M.D. (2017). Defining the Lethal Triad. In: Pape, HC., Peitzman, A., Rotondo, M., Giannoudis, P. (eds) Damage Control Management in the Polytrauma Patient. Springer, Cham. https://doi.org/10.1007/978-3-319-52429-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52429-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52427-6

  • Online ISBN: 978-3-319-52429-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics