Skip to main content

Formability of Magnesium Alloy AZ31B from Room Temperature to 125 °C Under Biaxial Tension

  • Conference paper
  • First Online:
Magnesium Technology 2017

Abstract

Magnesium AZ31B sheets of 2 mm thickness were stretch formed using a 101.6 mm diameter punch at room temperature and subsequent increments from 25 to 125 °C. Surface strains were measured using a digital image correlation method in order to ensure that biaxial stretching was achieved. The punch height versus load curve was found to be the same for temperatures of 25 and for 50 °C, while at 75 °C the load for a given punch height was less. This difference seems to indicate a change in deformation mechanism between 50 and 75 °C. Electron Backscatter Diffraction (EBSD) was used to quantify features of the microstructure in the as-received and the strained specimens. Rather than a sudden transition from twinning to slip at low temperatures, it appears that twinning gradually decreases and slip activity increases as temperatures rise across the range from 25 to 125 °C. This confirms recent predictions found in the literature. The twin activity predominantly involves the formation of compression twins which rapidly transform further to create secondary twins for easier strain accommodation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. S.R. Agnew, M.H. Yoo, C.N. Tomé, Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y. Acta Mater. 49(20), 4277–4289 (2001)

    Article  Google Scholar 

  2. É. Martin, Variant selection during secondary twinning in Mg-3%Al. Acta Mater. 58(11), 3970–3983 (2010)

    Article  Google Scholar 

  3. S.H. Park, S.G. Hong, C.S. Lee, Activation mode dependent 10–12 twinning characteristics in a polycrystalline magnesium alloy. Scripta Mater. 62(4), 202–205 (2010)

    Article  Google Scholar 

  4. A. Chapuis, J. Driver, A fundamental study of the high temperature deformation mechanisms of magnesium. J. Phys. A: Math. General. 420 (2012)

    Google Scholar 

  5. S.R. Agnew, J.A. Horton, M.H. Yoo, Transmission electron microscopy of <c+a> dislocations in Mg and alpha-solid solutions of Mg-Li alloys. Metall. Mater. Trans. A 33A, 851–858 (2002)

    Article  Google Scholar 

  6. J. Koike, T. Kobayashi, T. Mukai, H. Watanabe, M. Suzuki, K. Maruyama, K. Higashi, The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys. Acta Mater. 51, 2055–2065 (2003)

    Article  Google Scholar 

  7. J. Koike, Enhanced deformation mechanisms by anisotropic plasticity in polycrystalline magnesium alloys at room temperature. Metall. Mater. Trans. A 36, 1689–1696 (2005)

    Article  Google Scholar 

  8. L. Wu, Twinning-detwinning behavior during the strain-controlled low-cycle fatigue testing of a wrought magnesium alloy, ZK60A. Acta Mater. 56(4), 688–695 (2008)

    Article  Google Scholar 

  9. S. Sandlöbes, On the role of non-basal deformation mechanisms for the ductility of Mg and Mg-Y alloys. Acta Mater. 59(2), 429–439 (2011)

    Article  Google Scholar 

  10. L. Jiang, J.J. Mishra, R.K. Luo, A.K. Sachdev, S. Godet, Twinning and texture development in two Mg alloys subjected to loading along three different strain paths. Acta Mater. 55, 3899–3910 (2007)

    Article  Google Scholar 

  11. N. Ono, R. Nowak, S. Miura, Effect of deformation temperature on Hall-Petch relationship registered for polycrystalline magnesium. Mater. Lett. 58(1–2), 39–43 (2003)

    Google Scholar 

  12. M.R. Barnett, Twinning and the ductility of magnesium alloys: part I: ‘Tension’ twins. Mater. Sci. Eng. A 464(1–2), 1–7 (2007)

    Article  Google Scholar 

  13. S.G. Hong, S.H. Park, C.S. Lee, Role of 10–12 twinning characteristics in the deformation behavior of a polycrystalline magnesium alloy. Acta Mater. 58(18), 5873–5885 (2010)

    Article  Google Scholar 

  14. Y. Chino, K. Kimura, M. Mabuchi, Deformation characteristics at room temperature under biaxial tensile stress in textured AZ31Mg alloy sheets. Acta Mater. 57(5), 1476–1485 (2009)

    Article  Google Scholar 

  15. W.B. Hutchinson, M.R. Barnett, Effective values of critical resolved shear stress for slip in polycrystalline magnesium and other hcp metals. Scripta Mater. 63(7), 737–740 (2010)

    Article  Google Scholar 

  16. S.R. Agnew, C.N. Tomé, D.W. Brown, T.M. Holden, S.C. Vogel, Study of slip mechanisms in a magnesium alloy by neutron diffraction and modeling. Scripta Mater. 48, 1003–1008 (2003)

    Article  Google Scholar 

  17. D. Brown, S.R. Agnew, M.A.M. Bourke, T.M. Holden, S.C. Vogel, C.N. Tomé, Internal strain and texture evolution during deformation twinning in magnesium. Mater. Sci. Eng. A 399(1–2), 1–12 (2005)

    Article  Google Scholar 

  18. M. Barnett, Twinning and the ductility of magnesium alloys part II contraction twins. Mater. Sci. Eng., A 464, 8–16 (2007)

    Article  Google Scholar 

  19. A. Chapuis, J.H. Driver, Temperature dependency of slip and twinning in plane strain compressed magnesium single crystals. Acta Mater. 59(5), 1986–1994 (2011)

    Article  Google Scholar 

  20. T.J. Ruggles, D.T. Fullwood, J. Kysar, Resolving geometrically necessary dislocations onto individual slip systems using EBSD-based continuum dislocation microscopy. Int. J. Plast. 76, 231–243 (2016)

    Article  Google Scholar 

  21. A. Jain, S.R. Agnew, Modeling the temperature dependent effect of twinning on the behavior of magnesium alloy AZ31B sheet. Mater. Sci. Eng. A 462(1–2), 29–36 (2007)

    Article  Google Scholar 

  22. E. Hsu, J.E. Carsley, R. Verma, Development of forming limit diagrams of aluminum and magnesium sheet alloys at elevated temperatures. J. Mater. Eng. Perform. 17(3), 288–296 (2008)

    Article  Google Scholar 

  23. C.J. Gardner, B.L. Adams, J. Basinger, D.T. Fullwood, EBSD-based continuum dislocation microscopy. Int. J. Plast. 26, 1234–1247 (2010)

    Article  Google Scholar 

  24. T.J. Ruggles, D.T. Fullwood, Estimations of bulk geometrically necessary dislocation density using high resolution EBSD. Ultramicroscopy 133, 8–15 (2013)

    Article  Google Scholar 

  25. A.J. Wilkinson, G. Meaden, D.J. Dingley, High resolution mapping of strains and rotations using electron back scatter diffraction. Mater. Sci. Technol. 22(11), 1–11 (2006)

    Article  Google Scholar 

  26. A.J. Wilkinson, G. Meaden, D.J. Dingley, High-resolution elastic strain measurement from electron backscatter diffraction patterns: new levels of sensitivity. Ultramicroscopy 106, 307–313 (2006)

    Article  Google Scholar 

  27. J.F. Nye, Some geometrical relations in dislocated crystals. Acta Metall. 1, 153–162 (1953)

    Article  Google Scholar 

  28. E. Kroner, Continuum theory of dislocations and self-stresses. Ergebnisse der Angewandten Mathematik 5, 1327–1347 (1958)

    Google Scholar 

  29. W. Pantleon, Resolving the goemetrically necessary dislocation content by conventional electron backscattering diffraction. Scripta Mater. 58, 994–997 (2008)

    Article  Google Scholar 

  30. S. Sun, B.L. Adams, W.E. King, Observations of lattice curvature near the interface of a deformed aluminium bicrystal. Philos. Mag. A: Phys. Condens. Matter, Struct. Defects Mech. Prop. 80(1), 9–25 (2000)

    Article  Google Scholar 

  31. D.P. Field, Improving the spatial resolution of EBSD. Microsc. Microanal. 11, 52–53 (2005)

    Article  Google Scholar 

  32. B.S. El-Dasher, B.L. Adams, A.D. Rollett, Viewpoint: experimental recovery of geometrically necessary dislocation density in polycrystals. Scripta Mater. 48(2), 141–145 (2003)

    Article  Google Scholar 

  33. P.D. Littlewood, T.B. Britton, A.J. Wilkinson, Geometrically necessary dislocation density distribution in Ti-6Al-4V deformed in tension. Acta Mater. 59, 6489–6500 (2011)

    Article  Google Scholar 

  34. J.W. Kysar, Y. Saito, M.S. Oztop, D. Lee, W.T. Huh, Experimental lower bounds on geometrically necessary dislocation density. Int. J. Plast. 26, 1097–1123 (2010)

    Article  Google Scholar 

  35. J.W. Kysar, Y.X. Gan, T.L. Morse, X. Chen, M.E. Jones, High strain gradient plasticity associated with wedge indentation into face-centered cubic single crystals: geometrically necessary dislocation densities. J. Mech. Phys. Solids 55, 1554–1573 (2007)

    Article  Google Scholar 

  36. P. Cizek, M.R. Barnett, Characteristics of the contraction twins formed close to the fracture surface in Mg–3Al–1Zn alloy deformed in tension. Scripta Mater. 59(9), 959–962 (2008)

    Article  Google Scholar 

  37. M.R. Barnett, Z. Keshavarz, A.G. Beer, X. Ma, Non-schmid behaviour during secondary twinning in a polycrystalline magnesium alloy. Acta Mater. 56(1), 5–15 (2008)

    Article  Google Scholar 

  38. É. Martin, L. Capolungo, L. Jiang, J.J. Jonas, Variant selection during secondary twinning in Mg–3%Al. Acta Mater. 58(11), 3970–3983 (2010)

    Article  Google Scholar 

  39. M. Ardeljan, I.J. Beyerlein, B.A. McWilliams, M. Knezevic, Strain rate and temperature sensitive multi-level crystal plasticity model for large plastic deformation behavior: application to AZ31 magnesium alloy. Int. J. Plast. 83, 90–109 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was support by National Science Foundation award CMMI-1404771.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isaac Chelladurai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Minerals, Metals & Materials Society

About this paper

Cite this paper

Chelladurai, I. et al. (2017). Formability of Magnesium Alloy AZ31B from Room Temperature to 125 °C Under Biaxial Tension. In: Solanki, K., Orlov, D., Singh, A., Neelameggham, N. (eds) Magnesium Technology 2017. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-319-52392-7_91

Download citation

Publish with us

Policies and ethics